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ABSTRACT:

In this paper we present an approach for a weighted rotation averaging to estimate absolute rotations from relative rotations between
two images for a set of multiple overlapping images. The solution does not depend on initial values for the unknown parameters and
is robust against outliers. Our approach is one part of a solution for a global image orientation. Often relative rotations are not free
from outliers, thus we use the redundancy in available pairwise relative rotations and present a novel graph-based algorithm to detect
and eliminate inconsistent rotations. The remaining relative rotations are input to a weighted least squares adjustment performed in the
Lie algebra of the rotation manifold SO(3) to obtain absolute orientation parameters for each image. Weights are determined using
the prior information we derived from the estimation of the relative rotations. Because we use the Lie algebra of SO(3) for averaging
no subsequent adaptation of the results has to be performed but the lossless projection to the manifold. We evaluate our approach on
synthetic and real data. Our approach often is able to detect and eliminate all outliers from the relative rotations even if very high outlier
rates are present. We show that we improve the quality of the estimated absolute rotations by introducing individual weights for the
relative rotations based on various indicators. In comparison with the state-of-the-art in recent publications to global image orientation
we achieve best results in the examined datasets.

1. INTRODUCTION

In this work we tackle a sub-problem for the determination of
three dimensional information from overlapping images or im-
age sequences, i.e. the estimation of absolute rotations. The term
’absolute rotations’ refers to rotations given for each image in a
local coordinate system, whereas ’relative rotations’ denote rota-
tions from one image to a next overlapping counterpart. This is a
basic task in photogrammetry and related sciences as it is an im-
portant prerequisite for many different applications. Many well
known and highly performant works use sequential approaches
to jointly solve for all the unknown orientation parameters (Agar-
wal et al., 2009), (Snavely et al., 2006). Initial values for a final
nonlinear bundle adjustment are computed starting with a small
subset of images (often only two or three). This set is incremen-
tally enlarged by subsequent resection, spatial intersection and
intermediate bundle adjustment in order to avoid the solution to
suffer from drift and/or divergence. The quality of the initial val-
ues generated in this manner depends on two important factors:
the initial subset of images and the ordering in which images are
added to the existing block. These factors are determined based
on heuristics that are rarely useful without further information
about the image’s position in object space like geographic meta-
data.

In our work we present and analyse the first part of a non-sequential
approach for the estimation of image orientation parameters that
works with homologous points, i.e. tie points in overlapping im-
ages, and relative rotations between pairs of images and is inde-
pendent on initial values for the unknowns. Following the com-
mon terminology we call this non-sequential approach a global
approach (Arie-Nachimson et al., 2012), (Jiang et al., 2013), (Moulon
et al., 2013). The workflow for the estimation of image orienta-
tion parameters is outlined in Fig. 1. In this work we focus on
one relevant step, the estimation of absolute rotations. We as-
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Figure 1: Workflow of our global image orientation approach. In
this work we focus on the highlighted part - rotation averaging.

sume that homologous points have been found and relative rota-
tions have been computed but both are not necessarily free from
outliers. We developed an effective outlier detection algorithm
for relative rotations based on a graph structure. In this graph
absolute rotations are depicted by nodes that are connected by
edges if a relative rotation between the two respective images has
been computed. Normally, images have an overlap not only to
one but to more neighbouring images. Thus, there will be more
edges than nodes in the graph and each edge bears a constraint
on the nodes it connects, i.e. providing redundant information
regarding the estimation of absolute rotations. We use this redun-
dancy in order to obtain a good initialisation for a linearised least
squares adjustment and to detect and eliminate outliers in the rel-
ative rotations that may remain, e.g. after the estimation of the
essential matrix or trifocal tensor. The least squares adjustment
is performed via projection to the tangent space of the rotation
Lie group SO(3) - the Lie algebra so(3) - and a linearisation in
order to estimate the unknown absolute rotations. We integrate
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prior knowledge about the quality of relative rotations, incorpo-
rated as weights on individual relative rotations in the adjustment,
to further enhance the performance of the rotation averaging.

The remainder of this paper is organised as follows: In the fol-
lowing section we give an overview of the related work and our
contribution. Section 3 is dedicated to our approach. We focus on
the description of the robust estimation of absolute rotations. For
the estimation of translations and object points we refer to Reich
and Heipke (2014). In Section 4 we will evaluate our approach
based on synthetic and real data and finally give a conclusion of
our work in Section 5.

2. RELATED WORK

The work on image orientation in recent years was highly sup-
ported by the growing number of publicly available image data
and increasing computing power. Agarwal et al. (2009), Snavely
et al. (2006), for instance, developed ways to compute image ori-
entations of thousands of images from online image galleries. To
keep the computational effort tractable they match images in a se-
quential manner starting with an initial sub-set of images in order
to avoid having to match every possible combination of image
pairs. The initial orientation parameters computed in this way,
however, depend on the initial sub-set and the ordering in which
images are added and may lead to a poor overall accuracy of the
final image orientations. This is why global methods recently
gained a lot of attention (Martinec and Pajdla, 2007), (Enqvist
et al., 2011), (Arie-Nachimson et al., 2012), (Sinha et al., 2012),
(Jiang et al., 2013), (Moulon et al., 2013). Often these approaches
work in a two-step manner, first estimating absolute rotations and
then translations and/or object points.

One of the first works exploring the idea of estimating absolute
rotations from relative ones is given by Govindu (2001). The
problem is solved using quaternions in a linear least squares es-
timation. The length-constraint stating that only unit quaternions
represent valid rotations is neglected, however. A few years af-
ter his first work on rotation averaging Govindu proposed a new
approach using Lie group theory estimating both, absolute rota-
tions and translations from relative estimates in a non-linear opti-
misation (Govindu, 2004). Because errors during the estimation
of essential matrices occur regularly there are works investigat-
ing more robust methods for rotation averaging like using the L1

norm (Dai et al., 2010), (Chatterjee and Govindu, 2013), (Hart-
ley et al., 2011), (Hartley et al., 2013). Hartley et al. (2011) and
Hartley et al. (2013), for instance, describe a sequential rotation
averaging algorithm for a graph of absolute rotations in which one
absolute rotation is averaged at a time and iteratively improved in
the manner of a distributed consensus. They use the Weiszfeld
algorithm (Weiszfeld, 1937)1 that minimises the L1 norm. Fur-
thermore, Hartley et al. (2013) give a detailed proof for convexity
of averaging a single rotation and investigate many mathematical
aspects about rotation averaging and convexity on manifolds

Instead of the L1 norm Reich and Heipke (2014) use a Huber
cost function which shows similar robustness while being com-
putationally less demanding. Many works also pursue the idea
of eliminating outliers before the averaging, e.g. using minimum
spanning trees (minimum sub-graphs in which every node can be
reached from every other) (Govindu, 2006), using a Bayesian net-
work and cycles in the view-graph (Zach et al., 2010), or starting
from a most reliant spanning tree, and adding new edges itera-
tively (Enqvist et al., 2011). All of these works assume a certain

1For this work a translated version exists (Weiszfeld and Plastria,
2009)

maximum length of cycles or the correctness of specific relative
rotations.

2.1 Contribution

In this work we present a new approach for the robust estimation
of absolute rotations for a sequence of overlapping images. Our
detection of outliers in the relative rotations does not suffer from
cycle length limitation and yields promising results. We show
how we improve the estimation of absolute rotations by introduc-
ing weights on relative rotations based on number, distribution
and reprojection quality of homologous points. Our approach
yields comparable and partly significantly better results with re-
spect to state-of-the-art approaches.

3. ESTIMATING ABSOLUTE ROTATIONS

In this section we describe how we estimate an absolute rotation
for each out of n images from redundant relative rotations exist-
ing for pairs of images. An absolute rotation Rj can be propa-
gated from Ri by

Rj = RiRij , ∀(i, j) ∈ N = 1, . . . , n; i 6= j, (1)

using the relative rotation Rij between the two images i and j2.
Homologous points in overlapping images and relative rotations
from essential matrices are assumed to be known and their com-
putation is not focus of this work.

3.1 Preliminaries

Rotation matrices form an algebraic group, called the special or-
thogonal group SO(3), a Lie group with multiplication as op-
erator (for a comprehensive overview about algebraic groups in
image processing the reader is referred to Kanatani (1990)). Ev-
ery multiplication of two rotation matrices will result in another
rotation matrix, the identity element is the identity matrix I3×3

and the inverse element is equal to the transposed rotation ma-
trix R−1 = RT . SO(3) consists of all matrices in R3×3 whose
three columns span an orthonormal basis and whose determinant
is equal to 1.

Rotation matrices also form a differentiable manifold which is
inherent in every Lie group. Averaging on this manifold, i.e.
finding the closest absolute rotation with respect to some redun-
dant propagations, cannot be performed in the same way as in
Euclidean space, because on the manifold only multiplication is
defined; a summation of two rotation matrices leads to a result
which is not a member of SO(3). Hence, the computation of
an ordinary arithmetic average of rotation matrices is prohibited.
We use the fact that rotation matrices can be projected to their
Euclidean tangent space, the Lie algebra so(3), via the matrix
logarithm log(·) : SO(3)→ so(3) (Hartley et al., 2013):

log(R) = [v]× , v = arcsin (‖w‖2)
w

‖w‖2
, (2)

w =
R−RT

2
.

so(3) consists of all skew-symmetric matrices in R3×3

[v]× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (3)

2We interpret every absolute rotation matrix R as a rotation from im-
age to object coordinate system
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Figure 2: Construction of the graph and outlier detection: source
for propagation (orange), rotations that are propagated to for the
first time (light green), rotations that are propagated to and ex-
hibit an estimation from previous propagation (dark green) and
rotations that are not propagated to or stay fixed (grey).

and v is equivalent to the three elements of the angle-axis rep-
resentation of rotations v = αṽ with angle α, α ∈ R, and
rotation axis ṽ = (ṽ1, ṽ2, ṽ3)T , ‖ṽ‖ = 1. Thus, there ex-
ists a direct cast from matrix- to angle-axis representation with
[log(·)]−1

× : SO(3)→ R3. A backprojection exists via the expo-
nential map exp [·]× : R3 → SO(3) using Rodrigues’ rotation
formula:

exp
(
[v]×

)
= I + sin(α) [ṽ]× + (1− cos(α)) [ṽ]2× . (4)

3.2 Graph initialisation and outlier detection

The first part of our rotation estimation is the initialisation of the
graph with absolute rotations being nodes, connected by edges
if a relative rotation between the two respective images has been
computed. In the beginning the nodes have not been assigned a
value. During the initialisation of the graph we detect outliers in
the relative rotations that are deleted before the second part, the
iterative averaging. In order to differ outliers from inliers we use
the geodesic metric that defines the angular similarity between
rotations. This metric is defined as the shortest distance between
two rotations on the manifold (the geodesic), projected into the
tangent space:

d(R1,R2)geod = d(RT
1 R2, I)geod = ‖

[
logRT

1 R2

]−1

×
‖2,

(5)
‖ · ‖2 is the Euclidean norm, defining the shortest distance in R3.
Note that the identity matrix I describes a rotation by α = 0,
hence, according to Eq. (2) its projection to tangent space results
in the zero matrix 03×3.

Starting from some node with a given rotation that stays fixed and
defines a local coordinate system, we use Eq. (1) to propagate to
all nodes in the graph. The procedure is outlined in Fig. 2. We
refer to the node we are propagating from as the source node, the
node we are propagating to is referred as the goal node. During
propagation we differentiate two different situations for the goal
node: A rotation has either been propagated before, or not. In
the latter case propagation is straightforward, the former case im-
plies that a cycle in the graph exists, involving the source- and the
goal node. In this case we first compute the similarity of the two
propagations using Eq. (5). If the similarity is high, i.e. the dis-
tance is below a certain threshold θ, dgeod ≤ θ, we compute the
average of the two rotations minimising Eq. (5) with respect to
the L2-norm with the algorithm described in Hartley et al. (2013)
(algorithm1, p. 16). All relative rotations inherent in the loop are
subsequently classified as inliers. In case we do not find a high
similarity, generally all relative rotations in the loop are poten-
tial outliers. In order to decrease the number of possible outliers
we distinguish three different situations following the assumption
that relative rotations are estimated independently:

1. both involved nodes (source and goal) have been averaged
by at lest two relative rotations: the relative rotation be-
tween the source- and the goal node causing the high dis-
tance dgeod > θ is classified as outlier and rejected.

2. either the source- or the goal node has been averaged by at
least two relative rotations: all relative rotations of the loop
involved in the averaging of the respective node are rejected
from the set of potential outliers.

3. a certain amount k of all propagations from the source node
violate the similarity constraint dgeod ≤ θ: the source node
obtains a wrong value and the relative rotation used to prop-
agate this value to the source node is classified as outlier and
is rejected. Consequently, the source node does not obtain a
value anymore and has to be propagated again from another
node.

Otherwise, the set of possible outliers is not decreased. In this
case or in case 2, in which no final decision can be made, the goal
node is affected by outliers in the relative rotations. The estima-
tion is deferred until another propagation to this particular node is
possible. Then we compare all available propagations and select
consistent ones which allows for a subsequent classification of
inliers and outliers. Note that we propagate only once from every
node in the graph except case 3 is reached. In this case, as soon
as another value is propagated to this particular node, propaga-
tion starts again. In this way we guarantee that the algorithm will
converge with every node exhibiting a value, except the case one
node is connected to other nodes by inconsistent edges only. Then
the particular node is rejected from the subsequent least squares
adjustment.

3.3 Iterative least squares adjustment

The second part of our rotation averaging approach is the adjust-
ment of the relative rotations and the estimation of absolute ro-
tations. For our iterative least squares adjustment we assume a
graph that is free from any outlier in the relative rotations. Our
algorithm follows in spirit the one of Govindu (2004) but we only
estimate absolute rotations. We set the functional model accord-
ing to Eq. (1) with ∆Rij being the residual rotation matrix

Rij = RT
i ∆RijRj , ∀(i, j) ∈ N = 1, . . . , n; i 6= j. (6)

This model is non-linear in the unknown absolute rotations Ri

and Rj . In order to linearise our functional model we use the
projection to tangent space at the current estimation of absolute
rotations:

log (Rij) = log
(
RT
i ∆RijRj

)
. (7)

Eq. (7) can be linearised using the first order approximation of the
Baker-Campbell-Hausdorff -formula (BCH, see e.g. (Govindu,
2004)): log (XY) ≈ log (X)+log (Y) ,X,Y ∈ SO(3). Then,
Eq. (7) can be written as:

∆rij = ri − rj + rij ,

∆rij = ri − rj + rij , (8)

with r = log(R), r ∈ so(3) and r = [r]−1
× , r ∈ R3. This lineari-

sation comes at a price. It is obvious that the higher order terms
of the BCH-formula are not zero, because XY −YX 6= 0. Fur-
thermore, the approximation is not bi-invariant, i.e. log (SX) +
log (SY) 6= log (X) + log (Y) (Hartley et al., 2013). However,
we made good experience with this approach and prefer it against
other approaches.
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The functional model in Eq. (8) is linear so that the design matrix
can be easily constructed from positive and negative unit matri-
ces I3×3, A = [I,−I, . . . ; I . . .− I . . .]. We use the reduced ob-

servations r0ij =
[
log(R̂iRijR̂

T
j

)
]−1
× that are computed using

the current estimation of Ri and Rj , R̂i and R̂j , respectively.
By stacking the reduced observations into a vector we iteratively
estimate improvements for the unknowns. The reduced observa-
tions are updated after every iteration. In order to take care of the
rank deficiency we keep one absolute rotation fixed and exclude
it from the adjustment. Generally, this is the rotation we fixed
during graph initialisation (Section 3.2).

In general, we can derive information about the quality of relative
rotations if they are computed from homologous points in over-
lapping image pairs or triplets. Thus, we use this information as
a prior to perform a weighting on the relative rotations in order to
improve the estimation. There are three possible indicators that
can serve as a source for prior information:

1. number of homologous points used for the estimation of the
fundamental- or essential matrix τn.

2. distribution of the homologous points within image space.
In order to describe the distribution we use the variance of
the point coordinates with respect to their centre of gravity
τd.

3. reprojection error in image space using the fundamental- or
essential matrix τr .

Of course, each criterion itself might not be a self-sustaining in-
dicator for the quality of the relative rotation, e.g. a small repro-
jection error does not coincide with well distributed or numerous
homologous points. However, in our examples we use a mini-
mum number of 40 homologous points in order to avoid minimal
solutions with zero reprojection error.

The weighting matrix is constructed individually for every rel-
ative rotation in the manner described in Krarup et al. (1980),
Klein and Förstner (1984).

Pij =
1

1 + (λ|vij |)ν
I3×3 (9)

λ =
1

hw

ν = 4 .

Depending on the indicator one wants to use for the weighting,
the reciprocal weights vij are computed:

vij,n =
1

τn
, vij,d =

1

τd
, vij,r = τr . (10)

hw is the halfweight of the weighting function, indicating the
value of vij at which the relative rotations are assigned a weight
of 0.5. This value also gives information about the steepness of
the weighting function and has to be adjusted with respect to the
reciprocal weights, because if the value is set too small, the sys-
tem might become close to singular. On the other hand if hw is
set too high the effect of weighting will only be marginal. We
made good experience with setting hw according to the maxi-

mal reciprocal weight, hw =
max(vij)

2
. Note that we assume

that outliers have been removed in the previous step (Sec. 3.2).
Therefore, the weighting is not used to decide between good and
bad relative rotations but only to introduce prior knowledge on
the quality of the relative rotations. Matrix P is set only once
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Figure 3: Visualisation of the graph. Colour and thickness of the
edges refer to the number of homologous points found between
each corresponding pair.

from all individual Pij and is not changed during the iterative
estimation. The characteristics for each of the three indicators re-
garding the improvement of the estimation are evaluated in Sec.
4.

4. EVALUATION

We evaluate our approach based on synthetic and real image se-
quences. The synthetic sequences are described below for each
respective experiment. The real image sequences are the fountain-
P11 and Herz-Jesu-P25 datasets (Strecha et al., 2008), consisting
of 11 and 25 images, respectively. Both sequences are arranged
in a half circle with cameras pointing towards the centre showing
a fountain on a wall and a portal entrance (see Fig. 7). These
datasets come with a ground truth for the orientation parame-
ters generated using laserscanning and marked control points en-
abling an evaluation of our approach also with respect to related
approaches of recent publications. The images are corrected for
radial distortion. We downscaled the imagery by a factor of ap-
prox. 4.25 to keep the computational effort low which leads to a
ground sampling distance of approx. 1− 2cm. We assume non-
calibrated cameras and use the information from the EXIF header
for the interior orientation parameters. The graph describing the
relative rotations for both sequences can be seen in Fig. 3.

In a first experiment we evaluate the performance of our outlier
detection during the estimation of absolute rotations. As men-
tioned in Section 3.2 we have to define a threshold that separates
good from bad relative rotations using Eq. (5). We set this thresh-
old to θ = 0.1[rad] which we have experimentally found to work
well. The critical amount k is fixed at 50%. For this experiment
we use synthetic data because we can easily generate outliers in
the relative rotations. Twelve images are arranged in a circle all
pointing towards the centre in which 100 object points are equally
distributed within a cube. The base to height ratio between each
neighbouring pair of images is approximately 0.5 and every ob-
ject point is observed in every image. We added noise to the im-
age coordinate observations, normally distributed with σ = 1px.
The graph indicating the relative rotations is fully connected lead-
ing to a total number of 66 relative rotations. These rotation ma-
trices are computed from essential matrices and a constant inte-
rior orientation. Outliers are generated by a left multiplication
of the respective relative rotation matrix with a random rotation
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Figure 5: Synthetic arrangement of images used for the evalua-
tion of weighting relative rotations.

using Euler angles {(ω, φ, κ) ∈ R | 15◦ ≤ ω, φ, κ ≤ 345◦}. We
vary the number of outliers between 5% and 40% of the relative
rotations by a uniformly distributed sampling. For each number
of outliers we repeated the detection and averaging 100 times
using another independently generated configuration of outliers
and take the average values. Results are depicted in Fig. 4. One
can see that with up to 25% outliers in the relative rotations all
outliers could be found whereas less than 6% of correct relative
rotations are classified as outlier. With 40% outliers still a high
number of them could be classified correctly. This is also vis-
ible in the two curves showing the accumulated distance of the
estimated rotations to the ground truth. Note that in this experi-
ment no weights were used because the symmetric configuration
of images and object points does not lead to a measurable varia-
tion within the three indicators.

In our second experiment we compare the three different indica-
tors, discussed in Section 3.3. We evaluate the rotation averaging
results based on synthetic but also on the real data. As synthetic
data we use a different configuration of images than in the first
experiment to achieve a higher and more realistic variation in the
three indicators for pairs of images. Now the sequence describes
a rather linear movement of the camera in X-direction with 50
images, all pointing in a similar direction, e.g. simulating a single
strip from airborne photogrammetry or a sequence from a mobile
mapping device. We generated 500 object points forming two
clusters with approx. 210 points each. The rest of the points is
uniformly distributed over the whole scene. This arrangement is
visualised in Fig. 5. The color of the object points refers to the
number of images they are measured in.

For every dataset we repeated the estimation 10 times and in ev-
ery stage computed a new set of relative rotations using RANSAC
algorithm (Fischler and Bolles, 1981). We always used the rota-
tion with most connections in the graph as starting node for the
propagation through the graph. This propagation serves as ini-
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Figure 6: Estimation results depicted as the average distance to
the respective ground truth information R̃ in [rad] using different
indicators responsible for weighting relative rotations and unit
weights as comparison.

tialisation for the iterative least squares adjustment in which we
perform 4 different estimations, three of them using one of the
reciprocal weights defined in Eq. (10) each and one using con-
stant unit weights. We compared the results to the ground truth
information. The results are depicted in Fig. 6. Apparently, the
results highly depend on the quality of the relative rotations which
reflects itself in the variation of the results over the the ten repeti-
tions, especially in the Herz-Jesu-P25 sequence. When we com-
pare the results of the individual weightings, clearly using one of
the three indicators outperforms a unit weighting. This can be
also manifested numerically (Tab. 1). Using the number of ho-
mologous points (τn) or the distribution of the points in image
space (τd) as weights leads to the largest improvement with only
marginal differences between each other. A weighting based on
the reprojection error (τr) in the synthetic image sequence leads
to a degradation of the results compared to unit weights. The im-
provement of using τn or τd for the weighting can also be seen
in terms of a higher repeatability. The standard deviation of the
results is significantly smaller than for unit weights, for example,
and hence the dependency on the quality of the relative rotations
is less.

In a third experiment we compare the results of our approach on
the real datasets with respect to the ground truth and the results of
similar approaches from recent publications. The orientation re-
sults of our approach are depicted in Fig. 7. The translations and
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(a) fountain-P11 (b) fountain-P11, with BA (c) Herz-Jesu-P25 (d) Herz-Jesu-P25, with BA

Figure 7: Visualisation of the orientation results of our approach on real image sequences, partly improved by a subsequent bundle
adjustment (7b and 7d). The top row shows exemplary images.

τn τd τr u. w.
synthetic data 0.369 0.370 0.430 0.416
fountain-P11 0.424 0.409 0.447 0.521
Herz-Jesu-P25 0.549 0.556 0.627 0.666

synthetic data ±0.055 ±0.045 ±0.090 ±0.081
fountain-P11 ±0.034 ±0.031 ±0.061 ±0.040
Herz-Jesu-P25 ±0.131 ±0.159 ±0.195 ±0.250

Table 1: Results of the rotation estimation using different weight-
ings. Mean distance to ground truth (upper part) and standard
deviation (lower part), both in [◦].

object points are estimated by the approach described in Reich
and Heipke (2014) but using an iterative reweighted procedure
in which we detect and delete outliers in the homologous points.
Results in Fig. 7b and 7d are improved by a subsequent bundle
adjustment. There is hardly any difference visible, the facades
appear a bit more planar for the improved solution, visible in the
top views in the bottom line. Note that the top view refers to the
orientation of the image that defines the local coordinate system
and not to the facade plane. A numerical evaluation can be found
in Tab. 2. The results are based on a weighting using τd and are
averaged from 10 individual repetitions. Our approach performs
best in terms of the accuracy of the estimated absolute rotations,
both before (upper part) and after bundle adjustment (lower part).
The computation times are∼ 1.1s for the Herz-Jesu-P25 (∼ 235
relative rotations) and ∼ 0.4s for the fountain-P11 dataset (∼ 49
relative rotations) using a non-optimised Matlab implementation
on a standard desktop computer.

5. CONCLUSIONS

In this paper we presented a new approach for a weighted rota-
tion averaging in order to estimate absolute rotations as part of a
global image orientation. Our approach is independent on initial
values for the unknowns, very robust against outliers in relative
rotations and homologous points and reaches good results on syn-
thetic as well as real data that can further be improved performing
a subsequent bundle adjustment. An image sequence is consid-
ered a graph and we presented a new approach to detect and elim-
inate outliers in the relative rotations based on simple graph prop-
agation in order to perform iterative least squares averaging. We

fountain-P11 Herz-Jesu-P25
D(R) D(R)

This paper 0.409 0.556
(1) 0.517 0.573

This paper (BA) 0.146 0.167
(1) (BA) 0.195 0.188
(2) 0.420 0.348

Table 2: Orientation results of the two datasets with respect to the
ground truth in comparison with results from recent publications:
(1): (Jiang et al., 2013), (2): (Arie-Nachimson et al., 2012). The
upper part shows results before, the lower part after performing
bundle adjustment. D(R) is the mean distance to ground truth in
[◦].

estimate absolute rotations in the Lie algebra so(3) that is con-
nected with SO(3) via the exponential map, thus we derive valid
rotations accomplishing every necessary constraint. We evalu-
ated three different indicators for a weighting of the relative ro-
tations. Based on synthetic and real data we showed, that the
number of homologous points or the distribution of these points
in image space are valuable indicators to perform a weighting
leading to a significant improvement of the solution. Not only
the accuracy itself is improved but also the repeatability of the
results. Our results for absolute rotations outperform the solu-
tions of recently published approaches in terms of accuracy. In
future work we will investigate further possibilities to include
prior knowledge about the quality of the relative rotations into
the adjustment. A more sophisticated way would be the vari-
ance propagation from homologous points in order to derive the
covariance matrix for each relative rotation as prior knowledge.
Finally, our approach provides a reliable, accurate and fast way
to estimate absolute rotations, suitable also for near real time ap-
plications. Thus, future work includes the integration of parts of
our approach into on-line compatible applications.
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