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ABSTRACT: 

 

Reconstruction of spatial layout of indoor scenes from a single image is inherently an ambiguous problem. However, indoor scenes 

are usually comprised of orthogonal planes. The regularity of planar configuration (scene layout) is often recognizable, which 

provides valuable information for understanding the indoor scenes. Most of the current methods define the scene layout as a single 

cubic primitive. This domain-specific knowledge is often not valid in many indoors where multiple corridors are linked each other. 

In this paper, we aim to address this problem by hypothesizing-verifying multiple cubic primitives representing the indoor scene 

layout. This method utilizes middle-level perceptual organization, and relies on finding the ground-wall and ceiling-wall boundaries 

using detected line segments and the orthogonal vanishing points. A comprehensive interpretation of these edge relations is often 

hindered due to shadows and occlusions. To handle this problem, the proposed method introduces virtual rays which aid in the 

creation of a physically valid cubic structure by using orthogonal vanishing points. The straight line segments are extracted from the 

single image and the orthogonal vanishing points are estimated by employing the RANSAC approach. Many scene layout hypotheses 

are created through intersecting random line segments and virtual rays of vanishing points. The created hypotheses are evaluated by a 

geometric reasoning-based objective function to find the best fitting hypothesis to the image. The best model hypothesis offered with 

the highest score is then converted to a 3D model. The proposed method is fully automatic and no human intervention is necessary to 

obtain an approximate 3D reconstruction. 
 

 

1. INTRODUCTION 

People spend approximately 90% of their time indoors (U.S. 

EPA, 2015). However, unlikely in outdoor environment, not 

much spatial information of indoor space is available and thus 

human’s indoor activities and related issues in health, security 

and energy consumption are difficult to be understood. Thus, 

with a rapid emergence of Building Information Model (BIM) 

and Building Science, providing semantically rich and 

geometrically accurate indoor models has recently gained more 

attention from the researchers. The generation of an indoor 

space 3D model needs a proper implementation of sensors as 

well as selecting a proper algorithm to reconstruct 3D models 

from the incoming data. This can help to accurately model the 

whole scene and contribute towards the efficiency of the 

reconstructed model later on. Considering the available data 

gathering techniques with respect to the sensors cost and data 

processing time, single images proved to be one of the reliable 

sources. Normally, single images can cover a limited field of 

view. Therefore, large scale environments may not be handled 

with a single image. However, they are still suitable for 

modeling the limited areas of indoor environments. In this paper 

modeling of indoor corridors using a single image is in focus. 

The early attempts on understanding the scenes start by 

recovering vanishing points and camera parameters from an 

image using straight line segments (Kosecka and Zhang, 2002). 

Considering the Manhattan World Assumption, rectangular 

surfaces aligned with main orientations were detected using 

vanishing points (Kosecka and Zhang, 2005; Micusik et al., 

2008). Top-down grammars were applied on line segments for 

finding grid or box patterns which has rectangular pattern 

aligned with vanishing points (Han and Zhu, 2005). The 

statistical methods on image properties were used to estimate 

regional orientations and vertical regions “popup” considering 

the estimated orientations (Hoiem et al., 2005).  

The relative depth-order of partial rectangular regions was 

inferred by considering their relationship and vanishing points 

(Yu et al., 2008). Parameterized models of indoor environments 

introduced which were fully constrained by specific rules to 

guarantee physical validity (Lee et al., 2009). Possible spatial 

layout hypothesis is sampled from collection of straight line 

segments but the method is not able to handle occlusions and 

fits room to object surfaces. 

Statistical learning showed to be an alternative to rule-based 

approaches (Hoiem et al., 2005; Delage et al., 2006; Hoiem et 

al., 2007). Having a new image, the list of extracted features 

should be evaluated. The associations of these features with 3D 

attributes can be learned from training images. Therefore, the 

most likely 3D attributes can be retrieved from the memory of 

associations. The first method to integrate local surface 

estimates and global scene geometry used a single box to 

parametrize the scene layout (Hedau et al., 2009). Appearance 

based classifier was used to identify clutter and visual features 

were only computed from non-clutter regions. They used the 

structural learning approach to estimate the best fitting box to 

the image. Another approach similar to this has been proposed 

which does not need the clutter ground truth labels (Wang et al., 

2010). 
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In recent years, some other approaches have been proposed for 

the extraction of 3D layout of rooms from single images (Hedau 

et al., 2010; Lee et al., 2010; Hedau et al., 2012; Pero et al., 

2012; Schwing et al., 2012; Schwing and Urtasun, 2012; 

Schwing et al., 2013; Chao et al., 2013, and Zhang et al., 2014). 

Most of these approaches parameterize the room with a single 

box and assume that the room is aligned with the three 

orthogonal directions defined by vanishing points (Hedau et al., 

2009; Wang et al., 2010; Schwing et al., 2013, and Zhang et al., 

2014). Some of these approaches make use of the objects for 

reasoning about the scene layout (Hedau et al., 2009; Wang et 

al., 2010, and Zhang et al., 2014). On one hand, presence of 

objects can provide some physical constraints such as 

containment in the room and can be employed for scoring the 

room layout (Lee et al., 2010; Pero et al., 2012, and Schwing et 

al., 2012). On the other hand, the scene layout can be utilized 

for better detection of objects (Hedau et al., 2012, and Fidler et 

al., 2012).  

In this paper, we tackle the problem of indoor space modeling 

from a single image through middle-level perceptual 

organization. We search for layout that can be translated into a 

physically plausible 3D model. Considering the Manhattan Rule 

Assumption, we adopt the stochastic approach to sequentially 

generate many physically valid layout hypotheses from line 

segments. Each generated hypothesis will be scored for finding 

the one that best matches the detected line segments. Finally, 

the best created hypothesis will be converted to a 3D model.  

The main contribution of the proposed method is providing an 

approach to create layout of indoor corridors in a hybrid way 

using both detected line segments and virtually generated rays 

from vanishing points. This method is beneficial for two main 

reasons. First, the hybrid way of generating scene layout 

provides a realistic solution when dealing with objects or 

occlusions in the scene. Moreover, it is well-suited to describe 

most corridor spaces. It outperforms the methods which only 

use virtual rays for layout creation, since these rays are 

deviating from the true layout in long corridors due to the 

inaccuracy of the estimated vanishing points. Also, this method 

outperforms the other methods that use only actual line 

segments for generating the scene layout due to their inability to 

handle occlusions. Second, we propose a scoring function to 

score the created layout hypotheses. This function considers the 

volumetric aspect of the created hypotheses along with their 

correspondences to real edges, and compatibility to the 

orientation map. This scoring function finds the most fitting 

solution in a linear way. In the following section an overview of 

the proposed method will be provided. 

 

2. OVERVIEW 

Normally, the generation of 3D indoor space models can be 

achieved through two different approaches; top-down and 

bottom-up. On one hand, top-down approaches are very much 

deterministic in employing strong prior; therefore they can be 

robust to the missing data problem. An example of this 

approach is the work presented by Hedau et al. (2009). On the 

other hand, in bottom-up approaches perception forms by data 

and they make use of weak prior; therefore the created model 

could be more flexible. An example of this could be the method 

presented by Lee et al. (2009). In this paper the proposed 

method is more inclined to the top-down approaches, since it 

considers the indoor scene to have a cubic formation. However, 

the main innovation of this method is that it does not restrict the 

indoor scene to only one box. Hence, it relaxes the strong one 

box prior by letting indoor scene to be comprised of multiple 

boxes. Therefore, the occluding spaces can easily be modelled 

by the proposed method. 

Figure 1, shows the workflow of the proposed method; 1) Edges 

are extracted and grouped into straight line segments. 2) Lines 

are grouped based on parallelism, orthogonality, and 

convergence to common vanishing points. 3) Hypothetical 

cubic layouts are sequentially formed by intersecting 

hypothetical structural planes. These structural planes are 

created using detected line segments in the image space and 

virtual rays of vanishing points if necessary. 4) The best fitting 

layout hypothesis is selected using the linear scoring function. 

5) The best fitting indoor space layout hypothesis is converted 

to 3D model. In the following sub-sections more details about 

the proposed method will be presented. 

 

 

 

Figure 1. The proposed method detects edges and groups 

them into lines, and then line groups. It makes 

layout hypotheses using vanishing points and scores 

them using a linear scoring function, and finally 

converts the best hypothesis into 3D. 

 

2.1 Line Grouping 

Normally, many edge pixels can be extracted from a single 

image. The intention is to link the extracted edge pixels into 

straight line segments based on predefined criteria. Moreover, 

the straight line segments can be grouped into line groups based 

on their orientation. The straight line segment orientation can be 

identified based on its convergence into a vanishing point. It 

should be noted that in most of the manmade structures there 

are bunch of parallel lines which can provide orthogonal 

vanishing points (Kosecka and Zhang 2002, and Denis et al., 

2008). Vanishing points are valuable for camera calibration 

(Kosecka and Zhang 2002; Cipolla et al., 1999; Caprile and 

Torre 1990, and Tardif 2009), estimation of rotation angles 

(Kosecka and Zhang 2002; Antone and Teller 2000, and Denis 

et al. 2008), and more importantly 3D reconstruction (Parodi 
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and Piccioli 1996, and Criminisi et al., 2000). In order to find 

vanishing points, different methods of straight line clustering 

are available (Bazin et al., 2012). There are four main categories 

for these methods based on: 1) Hough Transform (HT), 2) 

Random Sample Consensus (RANSAC), 3) Exhaustive Search 

on some of the unknown entities, and 4) Expectation 

Maximization (Bazin et al., 2012).  

Here, straight line segments were extracted in the image space 

using LSD method (Grompone von Gioi et al., 2010). LSD 

method can be used on digital images for line segment 

extraction and it is a linear-time Line Segment Detector which 

can provide sub-pixel accurate results without tuning the 

parameters. The original idea of LSD is coming from Burns, 

Hanson, and Riseman's method (Burns et al., 1986), which 

makes use of a validation approach based on Desolneux, 

Moisan, and Morel's theory (Desolneux et al., 2000; and 

Desolneux et al., 2008).  

After the extraction of straight line segments, recovering 

vanishing points is possible using RANSAC. In this approach 

two straight line segments will be randomly selected and 

intersected to create a vanishing point hypothesis and then 

count the number of other lines (inliers) that pass through this 

point. The drawback of RANSAC is that it does not guarantee 

the optimality of its solution by considering the maximum 

intersecting lines as inliers. Here we follow Lee et al. (2009) to 

find three orthogonal vanishing points. In Lee et al. (2009) the 

coordinates of the RANSAC solution are fine-tuned using non-

linear optimization with the cost function proposed in (Rother 

2000). Having found the three orthogonal vanishing points, the 

available line segments can be grouped into four different 

classes. Three of these classes are represented by the estimated 

vanishing points. The last class contains the line segments 

which are not related to the estimated vanishing points. 

2.2 Layout Hypotheses Creation 

Considering a single image of an indoor scene, the scene 

complexity may be very high to be recognized and to be 

modeled. Therefore, we tried to simplify the indoor scene as 

much as possible. For example, to modify the structure of an 

indoor scene, walls would be at the primary interest rather than 

windows or doors. Following the Manhattan rule assumption, 

the structure of the incoming indoor model should have a cube 

like formation. If the indoor scene is not bounded to only one 

room or one corridor, then there must be a key cube in the scene 

and some other side cubes which are intersecting with the key 

cube to form the scene layout. Therefore, the whole structure of 

a single model would be created based on a single cube or the 

integration of different single cubes. Consequently, vertical 

walls in the scene can only have 2 different orientations (facing 

the camera or being almost parallel to the camera line of sight, 

in case of having a vanishing point inside the image space), and 

floor plane and ceiling would have the same orientation. In 

other words, we are allowed to define 3 different surface planes 

in the scene which in the Cartesian coordinate system they 

might belong to: a) X-Y Plane, b) X-Z plane, and c) Y-Z plane. 

Hedau et al. (2009) proposed a method for creation of a single 

box layout hypothesis by sampling pairs of rays from two 

furthest orthogonal vanishing points on either side of the third 

vanishing point. They evenly spaced the image with these 

vanishing point rays. However, the position of the sampling 

rays is dependent on the estimated coordinates for vanishing 

points. Hence, this approach may not provide acceptable results 

when dealing with long corridors. Therefore, in the proposed 

approach the layout is not going to be created completely by 

sampling rays from vanishing points. The sampling rays will 

only be created if their presence is necessary for completing the 

process of layout hypothesis creation. In other words, these 

sampling rays will be employed if their presence is justified by 

the actual line segments. For example, the created ceiling plane 

can provide some information about the formation of the floor 

plane. Hence, sampling rays of the vanishing points can be 

employed to complete this formation. 

In the proposed method the scene layout will be sequentially 

created. The whole structures of the scene (for example 

corridors) can be presented by cubes which are intersected to 

each other. For example in Figure 1, the scene layout is created 

by the integration of three different cubes. The camera in 

standing in the key cube at the time of exposure while there are 

two other cubes (accessory hall ways) locating at the right and 

left side of the key cube. Here, the key cube hypothesis is 

generated first. More formally, let Lx = {lx,1, lx,2, . . . , lx,n} and 

Tx = {tx,1, tx,2, . . . , tx,n} be the set of actual line segments and 

virtually generated rays of orientation x, where x Є {1, 2, 3} 

denotes one of the three orthogonal orientations. A “key 

corridor layout hypothesis” H is created by intersecting selected 

lines from Lx and Tx where the minimum number of selected 

line segments from Lx is 4, and the total number of all lines 

needed for this creation is 8. Figure 2(b), shows the creation of 

a key cube hypothesis through intersection of solid and dashed 

lines which are representing actual line segments and virtually 

generated rays respectively. 

 

Algorithm 1: Generating key cube hypotheses 

 

Set H1  0, where H1 is the set of key corridor hypotheses; 

          for all pair of line segments (li , lj, lg) which are below 

                     horizon do 

                   if li on the left ᴧ lj on the right side of the image ᴧ li 

                    and lj have overlap at Vy ᴧ lg belongs to Vx then 

                                   intersect li with lg and lj with lg and 

                                   add floor plane [π (li , lj, lg)] to Hp 

                 end if 

          end for 

          for all pair of line segments (ln , lm, lc) which are above 

                     horizon do 

                   if ln on the left ᴧ lm on the right side of the image ᴧ  

                     li and lj have overlap at Vy ᴧ lc belongs to Vx then 

                                   intersect ln with lc and lm with lc and add 

                                   ceiling plane [π (ln , lm, lc)] to Hq 

                 end if 

          end for 

          for all πi Є Hp and πj Є Hq do 

                 if πi ᴧ πj corners can be connected through virtual 

                    rays of Vz then 

                                    add scene with 1 key cube (πi and πj) to 

                                    H1 

                 end if 

          end for 

return H1 

 

As mentioned above, in the proposed method line segments are 

randomly selected and intersected to form the key cube (major 

scene layout). It should be noted that very short line segments 

will be ruled out and hypothesis creation will be started by line 
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segments with longer length. The overall process is described in 

Algorithm 1. In this algorithm the general workflow of 

generating key cube hypothesis has been described. This will 

lead to the generation of many different hypothetic key cubes in 

the scene. It should be noted that only physically valid cubic 

hypotheses will be accepted in this process. Therefore, the 

number of created key cube hypotheses will be reduced to some 

extent. 

Algorithm 2: Generating side cube hypotheses 

 

Set H2  0, where H2 is the set of corridor hypotheses having 

      side cubes; 

          for all line segment li which belongs to Vx ᴧ vertical 

                     plane πj which belongs to Hj ᴧ Hj Є H1 do 

                 if li is inside πj then 

                        connect the end points of li to πj borders 

                        through virtual rays of Vz to make a 

                        quadrilateral (π’j) ᴧ add scene with side cube 

                        (π’j) to Hj 

                 end if 

            Set H2  H2 U Hj 

          end for 

return 

 

 

Figure 2. Creating Layout hypothesis; a) Line segments are 

randomly selected. b) Key cube generation by 

intersecting line segments (solid lines) and created 

virtual rays (dashed lines) using vanishing points. c) 

Virtual rays partitions the vertical plane. d) More 

partitioning using virtual rays. e) Identifying the 

plane facing the camera (blue plane). f) Identifying 

floor and ceiling regions in the created partition 

(white triangles in “e”). 

 

Having created the key cube hypotheses, the presence of the 

side cubes (minor cubes on the sides of the key cube) will be 

examined. If any of the key cube side walls contain a line 

segment which is supposed to be perpendicular to it, then it can 

be treated as a hint for having a side cube in the scene. This 

process is described in Algorithm 2. In this algorithm the 

general workflow of generating side cube hypotheses has been 

described. Following this algorithm, many hypothetical cubes 

may be generated on the sides of each key cube hypothesis. It 

should be noted that in this process duplicate side cube 

hypothesis will be deleted and also overlapping hypothesis will 

be merged. Moreover, only physically valid hypothesis will 

remain in the pool. Therefore, the number of valid hypothesis 

will be reduced and the remaining ones are the final scene 

layout hypotheses. Figure 2, describes the core part of this 

process intuitively. 

 

2.3 Evaluating Layout Hypotheses 

As mentioned in the previous section, in the proposed method 

the complete scene layout hypothesis is sequentially created 

through generation and integration of cubic structures. This 

process is performed in the image space using classified line 

segments and virtual rays of vanishing points. Following this 

rational, many scene layout hypotheses will be created. 

Therefore, the created hypotheses must undergo an evaluation 

process for selection of the best fitting hypothesis. 

In order to perform the evaluation process, a linear scoring 

function is defined to score each hypothesis individually. Given 

a set of created layout hypotheses in the image space {h1, h2, 

...hn} ∈ H, we wish to do the mapping S : H → R which is used 

to define a score for the automatically generated candidate 

layouts for an image. It should be noted that the proposed 

scoring function must take some independent factors into 

consideration. Here, the expected value of the proposed scoring 

function “S” can be decomposed into the sum of three different 

components, which characterize different qualities of the 

created hypothesis. These components, together encode how 

well the created layout hypothesis represents the corridor scene 

in the image space. We thus have 

 

 

S(hi) = w1 * Svolume(hi) + w2 * Sedge(hi) + w3 * Somap(hi)          (1) 

 

 

where  hi = candidate hypothesis 

 S = scoring function 

 Svolume = scoring function for volume 

 Sedge = scoring function for edge correspondences 

 Somap = scoring function for orientation map 

 W1,2,3 = weight values 

 

 

As it can be seen in the above equation, the outcome of three 

different functions are combined together to create the proposed 

scoring function. Here, each function is focusing on a specific 

factor. These factors are: a) volume, b) edge-correspondences, 

and c) orientation map (Lee et al., 2009). These factors are the 

representatives of different qualities of the created layout 

hypothesis. Considering these factors, three different functions 

can be defined to score each quality of the hypothesis. The final 

score of a candidate hypothesis will be defined by summing the 

outcomes of these three functions. The above weight values are 

considered equal in the implementation procedure. However, 

the optimization of these weight values will be considered in the 

future work. 

Lee et al. (2010) imposed some volumetric constraints to 

estimate the room layout. They model the objects as solid cubes 

which occupy 3D volumes in the free space defined by the room 

walls. Following the same rational, here the containment 

constraint is taken into consideration which dictates that every 
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object should be contained inside the room. We interpret this 

constraint as the search for the maximum calculated volume 

among all of the created layout hypotheses. Therefore, we 

decide to give a higher score to the layout hypothesis which has 

a larger volume. In other words, the layout hypothesis which 

covers a larger area is more probable to contain all of the 

objects in the room. Hence, the scoring function gives the 

highest volume score (score one) to the layout hypothesis which 

has the largest valid volume. Also, it gives the minimum 

volume score (score zero) to the layout hypothesis which has 

the smallest valid volume. Hence, the calculated score of a 

candidate layout hypothesis will be a positive real number 

between zero and one. The volume score of a candidate 

hypothesis (hi) can be calculated from the following equation. 

 

MinMax

Mini
iVolume

VV

VV
hS




)(                                                    (2) 

 

where  Svolume = scoring function for volume 

 hi = candidate layout hypothesis 

 Vi = calculated volume for hypothesis hi 

 Vmin = minimum calculated volume among all of 

    the created layout hypotheses 

 Vmax = maximum calculated volume among all of 

    the created layout hypotheses 

 

 

Considering the above equation, the other two functions which 

score edge-correspondences quality of the created layout 

hypothesis and the compatibility of the created layout 

hypothesis to the orientation map are also defined in the same 

way. Hence, the defined function gives the highest edge-

correspondences score to the layout hypothesis which has the 

maximum positive edge-correspondences to the actual detected 

line segments. Here, the positive edge correspondences is 

defined by counting the number of edge pixels which are 

residing close enough to the borders of the created layout 

hypothesis. Therefore, the layout hypothesis which has the 

biggest number of detected edges close enough to its borders 

will get the highest score from the proposed function (Sedge). 

The compatibility of the created layout hypothesis to the 

orientation map is calculated pixel by pixel. The created layout 

hypothesis will provide specific orientations to each pixel in the 

image, and the orientation map is also conducted the same task. 

Therefore, by comparing these two (pixel by pixel) the 

compatibility between the created layout hypothesis and the 

orientation map can be calculated. Hence the number of pixels 

which get the same orientation from the created layout 

hypothesis and the orientation map are going to be counted. The 

proposed function (Somap) gives the highest orientation map 

score to the layout hypothesis which has the most pixel-wise 

compatibility to the orientation map. 

Considering these three functions, each hypothesis will be 

examined individually, and gets score based on the above 

mentioned factors. As mentioned before, the incoming scores 

will be normalized based on the maximum and minimum 

incoming values. The normalized scores will be integrated and 

the hypothesis with the maximum score will be selected as the 

best fitting hypothesis. Finally, the best fitting hypothesis will 

be converted to 3D following the method presented by Lee et al. 

(2009). The only assumption made here is that all units of 

metrics are in camera height, i.e., the distance of the camera to 

the floor should be measured perpendicular to the floor and it 

equals 1. This is only because the absolute distances cannot be 

measured from a single image. 

 

 

3. EXPERIMENTS 

We have collected 53 various single images (corridor scenes) 

taken from different indoor locations at York University campus 

area. The images are 3264 x 2448 in size and have been taken 

by a smart phone (Apple iPhone 4s). Moreover, data set has 

metadata file which is associated with each image. It should be 

noted that in some of the scene frames different objects are 

included which obstruct the view of the scene frame. In order to 

prepare a ground truth, each image in the data set has manually 

labeled. Here, MATLAB software has been utilized to identify 

the exact coordinates of a line segment’s end points in the 2D 

image coordinate system. Eventually, the set of line segments 

and planes which conform to the 3D orthogonal frame of the 

scene has been identified and the ground truth orientation for 

every pixel has been labeled, ignoring the occluding objects. 

The average percentage of pixels that have the correct 

orientation for each image is 87%. Also, 81% of the images had 

less than 20% misclassified pixels. However, only and 27% of 

the images had less than 5% misclassified pixels. It should be 

noted that when objects partially occlude the floor-wall 

boundary, the underlying layout structure could still be 

recovered. 
 

 

Figure 3. Examples of the created layouts which can be 

successfully convert to 3D. 

 

Qualitatively, around 58% of the images returned acceptable 

layouts. It should be noted that even when floor-wall boundary 

was partially occluded by the objects or could not be detected 

through middle-level perceptual organization, the scene layout 

was successfully recovered in some images (Figure 3). When 

the actual line segments cannot be detected from the image, 

virtual rays created through vanishing points can play the same 

role as the actual line segments. In these cases, the key cube 

hypothesis will be created using both actual line segments and 

virtual rays. It should be noted that virtual rays cannot be 
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always helpful, especially when the corridor length is very 

large. In these cases the estimated vanishing points may not 

have sufficient accuracy. Therefore, the created virtual rays will 

be deviated from the real borders as the ray gets closer and 

closer to the camera. 

As mentioned above, when the real boundary is occluded, the 

actual line segments detected from the ceiling-wall boundary 

along with the virtual rays of vanishing points could help 

identifying the underlying scene layout. However, there are 

some failure cases which are mostly because of inability to 

identify orthogonal vanishing points, detection of wrong line 

segments on glass surfaces or waxed floors, misaligned 

boundaries, no lines supporting down the corridor or fully 

occluded floor-wall boundaries. Some failure cases are shown 

in Figure 4. 

 

 

 

Figure 4. Example of the failure cases due to the wrong 

corridor depth estimation or misplacement of side 

cubes. 

 

Considering Figure 4, the created layout hypotheses are 

deviated from the ground truth. The most conspicuous problems 

in the above images are: a) wrong depth estimation for the key 

cube hypothesis, b) wrong side cube estimation. Although the 

algorithm could manage to select the correct number of cubes in 

most of the images, the proposed edge based layout creation 

method could not filter out inaccurate edges (edges detected on 

the glass surfaces). Also, the proposed scoring function was not 

precise enough for selecting the best hypothesis in some cases. 

Consequently, the estimated depth of the key cube was wrong. 

Hence, the selection of independent factors of scoring function 

and their correspondent weights must be optimized in an 

adoptive way (this is an ongoing research). 

For each image quantitative tables were produced to examine 

the out coming results. Sample tables are presented here (Tables 

1 and 2) which are presenting the quantitative results of the 

created layout in Figure 5. Table 1, reveals the orientation 

difference between the estimated layout and the ground truth 

layout. This table can be used for evaluating the overall 

performance of the generated layout. Here, a comparison 

between the ground truth orientation and the orientation 

suggested by the created layout is performed. It should be noted 

that this comparison is accomplished based on measuring a 

pixel to pixel correspondence. Therefore, if two correspondent 

pixels on the ground truth image and the created layout image 

having the same orientation, then it shows that the proposed 

method could correctly estimate the layout orientation at that 

pixel. 

 

 

Figure 5. The created layout and the ground truth layout 

depicted in the image space. 

 

 

Each image pixel is allowed to accept only one orientation out 

of three (O1, O2 or O3). The orientations are colorized by 

“Red”, “Green”, or “Blue” in Figure 5. Table 1, reveals the 

pixel to pixel orientation correspondences for the created layout 

in Figure 5. 

 

 

Figure 5 Floor Ceiling Front 

Walls 

Right 

Walls 

Left 

Walls 

Floor 

 

172223 0 28448 0 4613 

Ceiling 

 

0 265663 20131 0 0 

Front 

Walls 

3478 4262 122469 1483 1060 

Right 

Walls 

15833 21729 87519 78750 0 

Left 

Walls 

0 11271 23933 0 211481 

Table 1. Pixel to pixel correspondences based on orientation. 

Table 1 reveals valuable information. The (i, j)-th entry in this 

table represents the number of pixels with ground truth label i 

which are estimated as label j, over the test image. As it can be 

seen in this table, floor, ceiling and wall estimates are partially 

correct and some specific regions were wrongly oriented. This 

can be explained by the dependence of the method on the 

creation of the true key cubic hypothesis (slightly deviated in 

Figure 5) and also the major impact of the scoring function in 

the selection of the best hypothesis. If the key cube hypothesis 

is wrongly estimated at the first step, the method could not 

correct this false estimation and will end up in awkward result. 

Therefore, a true estimation of the key cube provides a very 

strong condition to the success of the method. 
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Evaluation of the 3D reconstructed layout is possible too. 3D 

reconstruction is performed following the proposed approach in 

Lee et al. 2009. Here, three different parameters (λx , λy , λz) 

are defined for each cubic part of the layout in the object space. 

Considering an arbitrary 3D coordinate system in the object 

space, two different cubes (reconstructed in this coordinate 

system) can be compared using these three parameters. For 

example, λx could be defined as the width of the 3D 

reconstructed layout divided by the width of the ground truth 

layout. With the same rational λy and λz could be defined as the 

ratio of length and height of the 3D reconstructed layout to the 

length and height of the ground truth layout. In table 2, width, 

length and height of the created layout are compared to the 

ground truth layout in the 3D space. 

 

Figure 5 λx λy λz 

Key Cube 1.1219 0.3599 1.1934 

Right Cube 1.6164 2.0545 0.9976 

Left Cube 0.9233 0.9494 0.9460 

Table 2. Ground truth layout and created layout scale ratios. 

It can be seen in the above table that the reconstructed side cube 

length at the right side of the layout is almost 2 times longer 

than the ground truth. Therefore, this table can give a better 

understanding about the quantitative performance of the 

proposed method. 

Figure 6, shows the scale ratios between the reconstructed key 

cubic layouts and their ground truth layouts in 9 different 

images. These images have almost the same scene complexity, 

so that the comparison of their reconstructed layouts is possible. 

Notice that scene complexity by itself is a subjective term which 

may oppose confusion. Therefore, to avoid a possible confusion 

scene complexity is defined as a function of four major factors. 

These factors are: a) Type of scene layout or the number of 

structural planes, b) Presence of objects, c) Presence of 

occlusions, and d) Image depth. 

 

 

 

Figure 6. Scale ratios between the 3D reconstructed ground 

truth layout and the created layout. 

 

As it can be seen in Figure 6, the proposed method was more 

successful in the estimation of scene layout width and height 

(λx and λz are close to 1) over the images. However, it has more 

problems in estimation of the true length of the corridors (λy is 

not close to 1). This is a very critical issue and it has to be 

scrutinized carefully (this is also an ongoing research). 

However, a typical explanation for this may directly emerge 

from the applied equal weights in scoring function. Therefore, 

more experiments have to be done on this subject in the future 

to optimize the weights for the scoring function elements. 

 

 

4. CONCLUSION 

This paper focuses on 3D modeling of indoor corridors using 

single image. In general, modeling is not an easy task and it 

involves with major problems. These problems may directly 

inherit from the method itself and the adopted data gathering 

technique. Here, the proposed world model is adopted by 

considering the Manhattan rule assumption which simplifies the 

structure of the indoor layouts. However, the incoming model is 

not restricted to only 1 box and it can easily handle the presence 

of accessory hall ways and occlusions. This feature is the main 

advantage of this method compare to the previously proposed 

ones. Here, the stochastic approach is adopted, and the 

proposed method makes use of both actual line segments and 

the virtually generated rays to effectively create the scene 

layout. The experimental results showed that the proposed 

method is able to create scene layout hypotheses even if the 

objects are occluding some parts of the floor-wall or ceiling-

wall boundaries. Also, a linear edge correspondence objective 

function is modified to score the created hypotheses and find 

the best fitting hypothesis to the image. The proposed method 

has shown that, by random selection of line segments, and by 

using some prior knowledge of indoor space, the 3D layout of 

an indoor corridor can be successfully recovered from a single 

image. A very interesting future problem would be to optimize 

the weight values of the proposed scoring function and 

moreover utilize the recovered layout to improve other 

integrated layouts and step towards complete indoor space 

modeling. 
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