
UNCERTAINTY HANDLING IN DISASTER MANAGEMENT USING HIERARCHICAL 

ROUGH SET GRANULATION 
 

 
H. Sheikhiana, M.R. Delavarb and A. Steinc 

 
a MSc. Student, GIS Dept., School of Surveying and Geospatial Eng., College of Eng., University of Tehran, Tehran, Iran, 

sheikhain@ut.ac.ir 
b Center of Excellence in Geomatic Eng. in Disaster Management, School of Surveying and Geospatial Eng., College of Eng., 

University of Tehran, Tehran, Iran, mdelavar@ut.ac.ir 
c Department of Earth Observation Science, University of Twente, The Netherlands, a.stein@utwente.nl 

 

Commission II, WG II/4 
 

 
KEY WORDS: Seismic vulnerability assessment, Granular computing, Rough set theory, Uncertainty management 
 
 
 

ABSTRACT:  

 
Uncertainty is one of the main concerns in geospatial data analysis. It affects different parts of decision making based on such data. In 
this paper, a new methodology to handle uncertainty for multi-criteria decision making problems is proposed. It integrates hierarchical 
rough granulation and rule extraction to build an accurate classifier. Rough granulation provides information granules with a detailed 
quality assessment. The granules are the basis for the rule extraction in granular computing, which applies quality measures on the 
rules to obtain the best set of classification rules. The proposed methodology is applied to assess seismic physical vulnerability in 
Tehran. Six effective criteria reflecting building age, height and material, topographic slope and earthquake intensity of the North 
Tehran fault have been tested. The criteria were discretized and the data set was granulated using a hierarchical rough method, where 

the best describing granules are determined according to the quality measures. The granules are fed into the granular computing 
algorithm resulting in classification rules that provide the highest prediction quality. This detailed uncertainty management resulted in 
84% accuracy in prediction in a training data set. It was applied next to the whole study area to obtain the seismic vulnerability map of 
Tehran. A sensitivity analysis proved that earthquake intensity is the most effective criterion in the seismic vulnerability assessment of 
Tehran.  
 
 

1. INTRODUCTION 

Multi-criteria decision making problems are dealing with various 
criteria obtained from different sources as well as different data 
integration methods. Input data are one of the major sources of 
uncertainty in such a problem and thus data quality has a 

significant effect on the acquired results. The implemented 
model, however, may not be sufficiently accurate and its 
uncertainty has to be considered. In cases where expert judgment 
is involved in the decision making process, imprecise expert 
decisions may also affect the acquired results. Due to these 
uncertainties, multi-criteria decision making methods have to be 
assessed against the uncertainty sources. 
 
A number of studies have focused on uncertainty management, 

such as Hansson (1996) and Zadeh (2005). Much research was 
also dedicated to manage uncertainty in multi-criteria problems 
(Paté-Cornell, 1996; Baker, 2008; Tesfamariam et al., 2010). In 
Tehran, researchers such as Jahanpeyma et al. (2007) and 
Khamespanah et al. (2013b) integrated uncertainty management 
with seismic vulnerability mapping. 
 
In this paper, hierarchical rough set granulation is integrated with 

granular computing (GrC) for rule extraction to undertake quality 
assessment in extracting classification rules. Hierarchical rough 
set granulation provides quality measures for the granules 
describing the data set. Those measures are used to select a set of 
qualified granules to be used during the rule extraction by 
granular computing, which applies measurements between the 
granules and output classes to obtain classification rules.  
 

 
 

 
Granular computing is adequate to handle uncertainty in 
classification procedures (Zadeh, 1997). 
 
In this research, seismic physical vulnerability of Tehran, the 
capital of Iran, was examined. First, correlation of the selected 
criteria was investigated to ensure that the model is provided with  
non-redundant data. Next, granules were extracted by 

hierarchical rough set granulation and were provided to granular 
computing to extract the classification rules. To assess the model, 
statistical tests and a sensitivity analysis were carried out. 
 
 

2. METHODOLOGY 

This paper proposes hierarchical rough set granulation to extract 
granules to be used in the rule extraction using granular 
computing. Instead of classical granular computing algorithm 
which extracts the possible granules of the data and then attempts 
to extract the classification rules, we proposed a new model 
which uses hierarchical rough granulation for extracting best 
describing granules to be used in the process of granular 

computing rule extraction in order to overcome the problem of 
uncertainty propagation in the rule extraction procedure. An 
overview of the proposed methodology is provided in the 
succeeding sections. 
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2.1 Granulation by rough set approximation 

Rough sets theory was introduced by Pawlak (1982). It is widely 
accepted as an excellent tool for handling vaguely described 
objects. It allows dealing with input data inconsistencies (Greco 
et al., 2001), while providing a posteriori information about the 

quality of the approximation. 
Rough set approximations can be used for granulation of the 
universe. An information granule essentially comprises elements 
grouped together by similarity of their attributes (Yao, 1999).  
 

We consider U  as the finite and non-empty universe set of data. 

Then an equivalence relation E U U  divides the U into 

disjoint partitions. 
 

An arbitrary set X U , however, may not be precisely 

described using equivalence granules and should be 
characterized by a pair of ordinary sets called lower and upper 
approximations (Pawlak, 1982): 
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The lower approximation of X, lower (X), is the collection of all 
equivalence granules included in X, where granules are denoted 
as [x]E. The upper approximation, upper(X), is the collection of 

non-elementary granules with non-empty intersection with X.  
Equation (3) defines the accuracy of granule approximation 
(Baker, 2008): 
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where | |X  is the size of granule X , and 0 ( ) 1ac X  . 

The quantity q(X) in (4) defines the quality of approximating X

based on the available attributes (Greco et al., 2001): 
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Obviously 0 1ac q   .  

 

2.1.1 Hierarchical rough granulation 
 
The granules defined by rough set approximation can have a 

nested sequence, in which an equivalence granule 
1[ ]EX  

produced by equivalence relation
1E considered to be included in 

an equivalence granule 
2[ ]EX  produced by

2E , if

1 2[ ] [ ]E EX X . This also means that
1E  produces a smaller 

granule than
2E  and 

2E  is a union of some equivalence relations

1E . This notion can be extended to a sequence of granules or 

relations. The granules defined by rough set approximation can 
have a nested sequence: 
 

E1 E2 En
[x] [x]  . . . [x]      (5) 

 
which means that: 
 

E1 E2 En
([x] ) ([x] )  . . . ([x] )ac ac ac        (6) 

 

thus forming a multi-layered granulation structure. The sizes of 
granules at different levels of granularity define the accuracy of 
classification. To achieve the best classification, a search within 
the layered granulations should be carried out to obtain the best 
granules to be used in GrC rule extraction. 

 
2.2 Granular computing rule extraction 

GrC is the science of information processing at different levels of 
granularity (Pawlak, 1982; Hobbs, 1985; Zadeh, 1997; Nguyen 
et al., 2001; Miao and Fan, 2002; Bargiela, 2003; Keet, 2008; 
Yao, 2008). In the GrC approach, information is divided into 
subsets or granules of information (Yao, 2001; Lin, 2003; Yao, 
2008). By providing an information table about the problem, GrC 
constructs the granules considering the similarity of the attribute-

values of the objects, and then focuses on induction of the 
classification rules.  
 
In this paper, we replace GrC granulation with hierarchical rough 
set granulation because of its detailed quality measures that 
contribute to the uncertainty management. By obtaining the 
granules, GrC applies measures on them to obtain the best rules 
describing the relation of the granules with the assigned output 
classes. 

 

GrC considers the attribute granules as the concepts   and 

decision attributes as the concepts  . The rules are in the form 

of IF-THEN statements: “if an object satisfies  , then the output 

class is  ”(Yao, 2001) which is displayed by   . In this 

paper, generality, absolute support and mutual support are used 
as rule describers. 
 
Generality is the ratio of the objects that contribute in a specific 
rule  (Yao, 2001): 
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where  | |m    is the number of objects satisfying the 

concept  and | |U   is the size of universe. Rules having higher 

values of generality are more reliable (Yao, 2001).  
 

The absolute support of the rule   , AS(  ), denotes 

the possibility of an object satisfying   to have the class   

(Yao, 2001) : 
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Mutual support ranges between 0 and 1, and indicates the degree 

to which   confirms, and only confirms  . It is a measure of 

the strength of the two-way association    (Yao, 2002). 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

Census data of Tehran metropolitan area containing 3173 
statistical units were accessed and used. In this data set, each 
statistical unit is characterized by six effective attributes, 
including average slope (slope), seismic intensity (MMI), 

percentage of weak buildings having less than or equal to four 
stories (WLE4), percentage of weak buildings having more than 
four stories (WH5), percentage of buildings constructed before 
1966 (Bef-66), being the year of the commencement of executing 
building using standard construction rules in Iran,  and the 
percentage of buildings constructed between 1966 and 1988 (Bet-
66-88), where 1988 is the year that building was executed using 
earthquake resistance standards. 150 out of 3173 units were used 
as the samples to be ranked by experts against their degree of 

seismic vulnerability by numbers ranging from one to five, 
corresponding to very low vulnerability, low vulnerability, 
medium vulnerability, high vulnerability and very high 
vulnerability, respectively. 70% of the data were used for training 
and the rest used for testing the model. The six seismic 
parameters were discretized into four equal interval classes. 
 
Position of the selected samples and their vulnerabilities are 

demonstrated in Figure 1. Experts’ judgments on seismic 
vulnerability of the 5 selected samples are shown in Table 1. In 
addition, Figure 2 illustrates the proposed methodology for 
seismic vulnerability assessment of Tehran. 
 

 

 Figure 1. Position of the sample data in the study area 
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11 4 2 2 1 3 2 2 

2799 1 2 1 1 4 1 2 

1342 1 2 4 1 4 3 5 

144 3 2 1 1 2 1 1 

335 1 2 4 1 4 1 3 

Table 1. Seismic physical vulnerability information 
classification for the five selected samples  

 

To assess the quality of the underlying data, several tests were 
applied. As can be seen in the scatter plot diagrams (Figure 3), 
none of the criteria pairs showed a high correlation representing 
no redundancy between and among the employed data. 

 

 

Figure 2: Proposed methodology  

 

Figure 3. Scatter plot of the input criteria showing the 
correlation of each criteria pair 
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The data were used to extract high quality granules by means of 

hierarchical rough set granulation. In this regard, six levels of 
granulation were applied to the data with respect to the six 
attributes and 53 granules were selected among the full set of the 
extracted granules, according to the accuracy measures so that 
the selected granules cover the universe. The quality parameters 
for several extracted granules are presented in Table 2: 
 

Granule 
id 

Level of 
granularity 

Accuracy (ac) Quality (q) 

1 6 1 1 

5 6 0.89 0.9 

32 5 0.94 0.96 

Table 2. Quality measurements of granules showing level of the 
granule in the hierarchical structure, accuracy and quality values  

 
GrC applied to the selected granules and 30 classification rules 
were extracted. Quality measures for some of these rules are 
shown in Table 3, whereas Figure 4 shows the obtained decision 
tree.  

 

Rule id Generality 
Absolute 
Support 

Mutual 
Support 

9 0.06 0.95 0.95 

18 0.09 0.92 0.96 

22 0.06 0.82 0.9 

Table 3. Quality measurements of the extracted rules 

 

The acquired decision tree was applied to the study area. A 
seismic physical vulnerability map was produced (Figure 5). In 
this map, 9%, 11%, 44%, 16% and 20% of the units were 
assigned with the degree of vulnerability between 1 and 5, 
respectively. 
 

The model resulted in 0.86 for 2R (coefficient of determination) 

and an RMSE value of 0.43 for the training data, and 0.85 and 
0.46 for the test data. The accuracies for classes one to five were 
equal to 94%, 83%, 86%, 77% and 92%, respectively.

 

 

Figure 4. Decision tree of the extracted rules showing rule elements and resulting classes in a tree form 
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Figure 5. Seismic physical vulnerability map of Tehran 
considering North Tehran fault activation 

 

Moreover, the relative importance of the criteria is calculated 
based on their frequency and influence in the rule set (Table 4). 
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Relative 

importance 
0.04 1 0.96 0.56 0.32 0.62 

Table 4. Relative importance of the criteria, normalized with 
respect to the most important criterion 

 

To assess the acquired results, some quality measurements were 
carried out. Though there is no real earthquake damage 

measurements in Tehran, most of the tests are based on quality 
of predicting assigned values by experts. Accuracy indices of the 
implemented rough-GrC method in comparison with the GrC 
method are demonstrated in Table 5: 

 

Algorithm Rough-GrC GrC 

Indices 
R2(coefficient 

of 

determination) 

RMSE p-value R2 RMSE p-value 

Train 0.89 0.37 0.0002 0.87 0.45 0.0002 

Test 0.83 0.46 0.0002 0.83 0.49 0.0001 

Table 5. Accuracy assessment of the implemented method in 
comparison with GrC algorithm 

 

According to Table 5, both of the methods provided acceptable 
accuracies and residuals, while the proposed rough-GrC 
algorithm outperformed the basic GrC algorithm. 

Table 6 shows the accuracies obtained for each vulnerability 

class. Best prediction performance resulted for the classes 1 and 
5. 

 

         Assigned              
               Class 

 
 

True Class 

C
lass 1

 

C
lass 2

 

C
lass 3

 

C
lass 4

 

C
lass 5

 

A
ccu

racy
 (%

) 

Class 1 16 2 0 0 0 88 

Class 2 2 35 4 0 0 85 

Class 3 1 5 42 1 0 86 

Class 4 0 0 2 13 1 83 

Class 5 0 0 1 2 23 88 

Table 6. Accuracy of classification per class 

 

4. SENSITIVITY ANALYSIS 

Finally, a sensitivity analysis revealed the uncertainty 
propagation in the model. This can be used as a test of the 
robustness of the results. In addition, it allows a user to identify 
the critical criteria, which cause significant change in the output 
if they are slightly changed. It is possible for a low-importance 
criterion to be more critical than higher importance criteria 

(Triantaphyllou, 1997). Here the sensitivity analysis is done with 
the assumption of change in each criterion, while the other 
criteria remained unaffected. The results of the analysis are 
represented in Figure 6 which shows that the MMI is the most 
critical criterion in seismic vulnerability assessment. Slope and 
WLE4 are the least critical criteria and other parameters have 
moderate effect. It has to be mentioned that the sensitivity 
analysis is based on the change in the acquired results, thus it 

could not be undertaken for the rule extraction section. 
 

 
 

Figure 6. Sensitivity analysis of the model against 20% 
variation in the input values 
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5. CONCLUSION 

This paper proposed a new methodology for seismic vulnerability 
assessment of Tehran using the integration of hierarchical rough 
granulation and granular computing rule extraction algorithm. 
Granules provided by hierarchical rough set granulation showed 

accuracies above 0.84 and qualities above 0.86.  The rules 
extracted by granular computing provided acceptable results in 
quality measurements.  
The model was tested and confirmed by various measurements 
including the prediction accuracy for the given training data, a 
residual analysis and a sensitivity analysis. In addition, the 
importance of the input criteria was determined.   
The proposed model resulted in higher accuracy in seismic 
vulnerability assessment as compared to previous research 

(Samadi Alinia and Delavar, 2011; Khamespanah et al., 2013a). 
Moreover, the resulting vulnerability map indicates a high 
amount of seismic vulnerability in Tehran, thus requiring 
comprehensive disaster risk reduction plans to be developed.  
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