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ABSTRACT:

Species distribution models represent an important approach to map the spread of plant and animal species over space (and time). As
all the statistical modelling techniques related to data from the field, they are prone to uncertainty. In this study we explicitly dealt with
uncertainty deriving from field data sampling; in particular we propose i) methods to map sampling effort bias and ii) methods to map
semantic bias.

1. INTRODUCTION

In ecology, a number of studies have dealt with the prediction of
species distribution and diversity over space and its changes over
time based on a set of environmental predictors related to envi-
ronmental variability, productivity, spatial constraints and climate
drivers.

Species distribution models have been acknowledged as the most
powerful methods to map the spread of plant and animal species.
The basic approach used to create maps based on predictors is
to rely on linear models to create gridded landscapes of potential
distribution of species based on point or polygon local data.

In most cases, the output is a density function in two dimen-
sions representing the distribution Sx of the x species. In gen-
eral boundaries are sharply defined based on thresholds of pre-
dictors/factors (e.g. when mainly based on land cover, see also
(Comber et al., 2013)) or continuous, if based on the continuous
variability of predictors (e.g. the continuous variability of tem-
perature). Figure 1 represents an example.

Uncertainty in such models mainly derives from input data pseu-
doabsences (Foody, 2011) as well as from models’ bias, i.e. the
error deriving from the model being chosen (GAM, GLM, Maxi-
mum entropy models, etc,).

Hence, the representation of uncertainty in two dimensions is
strongly suggested although it is disregarded in most cases. How-
ever, its importance is apparent (Comber et al., 2012). In fact
areas with a high or low probability of distribution of a species
might be also in relation with a high or low error rate.

∗ducciorocchini@gmail.com, duccio.rocchini@fmach.it

Figure 1: An example of the flow leading to a species distribu-
tion map, derived as a probability density function from spatial
gridded predictors, mainly in raster but also in vector format, and
point data in the field.

In case of invasive species it might be crucial to spatially repre-
sent uncertainty to allow better decision making. This is in strict

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: A.-M. Olteanu-Raimond, C. de-Runz, and R. Devillers 

doi:10.5194/isprsannals-II-3-W5-333-2015

 
333



relation with the following equation:

Decision =

(
< Em| > I < Em| < I
> Em| > I > Em| < I

)
(1)

In this case a high (or low) invasion rate I might be related to high
or low error Em in the output model being observed by decision
makers. The most dangerous situation is achieved when a low
predicted invasion rate is related to a high error in the modelling
procedure (bottom right part of Eq.(1)). For instance, decision
makers might underestimate the effort to be put against invasion
rate, suspected to be low from the species distribution map.

Strictly speaking, a misconceived use of a species distribution
map might be dangerous e.g. in case of a low probability of dis-
persion of an invasive species but with a high error in the model.
The prediction of the distribution of an invasive species might be
low but with a high error; hence its spread could be underesti-
mated in some parts of an area.

The aim of this study is to provide straightforward and robust
mapping procedures to explicitly show spatial uncertainty related
to sampling problems like sampling effort or crowdsourced se-
mantic uncertainty (relying on commonly used datasets) when
dealing with species distribution modelling.

2. UNCERTAINTY RELATED TO SAMPLING EFFORT:
REPRESENTATION OF SAMPLING BIAS BY
TREATMENT OF DIFFUSION AND DENSITY

ALGORITHMS

Concerning bias related to sampling effort, we will rely on one
of the mostly used datasets in biodiversity study at large spatial
extents, namely the GBIF dataset.

GBIF data comprises a huge range of species occurrence obser-
vations collected with a wide variety of sampling approaches, in-
cluding observations coming from specimens in museums and
herbaria, which are not necessarily systematically collected. It
spans from well established plot censuses to direct observations
collected during field trips. Consequently, some of the data points
are at the center of censused grids (each point comprises the
species located at a specific-size quadrant) or correspond to sin-
gle observations of one (or more) individuals of the same species.
These differences also depend on the methodologies used to ob-
serve/record occurrences per taxon. Plots, and plots within tran-
sects, are common practice in vegetation censuses, while tran-
sects, point counts and live traps are preferred in the case of ani-
mals.

Moreover, the variation in factors such as per country biodiversity
monitoring schemes (Figure 2), funding schemes, focal ecosys-
tems, accessibility to remote areas (Figure 3), among others, add
another source of variation, especially at multinational scales (Bar-
bosa et al., 2013).

Undoubtedly, all those sources of variation result in a non ho-
mogeneous sampling that has important consequences not only
on the development of accurate species distribution maps but,
more importantly, on the conservation and management decisions
focused on such a distribution of biodiversity (Rocchini et al.,
2011). The aim of this study was to explicitly show spatial un-
certainty in the sampling effort of the GBIF data, by explicitly
taking into account potential area effects of European countries.

Figure 2: Plants occurrences for Europe per country extracted
from GBIF data (website accessed Dec 2014). The areas in
white have zero occurrences recorded in the GBIF database. A
higher sampling density is represented moving from green to
blue colour. This figure was developed by GRASS GIS software
(Neteler et al., 2012).

Figure 3: Plant occurrences and topography in the Alps region
(Europe). Plant occurrences extracted from GBIF data (web-
site accessed Dec 2014). Light green points (observations from
GBIF) follow valleys within Alps, i.e. the most accessible points.
This Figure was developed by GRASS GIS software (Neteler et
al., 2012). Refer to the main text for additional information.

In this study we aim at quantifying and mapping the uncertainty
derived from the variation in observations due to differences in
sampling efforts (Figures 2, 3). In particular the use of cartograms
is proposed, in which the shape of objects (countries) is directly
related to a certain property, in our case to uncertainty. Car-
tograms build on the standard treatment of diffusion, in which
the current density is given by:

J = v(r, t)p(r, t) (2)

where v(r, t) and p(r, t) are the velocity and density at position r
and time t. Refer to (Gastner and Newman, 2004) for additional
information.

Cartograms facilitate the visualization of spatial uncertainty in
the results by changing the size of the polygons based on the den-
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sity of information contained (number of observations, variation,
etc). For example, using this strategy the generated maps show
the differences in species observations per country in all taxa and
in some of the main taxa (Figure 4).

The cartograms were developed using the free and open source
software ScapeToad (http://scapetoad.choros.ch/). The shape and
final area of the countries will derive from the difference between
the actual size of the country and the size of the sampling (e.g.,
the number of observations). Hence, smaller areas which are
comparatively oversampled will look bigger in the cartograms,
with a higher sampling density, while bigger comparatively over-
sampled areas will have a high value but a lower relative size.
Hence the method directly accounts for the area effect, i.e. the
size of each country, on the final sampling effort. As an example,
in Figure 4 the Netherlands and Sweden show a higher sampling
density (see the Southern part of Sweden of Figure 2), but the lat-
ter occupies a bigger surface. Hence in the final cartogram (e.g.
Figure 4A), the higher sampling density of the Netherlands is en-
hanced by both values (colour) and shape (final occupied areas).

In the proposed method, uncertainty is shown at the per country
scale and corresponds to the deformation of the original coun-
try area, that is, countries smaller than their original size require
more sampling effort concerning the products derived from the
GBIF data.

Figure 4: Cartogram of species occurrences. Extracted from
GBIF data (website accessed December 2014). Error size above
100 indicates higher sampling density and error size below 100
indicates the country in under-sampled. A) Plants; B) Fungi; C)
Animals; D) All taxa.

The method can be applied also taking into account the tempo-
ral scale. An example is provided considering plant species data
(Figure 5). In this case, undersampling in the southern part of Eu-
rope is clear considering three different periods (Figure 5A) and
the final cumulated data (Figure 5B). As previously stated, this
is not actually related just to field sampling but mainly to data
sharing. Since sampling effort bias might affect final results in
species distribution modelling, future developments will include
the visualization of species distribution model predictions com-
bined with the map of uncertainty presented here.

Figure 5: Cartogram of plant species occurrences at different
dates, considering different periods (A) and cumulated data (B).
Extracted from GBIF data (website accessed December 2014).

3. SEMANTIC UNCERTAINTY: POTENTIAL OF
FUZZY SET THEORY TO MODEL

CROWDSOURCED DATA UNCERTAINTY

Beside sampling bias, shown in the previous section, taxonomic
bias, related to thematic (semantic) accuracy, might occur when
different operators / scientists deal with the association of each
individual to a certain species / class / taxon.

There are a number of provoking papers dealing with problems in
the discrimination of species in the field, including operator bias
(Bacaro et al., 2009), taxonomic inflation (Knapp et al., 2005) and
more generally taxonomic uncertainty (Guilhaumon et al., 2008),
i.e., the subjectivity of field biologists in acquiring species lists
which is expected to increase error variance instead of obtaining
accurate information on field data.

Fuzzy set theory should aid in maintaining uncertainty informa-
tion related to each species (hereafter also generally related to
class as in fuzzy set theory). The concept of fuzzy sets was first
introduced by (Zadeh, 1965); thus, fuzzy set based approaches
have been widely used in ecology dating back to 1980s (see (Comber
et al., 2012)).
The principle behind fuzzy set theory is that the situation of one
class being exactly right and all other classes being equally and
exactly wrong often does not exist. Conversely, there is a gradual
change from membership to non-membership (Gopal and Wood-
cock, 1994).

Fuzzy sets have been used in a number of fields where abrupt
thresholds (classes) cannot represent a suitable model of reality,
including: massive data analysis and computation (Jasiewicz and
Metz, 2011), expert knowledge (Janssen et al., 2010-05-10), the-
oretical topological spaces (Ghareeb, 2011-04), species habitat
suitability modeling (Amici et al., 2010), soil science (Burrough
et al., 1997), and vegetation science (Foody, 1996).

A fuzzy set is defined as follows: let U denote a universe of enti-
ties u, the fuzzy set F turns out to be:

F = (u, µ(u))|u ∈ U (3)

where the membership function associates for each entity u the
degree of membership into the set F.
The degree of membership µ(u) ranges in the interval [0,1], i.e.
the real range between 0 and 1.
Hence, fuzzy sets might represent a good starting point for con-
tinuously mapping species, by relying on each species as:

Fi = (u, µi(u))|u ∈ U (4)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: A.-M. Olteanu-Raimond, C. de-Runz, and R. Devillers 

doi:10.5194/isprsannals-II-3-W5-333-2015

 
335



Fj = (u, µj(u))|u ∈ U (5)

In this case, for each species i and j a map is derived based on e.g.
fuzzy training data taken in the field (probability of each individ-
ual to belong to a certain species) representing species probabil-
ity of occurrence. In this case, according to (Boggs, 1949) un-
certainty is explicit in the sense that a probability of occurrence
of each sampled individual to each species is mapped instead of
a crisp set considering that species as exhaustively determined,
with a 100% accuracy.

One major assumption leads to consider fuzzy sets as a pow-
erful tool for maintaining uncertainty information when aiming
at mapping and analysing species or in general taxa distribution
patterns, i.e. the gradual and continuous probability of correct
determination of a certain species rather than considering a com-
plete accuracy in the determination process. A fuzzy determina-
tion of a species might be derived as an example as the probabil-
ity of correct determination given different operators / scientists.
Figure 6 represents an example for the foraminifera species Ker-
atella quadrata. A map of presence of the species worldwide (per
country / region) is shown together with the probability (as in-
verse distance) of occurrence of each individual with the species
/ group. The analysis was performed relying on the fuzzySym
package (Barbosa, 2015) for the R software. One of the assump-
tions of the package and the related paper (Barbosa, 2015) is that
an individual does not “belong” to a certain species, but it has
a probability of inclusion in that species based on human-based
classification / determination. From a theoretical point of view
this is similar to approximation theory in mathematics, in which,
once searching for a function which best approximates a more
complex one, the characterization of the introduced errors (un-
certainty) is of primary importance (e.g., (Fourier, 1822)).

Figure 6: Representation of the presence of the foraminifera
species Keratella quadrata and the probability (as inverse dis-
tance) of occurrence of each determined individual to that
species. While the presence / absence map has obviously only
red (1 - presence) and white (0 - absence) colour, the probability
map based on inverse distance covers the whole range of decimal
values from 0 to 1.

4. CONCLUDING REMARKS

The description of local and global uncertainty variation over
space of species distribution models is mandatory since SDMs
are the main practical tool for decision makers to manage and
conserve biodiversity. Determining and mapping uncertainty can
help users to assess the suitability of such models, for which geo-
graphical analysis is fundamentally concerned with how and why
processes vary spatially (Comber, 2013).

Because of spatial nonstationarity, the parameters of the model
describing the distribution of a species and the related uncertainty
may vary greatly in space, limiting the descriptive and predictive
utility of global models (Foody, 2004).

Ecologists and landscape managers and planners must seriously
take into account uncertainty in both input data sampling effort
and semantics to deal with reliable species distribution maps. As
previously stated (see Eq.(1)), if such uncertainty is not taken into
account, final decisions on species conservation might be biased
by input errors.
In this study we dealt with spatial uncertainty in species distribu-
tion modelling deriving from two main issues related to field data
sampling: sampling bias and semantic issues. The approaches
proposed in this study to explicitly map spatial uncertainty are
based on free and open source software. We argue that they might
represent straightforward, robust and reproducible methods to ex-
plicitly account for uncertainty when dealing with species distri-
bution modelling.
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