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ABSTRACT: 

 

This study aims to detect automatically building points: (a) from LIDAR point cloud using simple techniques of filtering that 

enhance the geometric properties of each point, and (b) from a point cloud which is extracted applying dense image matching at high 

resolution colour-infrared (CIR) digital aerial imagery using the stereo method semi-global matching (SGM). At first step, the 

removal of the vegetation is carried out. At the LIDAR point cloud, two different methods are implemented and evaluated using 

initially the normals and the roughness values afterwards: (1) the proposed scan line smooth filtering and a thresholding process, and 

(2) a bilateral filtering and a thresholding process. For the case of the CIR point cloud, a variation of the normalized differential 

vegetation index (NDVI) is computed for the same purpose. Afterwards, the bare-earth is extracted using a morphological operator 

and removed from the rest scene so as to maintain the buildings points. The results of the extracted buildings applying each approach 

at an urban area in northern Greece are evaluated using an existing orthoimage as reference; also, the results are compared with the 

corresponding classified buildings extracted from two commercial software. Finally, in order to verify the utility and functionality of 

the extracted buildings points that achieved the best accuracy, the 3D models in terms of Level of Detail 1 (LoD 1) and a 3D 

building change detection process are indicatively performed on a sub-region of the overall scene.  
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1. INTRODUCTION 

The technological development in the fields of computer vision 

and digital photogrammetry provides new tools and automated 

solutions for applications in urban studies, cadastre, etc, 

associated with urban development, identification of illegal 

constructions, 3D modelling, change detection, etc. Numerous 

algorithms have been developed over the years for the 

automatic building detection using LIDAR data and point 

clouds from dense image matching. Lodha et al. (2006) 

classified the whole scene into buildings, trees, roads, and grass 

applying several variations of Support Vector Machines (SVM). 

Using the features height, height variation, normal variation, 

LIDAR return intensity, and image intensity, they report an 

accuracy rate higher than 90%. Han et al. (2007) proposed a fast 

and memory-efficient segmentation algorithm similar to the 

region-growing and unsupervised-classification methods for 

airborne laser point clouds utilizing scan line characteristics. 

Zhou and Neumann, (2008) proposed an automatic algorithm 

which reconstructs building models from LIDAR data. After the 

removal of vegetation applying a SVM method based on local 

geometry property analysis, the planar roofs and the boundaries 

of buildings were extracted. Their classification algorithm 

achieved a success rate of 95%. 

 

A different approach was proposed by Huang and Sester (2011) 

combining a bottom-up and a top-down approach to extract and 

refine building footprints from LIDAR data. Initially, a pre-

segmentation step of the raster image of the point loud was 

conducted. Then, a 3D Hough Transform was chosen to detect 

the building points and an improved joint multiple-plane 

detection was applied to find and label the LIDAR points on 

multiple roof facets. Finally, a top-down reconstruction was 

conducted via generative 3D models of buildings. Concerning 

the reconstruction of the building footprints, they achieved a 

success rate of about 90%. Lafarge and Mallet (2012) proposed 

a robust hybrid representation to create large-scale city models 

from 3D point clouds. The classification of the buildings was 

carried out implementing an energy minimization via a graph 

cuts based algorithm (Boykov et al., 2001) which included 

several geometric attributes such local non-planarity, elevation, 

scatter and regular grouping. Their algorithm was tested on 

LIDAR data as well as on a point cloud derived from Multi-

View Stereo (MVS) imagery. Awrangjeb and Fraser (2013) 

presented a new robust rule-based segmentation technique for 

LIDAR point cloud data for automatic extraction of building 

roof planes using a data driven approach. Hu and Ye (2013) 

proposed a fast and simple algorithm based on scan line 

analysis using the Douglas-Peucker algorithm for the automatic 

detection of building points from LIDAR data. Sun and 

Salvaggio (2013) developed a fast and completely automated 

method to create watertight building models from airborne 

LIDAR point clouds. Concerning the building detection a 

robust graph cuts based method was used to segment vegetation 

from the rest of the scene content achieving an accuracy rate of 

95.7%. Then, the ground terrain and building rooftop patches 

were extracted utilizing a hierarchical Euclidean clustering. 

Finally, a specifically designed region growing algorithm with 

smoothness constraint was applied using the point normals and 

their curvatures. Also, alternative approaches combining the 

advantages of both LIDAR and multispectral images have been 

applied (Liao and Huang, 2012). Hron and Halounova (2015) 
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focused on point clouds that derived from digital aerial images 

using derived layers that contained additional information about 

the road and railway networks, shadow and vegetation/NDVI 

masks, etc. 

 

However, interesting studies have been implemented that 

focused on feature enhancement at LIDAR point clouds 

(Duguet et al., 2004; Daniels et al., 2007; Gao and Neumann, 

2014). Since LIDAR point clouds often suffer from noise and 

local under-sampling, filtering techniques could be 

implemented to enhance the geometric properties of each point 

and therefore the appearance of the object of interest. The 

quality (i.e., density, presence of transparent materials, etc) of 

the raw LIDAR point cloud may has a significant effect to each 

point cloud classification. Simple and efficient algorithms for 

the classification of point clouds, which constitute a very large 

amount of data, are required towards the challenge of the 

increasingly greater demands for accurate and real-time 

classification applications. 

 

This paper exploits the use of the geometry of the surface which 

is derived from the normal vector estimation using the value of 

component Nz, in combination with filtering techniques to 

highlight and remove vegetation areas from LIDAR point 

clouds. An important advantage of the filtering process is its 

dual effect as not only the vegetation is highlighted but also 

objects on rooftops that increase their surface roughness (e.g., 

chimneys, etc) are recorded at the buildings without requiring 

any post-processing. Furthermore, it does not involve training 

data. In this context, a simple, easy to implement and efficient 

approach of scan line smooth filtering is proposed as well as a 

bilateral filter is implemented and evaluated. 

 

2. PROPOSED APPROACHES FOR THE AUTOMATIC 

DETECTION OF BUILDING POINTS  

In this study, the point clouds of buildings of an urban area are 

automatically extracted using two different types of data. The 

first type of data is a LIDAR point cloud with a point density of 

40 cm; the second type of data is a dense point cloud which 

extracted by dense image matching using the stereo SGM 

method (Hirschmüller, 2008) from high resolution CIR digital 

aerial imagery with a ground sample distance (GSD) of 20 cm. 

Figure 1 illustrates the flow chart of the proposed approaches.  

 

 
Figure 1. Workflow of the automatic detection of building 

points from the LIDAR point cloud (left) and the 

CIR point cloud (right).  

The first step of the applied procedures is the removal of the 

vegetation (dashed rectangles in Figure 1). At the LIDAR point 

cloud two different methods are implemented and evaluated 

using the normal and the roughness values: 

- the proposed scan line smooth filtering and a thresholding 

process, and 

- a bilateral filtering and a thresholding process. 

On the other hand, the CIR point cloud embodies the 

multispectral information and so a variation of the NDVI 

(named NDVI in the rest of the paper) is calculated to separate 

the vegetation. 

 

In the second step, an approach similar to Kilian et al. (1996) is 

conducted to extract the bare earth based on a morphological 

operator along the scan line of the point cloud. In the third step, 

the results of the previous two steps are utilized to extract the 

point clouds of the initial buildings. At the fourth step the 

density of the remaining points is examined in a search area and 

thus isolated points or tiny blobs of points are removed. In the 

fifth step, the final point cloud of buildings of each approach is 

extracted. The implementation and the evaluation of the 

proposed approaches is made using the MATLAB computing 

environment as well as the open-source project CloudCompare 

(Girardeau-Montaut, 2015) and the LAStools and ERDAS 

IMAGINE commercial software packages. 

 

2.1 Removal of vegetation 

2.1.1 Removal of vegetation via filtering process at the 

LIDAR point cloud: The way vegetation is removed from the 

LIDAR point cloud includes mainly the use of normals and 

more specifically at the value of the component Nz which is 

directly related with the Z direction. Since the area of interest 

includes buildings with complex structure, the normals were 

estimated applying a local model of 2D triangulation for the 

optimum adaptation at the building’s surface (instead of using a 

local model of a plane or a height function which requires a 

radius of a local neighborhood) using the CloudCompare 

software. The normal value of Nz tends to the value 1, where 1 

is the max value, in case of a planar surface (in the field, usually 

located within to the range 0.85 to 1). Since some rooftops are 

rough or irregular due to the presence of complex sloping roofs, 

chimneys, solar water heaters, etc, the Nz value deviates 

significantly from the value 1. Similarly, vegetation, which in 

majority present disorderly dispersion of the value Nz (having 

significantly different Nz values from the value 1), may present 

Nz values close enough to the value 1 in cases of vegetation 

with very flat canopies; for example, dense arrays of trees or 

foliages. Considering the above, an active filtering is quite 

capable to enhance the correct entries (Nz value close to the 

value 1 for building rooftops and Nz value far from the value 1 

for vegetation) and to absorb simultaneously incorrect entries 

(Nz value close to the value 1 for vegetation and Nz value far 

from the value 1 for building rooftops).  

 

A simple and easy to implement filtering approach is conducted 

along the scan line of the LIDAR point cloud calculating the 

average of the Nz values within a defined neighbourhood 

symmetrically from a center point. The new calculated Nznew 

value for each point is computed as: 

 

 
 

i

Z i

p k

Znew i

N p

N p =
k




                              (1) 
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where pi is a position of a set of 3D points 

  3

1 2 N iP= p ,p ,...,p ,p R  and k is the number of the symmetric 

points of the neighborhood plus the center point p. Equation (1) 

is performed to each point to include retrospectively the Nznew 

value of each previous point. Thus, a powerful filtering is 

carried out; the larger the neighbourhood the more intense is the 

effect of filtering. In this sense, an excessive filtering may cause 

false entries and therefore to deform the boundaries of 

buildings. Hence, in this study, a small neighbourhood was 

selected including 3 points (the center point, its previous and its 

next point). After the filtering of the Nz values, a thresholding 

process is carried out removing the points that represent the 

vegetation whose Nz values where lower than 0.85 as well as 

possible facade building points. In a second phase, a further 

process is conducted to eliminate few cases of possible 

remaining vegetation. Firstly, the feature roughness is 

calculated on the thresholded point cloud of the previous step. 

Then, the roughness values are imported at Equation (1) using a 

neighbourhood of 3 points to absorb local cases of intense 

roughness on planar surfaces and simultaneously to highlight 

possible remaining vegetation. In general, using only the 

roughness as criterion of the classification of a point cloud may 

cause false classifications especially on dense vegetation, 

complex sloping roofs, small extensions of major buildings, etc. 

Since this study aims to detect even small buildings (of an area 

as small as 5 m2), the use of roughness obtained into 

consideration only complementary, and optionally if needed, 

using strict criteria such as the calculation of roughness in a 

search area of 1 m and the removal of points whose roughness 

values are higher than 0.10 m. 

 

Furthermore, the same procedure was carried out implementing 

a bilateral filter which originally proposed in image processing 

(Smith and Brady, 1997; Tomasi and Manduchi 1998). The 

bilateral filter is a non-iterative and simple non-linear filter 

which efficiently filters and smooths the values of the quantity 

of interest. The output value is a weighted average of the input 

value based on the spatial distance of neighbours and on the 

influence difference that penalizes values across features (Gao 

and Neumann, 2014). Extensions of the bilateral filter could be 

found in the literature (Fleishman et al., 2003; Jones et al., 

2003). The parameters of the filtering of the Nz values that 

finally selected associated with the best results were spatial 

sigma = 3.05 and scalar sigma = 0.35. A thresholding process at 

the filtered Nz values is carried out removing vegetation points 

whose Nz values are lower than 0.85 as well as possible facade 

building points. Also, the bilateral filter is implemented to 

roughness values to eliminate possible remaining vegetation. 

The same strict criteria concerning the use of roughness applied 

using a more intense filtering step with spatial sigma = 1 and 

scalar sigma = 1. Figure 2 shows the effect of the scan line 

smooth filtering and the bilateral filtering of the Nz values 

compared to the initial Nz values. Figure 3 illustrates a part of 

the scene of the final cleared from vegetation LIDAR point 

clouds. 

 

2.1.2 Semi-global matching and removal of vegetation 

calculating the NDVI at the CIR point cloud: SGM is an 

efficient, detailed, accurate and reliable stereo method for image 

based 3D surface reconstruction (Haala, 2011). The global 

energy E(D) is defined as:  

 

 

            (2) 

 
 

 
 

 

Figure 2. The LIDAR point cloud coloured by the initial Nz 

values (top); the filtered Nz values by the bilateral 

(middle) and the scan line smooth filtering (bottom).  

 

 

Figure 3. Removal of the vegetation of the LIDAR point clouds; 

(a) the orthoimage (b) the raw LIDAR point cloud, 

(c) the cleared LIDAR point cloud by the bilateral 

filtering, and (d) the cleared LIDAR point cloud by 

the scan line smooth filtering. 

 

(b) (a) 

(c) (d) 
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The first term is the sum of a pixel-wise matching cost for all 

pixels p at their disparities Dp. The proposed algorithm based 

initially at matching cost function Mutual Information (MI). 

However, variations of this algorithm may be implemented 

using other matching cost functions (Hirschmüller and 

Scharstein, 2009). The second term adds a constant penalty P1 

for all pixels q in the neighborhood Np of p, for which the 

disparity differences are small (i.e., 1 pixel). The third term 

penalizes larger disparity differences (i.e., independent of their 

size) with a larger constant penalty P2. Lower penalties allow an 

adaptation to slanted or curved surfaces whereas larger penalties 

have to do with discontinuities. Since discontinuities are often 

visible as intensity changes, an adaptation of P2 to the intensity 

gradient for neighborhood pixels p and q in the reference image 

Ib is carried out by:    

 
'

2
2

b b

P
P

I I


p q

                                   (3) 

 

SGM calculates E(D) along 1D paths at least 8 directions 

(should be 16 for providing a good coverage of the 2D image),   

towards each pixel of interest using dynamic programming. For 

each pixel and disparity, the costs of all paths are summed and 

then the disparity is determined using the Winner Takes All 

(WTA) strategy. 

 

In the stereo matching methods at least a reference and a 

matching image are required. Usually, a MVS imagery is 

utilized to eliminate occluded areas and mismatches as well as 

to increase the accuracy of the image based 3D point cloud 

generation of the area of interest. In this study, only a stereo-

pair of a CIR digital aerial imagery was available with an 

approximate overlap of 60% and a base to height ratio value 

0.30. Despite the presence of occluded areas (which were not 

taken into account during the estimation of success rates of 

building detection process) the geometry of the stereo-pair is 

considered satisfactory and suitable for the area of interest as an 

optimal combination of focal length, image scale, overlap of 

images and base to height ratio was accomplished. 

 

The near-infrared (NIR) channel is a very good source of 

information for the detection of vegetation. Since this colour 

channel is much more important than the blue channel, aerial 

images were prepared in false colours, created with the 

combination of near-infrared, red and green channels (Hron and 

Halounova, 2015). Noted, that in case of lack of NIR channel, 

machine learning techniques could be used to detect vegetation. 

For the case of CIR point cloud, a filtering process as described 

in section 2.1.1 seems that is not feasible due to the rough 

surface and not accurately shaped building’s outlines of the 

dense image matching point clouds.  

 

In this study, a dense point cloud from CIR images was 

extracted. First, an aerial triangulation of the stereo-pair of the 

CIR digital aerial imagery is performed using 6 Ground Control 

Points (GCPs). Then, the SGM method is implemented using 

the ERDAS IMAGINE package. Instead of generating an image 

mask of the vegetation, the NDVI is calculated directly to the 

CIR point cloud using the channels where the vegetation is fully 

and dimly depicted. Thus, a vegetation index is calculated 

which takes negative values for vegetation areas and positive 

values for the rest. Therefore, the NDVI threshold was selected 

as 0 to remove the vegetation. Figures 4-top and 4-bottom 

depict a part of the scene of the CIR point cloud and the cleared 

corresponding after thresholding the NDVI respectively. 

 
 

 
Figure 4. Top: the CIR point cloud extracted by the SGM; 

bottom: the cleared corresponding after thresholding 

the NDVI. 

 

2.2 Extraction of bare earth and initial point cloud of 

buildings 

The next step of the proposed approach is the extraction of the 

bare earth from each point cloud of the sections 2.1.1 and 2.1.2. 

Since the urban scenes rarely present intense topographic 

ground surface, the bare earth may detected based on a 

morphological operator similar to Kilian et al. (1996) selecting 

the deepest point inside a window of a certain size. The window 

is moved by a certain step along the scan line at each point 

cloud associated with the size of the maximum building. The 

size of the window of the operator varies depending on the 

scene so as to avoid false ground detection. As the 

morphological operator is implemented at the cleared from 

vegetation point clouds, a safe extraction of bare earth is 

conducted avoiding false ground detection caused by long 

arrays of trees or low vegetation. 

 

The only parameter involved in this step is the size of the 

maximum building. This size can be determined either by a 

visual inspection of the point cloud or by an automatic process 

(e.g., a pre-segmentation). In this study the size of the maximum 

building is equal to 120 m due to the existence of industrial 

buildings in the area. To obtain an integrated and 

comprehensive point cloud of the bare earth, a densification 

process via meshing and resampling with a similar point density 

of the initial corresponding point cloud is carried out. Finally, 

the point clouds of the buildings (with height larger than 2.5 m) 

are extracted using the point clouds of the sections 2.1.1 and 

2.1.2 and the corresponding bare earth point clouds that 

extracted in this section. 

  

2.3 Noise removal and extraction of the final point cloud of 

buildings 

In the final step of the proposed procedure, possible remaining 

isolated points or tiny blobs of points with small number of 

neighbours (less than 20 for the LIDAR point cloud and less 

than 55 for the CIR point cloud) are removed using a search 

area with a radius of 2 m. Figure 5 depicts representative results 

of the final point clouds of buildings using the proposed 

approaches for a part of the scene that is superimposed on an 

existing orthoimage.  
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Example of a missed building   

Example of a false detection of building 

Example of a poor performance of a detected building 

Figure 5. Final point cloud of buildings superimposed on an 

orthoimage, using the bilateral filtering approach 

coloured in blue (top) and the scan line smooth 

filtering approach coloured in yellow (middle) at the 

LIDAR point cloud; the CIR point cloud from SGM 

coloured in magenta (bottom). 

 

For comparison reasons, a classification process utilizing the 

LIDAR point cloud is implemented using the software packages 

of LAStools (lasground_new, lasheight and lasclassify) and 

ERDAS IMAGINE whose results are depicted in Figure 6. 

Several combinations of parameters were tested for the 

classification process of the LAStools including search area 

with a size of 1 m, 2 m, 3 m, 4 m and 5 m with the following 

combinations of building planarity and forest ruggedness: 

0.1 m / 0.2 m, 0.1 m / 0.3 m, 0.1 m / 0.4 m, 0.1 m / 0.5 m, 0.2 m 

/ 0.4 m and 0.3 m / 0.6 m. The best result was observed using a 

search area of 5 m and a combination of building planarity and 

forest ruggedness of 0.3 m and 0.6 m respectively. 

The parameters of the ERDAS IMAGINE that finally selected 

associated with the best results were: 

Min slope = 30 deg, Min area = 5 m2, Min height = 2.5 m, 

Max area = 1400 m2, Plane offset = 0.3 m, Roughness = 0.6 m, 

Max height for low vegetation = 2 m, 

Min height for high vegetation = 5 m. 

Also, several combinations of parameters were tested, e.g., the 

Plane offset and Roughness took values: 0.2 m / 0.5 m or 0.1 m 

/ 0.4 m or 0.3 m/ 0.5 m.   

 

 
 

 
           Example of a false detection of building 

Figure 6. Final point cloud of buildings superimposed on an 

orthoimage, using the classification process in 

LAStools coloured in green (top); the classification 

process in ERDAS IMAGINE coloured in cyan 

(bottom) using the LIDAR point cloud.  

 

3. EVALUATION OF THE RESULTS 

The application area is a small town near Thessaloniki, in 

northern Greece, at an area of 0.33 Km2 containing 501 

industrial and residential buildings. The type of vegetation of 

the scene is characterized as moderate. However, long arrays or 

groups of dense trees between the buildings, high vegetation 

beside the boundary of buildings as well as buildings 

surrounded or occluded by high trees exist. This situation in 

combination with the complex building structure with sloping 

roofs, chimneys, solar water heaters, small extensions or 

additions of major buildings, etc, constitutes a challenge 

towards an accurate and reliable automatic building detection 

process. To quantitatively evaluate the proposed approaches, 

the success rates of completeness, correctness and quality are 

used. According to the ISPRS guidelines (Rutzinger et al., 

2009): 
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TP
Completeness=

TP FN
                        (4) 

 
TP

Correctness=
TP FP

                           (5) 

  
TP

Quality=
TP FP FN 

                        (6) 

 

where TP, FP, and FN denote true positives, false positives, and 

false negatives, respectively. Table 1 depicts the evaluation of 

the building results. 

 

Approach Completeness Correctness Quality 

Scan line 

smooth 

filtering 

 

97.6% 

 

98.2% 

 

95.9% 

Bilateral 

filtering 

 

99.8% 
 

96.0% 
 

95.8% 

CIR point 

cloud 

 

93.0% 
 

91.6% 
 

85.7% 

LAStools 92.0% 79.2% 74.1% 

ERDAS 

IMAGINE 

 

99.0% 
 

84.1% 
 

83.4% 

Table 1. Evaluation of the automatic detection of building 

points results. 

 

The scan line smooth filtering and the bilateral filtering 

approaches achieved similar quality success rate. However, the 

scan line smooth filtering approach presented greater 

correctness but less completeness than bilateral filtering 

approach due to its powerful filtering. Thus, although the 

vegetation was almost completely removed, local complex cases 

of small extensions or additions of buildings (which were 

described partly due to the available density of the LIDAR point 

cloud) were incorrectly removed increasing the FN. Conversely, 

the bilateral filtering approach implements a more gently 

filtering and for this reason presents reverse performance on the 

rates of correctness and completeness presenting more FP 

associated with cases of dense and high trees. Although the scan 

line smooth filtering approach requires only the definition of the 

number of the symmetric points of the neighborhood, optimal 

results using the same value of k for the filtering of the Nz and 

roughness values were achieved. This is a comparative 

advantage to the bilateral filtering approach as the parameters of 

spatial sigma and scalar sigma were differently tuned to achieve 

the optimal results.  

 

On the other hand, point clouds that had been extracted by 

dense image matching techniques suffer from other problems 

such occlusions, complex scenes, radiometric differences, 

texture-less areas, etc. Thus, although the higher density of the 

CIR point cloud and the use of the NDVI which removed the 

vegetation completely, FN and FP were observed mainly due to 

mismatches at complex cases of small buildings and unstable 

interpolations respectively. 

 

Concerning the commercial software, the success rate of quality 

of the LAStools is low mainly due to several false detections 

associated with the vegetation. Unlike the LAStools, the 

ERDAS IMAGINE enables takes into account more parameters 

for the point classification process and therefore yielded higher 

success rates. 

4. EXPLOITATION OF THE PROPOSED 

APPROACHES 

The successful detection of the building points from a LIDAR 

or a dense image matching point cloud using the proposed 

approaches may be used on several applications, such as the 

creation of 3D city models, the building change detection using 

multi temporal data sets, etc. Indicative examples of these 

applications are developed in the following sections to verify 

the accuracy and reliability which may be achieved as well as 

the utility and functionality of the proposed approaches.  

 

4.1 3D modelling 

Using a visual inspection and superimposition at the raw 

LIDAR point cloud was approved that the final buildings that 

extracted via the bilateral filtering and the scan line smooth 

filtering approach have the proper density and fidelity to be 

used as input at several algorithms for 3D modelling in terms of 

LoD 1 or LoD 2 (Figure 7). In LoD 1 buildings are represented 

as block models (usually extruded footprints) and LoD 2 are 

building models with roof structures and textures, as defined by 

CityGML which is an open data model and XML-based format 

for the storage and exchange of virtual 3D city models 

(http://www.citygml.org/). 

 

 
 

 
Figure 7. Side view of a part of the final point cloud of 

buildings coloured by the point height, using the 

bilateral filtering approach (top) and the scan line 

smooth filtering approach (bottom).   

 

A simple and quick process is proposed to create the 3D models 

of the buildings that extracted by the bilateral filtering approach 

(which presented slightly sharper edges of buildings compared 

to the point cloud that extracted via the scan line smooth 

filtering) in terms of LoD 1. Figure 8 shows the proposed 

workflow which utilizes the results of a sub-region of the 

overall scene of the bilateral filtering approach and a 

corresponding edge map. 
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Figure 8. Workflow of the creation of the 3D models in terms of 

LoD 1.   

 

The creation of a 3D building model is a demanding task since 

sharp and clear boundaries are required to describe the 

buildings. The combined use of an edge map is neseccary to 

absorb possible distortions of the boundaries of the extracted 

point cloud of buildings or small point gaps due to the 

thresholding process. In the described application an edge map 

was extracted through the implementation of the Canny edge 

detector (Canny, 1986) on the Digital Elevation Model (DEM) 

of the raw LIDAR point cloud. The best tuning of the 

parameters of the Canny edge detector to minimize insignificant 

edges was applied. A DEM cell size of 40 cm (which is the cell 

size of the edge map too) was selected in order to fully exploit 

the raw LIDAR point cloud. Figure 9 illustrates the results of 

the aforementioned workfow.  

 

 
 

Figure 9. Top left: the DEM of the raw LIDAR point cloud data 

with a cell size of 40 cm; Bottom left: the 

corresponding edge map; Right: the extracted 3D 

models of buildings in terms of LoD 1 superimposed 

on an orthoimage.  

 

4.2 3D building change detection 

A 3D building change detection process is carried out at the 

same sub-region of section 4.1 using the final point cloud of 

buildings that extracted via the bilateral filtering approach 

(named “epoch 2”). A DEM with a cell size of 40 cm is 

extracted, and transformed to a point cloud (named “epoch 1”), 

using existing 3D vectors that included in a GIS database of a 

previous period. Then, the Multiscale Model to Model Cloud 

Comparison (M3C2) algorithm by Lague et al. (2013) between 

the point clouds of “epoch 1” and “epoch 2” was implemented.  

 

 
Figure 10. The 3D building change detection results. Building 

points coloured in grey depicts the new buildings 

and (sighed by yellow ellipses). 

 

Figure 10 shows the result of the 3D building change detection 

process. Points coloured in grey depict building points of the 

“epoch 2” for which no homologous points were found at 

“epoch 1”. These points indicate the new buildings. Noted, that 

these points can be separated and superimposed at existing true-

orthoimages, topographic charts, etc. Also, possible height 

additions of buildings that remain horizontally unchanged are 

examined. The height difference between homologous points of 

the unchanged buildings of the two epochs was calculated using 

as significant height difference a height threshold of 3 m 

associated with the height of a typical floor. In the sub-region 

depicted in Figure 10 no height additions of buildings were 

observed as the vast majority of the height differences were less 

than the height threshold of 3 m. 

 

5. CONCLUSIONS 

This study aims to automatically detect building points: (a) from 

LIDAR data using simple techniques of filtering that enhance 

the geometric properties of each point, and (b) from a CIR 

dense image point cloud that extracted using the SGM 

technique. The proposed approaches are considered to be 

satisfactory; especially those that implement the proposed scan 

line smooth filtering and the bilateral filtering at the LIDAR 

point cloud as success rates of completeness, correctness and 

quality larger than 95% are achieved without the use of training 

data or any additional information, such as intensity or multiple 

returns. In comparison, high success rates of completeness 

(larger than 90%) but relatively low success rates of correctness 

are achieved using the commercial packages of LAStools and 

ERDAS IMAGINE.  This shows the need of more robust 

techniques (not based mainly on roughness) to decrease false 

positive entries on complex scenes with dense and high 

vegetation. 

 

The results of the proposed approaches on 3D modeling and 3D 

building change detection ensure that the extracted final point 

clouds via the filtering techniques can be used for urban 

planning, cadastral applications, etc. In addition, point clouds 

that derived from high resolution CIR digital aerial imagery 

have great potential as satisfactory success rates are achieved. 

However, more sophisticated point cloud classification 

techniques will be used in future work to optimize the results.  
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