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ABSTRACT: 
 
The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or 
autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable 
performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on 
sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of 
the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion 
framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions 
with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision 
based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or 
autonomous vehicles. 
 
 

1. INDRODOUCTION 

The Intelligent vehicles are improved automobile in terms of 
driver safety and comfort, and are based on mechanical, 
electronic, telecommunication and control engineering fields. As 
complexity and challenges in today’s traffic are growing, interest 
in the intelligent vehicle, that is accident-free and with 
autonomous driving function, is increasing. The autonomous 
driving vehicles travel to their destination without driver’s 
manual intervention while recognizing their surrounding 
environment and position. These autonomous driving vehicles 
reduce the chance for accidents and fuel consumption as well as 
improve driver safety and comfort (Bishop, 2000). On the 
roadmap to the autonomous driving vehicle, we are currently on 
the semi-autonomous driving stage where adaptive cruising 
or/and lane keeping are possible. To realize the next stage in the 
roadmap, the autonomous driving, three kinds of important issues 
have to be addressed. They are 1) high precision positioning and 
mapping, 2) omni-directional sensing, 3) driving situation grasp 
and actuators control. The first issue among the three matters is 
related to navigation which needs to know a car’s position on a 
map and guide the best route by comparing the position and a 
destination. The autonomous driving vehicle technologies so far 
depend on high price LiDAR (Light Detection And Range) and 
GPS (Global Positioning System) to estimate their position and 
recognize surrounding environments. 
Google, the world’s biggest IT company, employs sensors of 
hundreds of millions of dollars such as radars, 3D LiDAR, 
GPS/INS/Encoder and others for self-driving cars. Global 
automobile manufacturers such as Mercedes-Benz, BMW, Audi 
are also developing self-driving cars relying on expensive high 
performance sensors (Franke et al., 2013). Those companies 
announced they are in nearly complete phase of hardware 
technologies like the sensors for the self-driving cars, and they 
will complete the self-driving car by 2017 through 
complementing software technologies like navigation. However, 
in order to commercialize the self-driving cars, there is a matter 
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of cost that prices of sensors applied to them are too expensive 
and go up by more than those of basic vehicles. It is expected to 
need long time until the prices of the sensors and peripheral 
equipment go down to the suitable level for the 
commercialization. To advance the commercialization date, we 
have to avoid using the high price sensors and suggest an 
alternative. As a part of the alternative, some researches have 
conducted to combine existing GPS used to current car 
navigation system with the other lower priced sensors such as 
cameras and an INS. 
Various sensors like yaw-rate, acceleration sensors are already 
built in vehicles for vehicle control such as suspension, steering, 
traction, 4 wheel steering and vehicle dynamic control and so on. 
In addition, we can use the in-vehicle sensory data through CAN 
(Controller Area Network) bus in real-time. Therefore, the in-
vehicle sensory data is one of the good options can be used to 
improve existing GPS performance because it is easy and cheap 
to acquire the data. Many researchers tried to improve positioning 
accuracy by combining the GPS and in-vehicle sensory data 
based on a Kalman filter. Jo et al. (2010) adopt an IMM 
(Interacting Multiple Model) filter which selects a kinematic 
vehicle model and dynamic vehicle model according to vehicle 
dynamic characteristics and applies the selected model for 
position estimation. Martine et al. suggested a scalable navigation 
solution that can use a combination of GPS data and other 
sensory data, depending on what data is available in different 
environments. The other sensors could be built-in sensors and 
IMU (Inertial Measurement Unit) (Martin et al., 2012). 
Pavelková (2011) introduced an algorithm for the position 
estimation using in-vehicle sensory data instead of INS data 
during GPS outages. He applied a Bayesian approach based on 
nonlinear programming and could estimate an actual position in 
the case of short GPS data outages. Rezaei and Sengupta (2007) 
presented an integration method of differential GPS data and in-
vehicle sensory data that is wheel speed, steering angle and yaw 
rate based on extended Kalman filter. In this case, dynamic 
bicycle model was employed as the process model to improve the 
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performance at high speed and fast turn scenarios. Jung et al. 
(2012) proposed a dead reckoning algorithm using low-cost GPS 
and in-vehicle sensory data that is velocity and heading angle. 
The algorithm is based on a Kalman filter and can exclude low 
accuracy GPS data by selecting a vehicle model between 
kinematic and dynamic models. 
Many of modern cars have built-in front and around view 
monitoring cameras or additionally equipped black box cameras 
to protect drivers and vehicles. While the cameras are low-priced, 
the precision of relative positioning using the images is high as 
compared with other navigation sensors. Furthermore, we can 
easily obtain image sequences during driving, hybrid approaches 
using images for positioning also seem to be promising (Soloviev 
and Venable, 2010; Kim et al., 2011; Yoo et al., 2005, Kim et al., 
2004; Goldshtein et al., 2007).  Single camera or more cameras’ 
images are used with GPS data to enhance the positioning 
accuracy in many studies. Caraffi et al. (2012) presented a system 
for detection and tracking of vehicles from a single car-mounted 
camera. Though the system showed high potential for positioning 
using images from a single camera, had some constraint 
condition and was far from perfect in terms of automation. 
Mattern and Wanielik utilized landmarks images in combination 
with a low-cost GPS, a detailed digital map, and in-vehicle 
odometer to localize a vehicle at intersections where it is difficult 
to recognize which road or lane is actually taken, although the 
reception of GPS signal is good (Mattern and Wanielik, 2010). 
Nath et al. (2012) developed an algorithm to estimate 3D position 
of moving platform equipped with a camera employing an 
adaptive least squares estimation strategy. They showed the 
effectiveness of the proposed algorithm using only simulated data. 
Oskiper et al. (2012) presented a navigation system using a 
MEMS IMU, GPS and a monocular camera. They performed the 
fusion the IMU and camera in a tightly coupled manner by an 
error state extended Kalman filter. Soloviev and Venable (2010) 
investigated into the feasibility of the combination of GPS and a 
single video camera for navigation in GPS-challenged 
environments including tunnel or skyscraper area where GPS 
signal blockage occurs. They also demonstrated the performance 
of the method using only simulated data. Kim et al. (2011) 
employed omnidirectional cameras to overcome narrow field of 
view and in-vehicle sensors, an odometer. The system provided 
accurate results but the used sensors are still too expensive to 
commercialize. 
Precise digital map, which includes in-depth information on each 
lane, road features, can be also used to improve positioning 
accuracy. If a precise map data are constructed well, it could be 
powerful tool for upgrade the estimation results. However, 
precise map generation and generated data management are a 
laborious task. And the parameter definition of the map data and 
generated data sorting are also hard to treat well. Therefore there 
are some studies about how to generate and use the map data 
effectively. Ziegler et al. (2014) developed an autonomous car 
using precise digital map and multiple cameras, in-vehicle 
sensors. The car is equipped with multiple computers in order to 
manage huge map data and compute in real-time. They acquired 
the image from the cameras, and convert them to map and feature 
data. Through this process, reference map and trajectory is 
generated. After the procedure, the car drive same route again and 
acquire various sensory data. Comparing acquired data to 
reference data, they can get current position and decide where to 
drive. The test driving was successful. However, this autonomous 
car is a map dependent system and it only can drive where the 
data base exist. And the data for autonomous driving are 
excessively large. Thus it still need time to apply for real life. 
In this paper, we propose a precise car positioning method to 
enhance existing GPS performance or get over GPS signal 
problem based sensor fusion. For this, we use a front view camera, 

in-vehicle sensors and the existing GPS, and adopt an extended 
Kalman filter to integrate the multi-sensory data. To check the 
feasibility of our proposed method, we implement the algorithm 
and construct data acquisition system. We conduct and evaluate 
the experiment using real data from the system. The remaining 
part of this paper is organized as follows. The framework of the 
proposed system and experiment are discussed in section 2 and 
section 3 in order, and conclusions are followed in section 4. 
 

2. VISION BASED NAVIGATION FRAMEWORK AND 
METHOD 

To estimate the position and attitude of a car more accurately, we 
design a sensor fusion framework combining a camera, a GPS 
and in-vehicle sensors. As the acquisition time and period and the 
accuracy of these sensory data are different, we utilize an 
Extended Kalman Filter (EKF) for sensor fusion. This framework 
enables to produce the accurate position of a moving car even in 
GPS interference places. The overall framework is shown in 
Figure 1. It includes three main processes: (1) dead reckoning 
using in-vehicle sensors, (2) image georeferencing based on 
Single Photo Resection (SPR), (3) sensor fusion using an 
Extended Kalman Filter. The dead reckoning process determines 
the preliminary position and attitude using the in-vehicle sensory 
data such as yaw-rates and velocities. The image georeferencing 
process estimates the position and attitude of a camera and thus 
those of the car at the time of the image exposure using ground 
control points. Finally, the EKF process combines individual 
sensory data and produce the final enhanced position and attitude. 
The remaining parts of this section explain more details about 
each process. 
 

 
Figure 1. The proposed position and attitude estimation 

framework 
 
2.1 Dead Reckoning using In-vehicle Sensors 

The dead reckoning process is to determine the position of a 
moving object in a relative sense. It mainly depends on the 
sensors providing relative information such as velocity and 
acceleration, and thus does not provide absolute positions but the 
relative positions to an initial position. To perform the dead 
reckoning process for a car, we utilize the velocities and yaw 
rates acquired from the in-vehicle sensors. Such sensory data are 
transmitted through a CAN (Controller Area Network) in real 
time with the update frequency of 100 Hz. The CAN bus is a 
common protocol for device communication that most of the 
commercial vehicles utilize for interior communication among 
sensors, actuators and electrical control units inherent in a car. 
In the dead reckoning process, the current position and driving 
direction of a car at time t relatively to the initial status at time 0 
can be expressed as 
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, (2)  

where (x,y) and θ indicate the position and direction of the car; v 
and w are the velocities and yaw rates from the in-vehicle sensors. 
Actually, in this formula, we don’t consider the variation of 
elevation in the position and thus all the variables are defined in 
a 2D coordinate. It is because the in-vehicle sensory data cannot 
provide accurate information on the elevation change. With such 
data, we estimate the horizontal position only. Eqs. (1) and (2) 
can be discretized as 

�
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛� = �

𝑥𝑥0
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𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑘𝑘

� ∆𝑡𝑡𝑛𝑛−1
𝑘𝑘=0 , (3)  

𝜃𝜃𝑛𝑛 = 𝜃𝜃0 + ∑ 𝑤𝑤𝑘𝑘∆𝑡𝑡𝑛𝑛−1
𝑘𝑘=0 , (4)  

where ∆t is the computation update interval; n and k denote 
sampling at time t=n•∆t and t=k•∆t. Eqs. (3) and (4) can be 
rewritten as 

�
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛� = �

𝑥𝑥𝑛𝑛−1
𝑦𝑦𝑛𝑛−1� +  𝑣𝑣𝑛𝑛−1 �

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑛𝑛−1
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑛𝑛−1

� ∆𝑡𝑡, (5)  

𝜃𝜃𝑛𝑛 = 𝜃𝜃𝑛𝑛−1 + 𝑤𝑤𝑛𝑛−1∆𝑡𝑡. (6)  

The current position and attitude at time n can be updated from 
the previous position and attitude at time (n-1) with the velocity 
and yaw rate of the time interval between (n-1) and n. With a 
short time interval, we assume that the velocity and yaw rate are 
maintained constantly as the values transmitted from the CAN 
bus at time (n-1). This update model is shown in Figure 2. 
Using these equations, the system can determine the relative 
position and attitude from the initial values. Furthermore, if the 
system obtains the initial status in an absolute coordinate system 
from a GPS/INS sensor, it can determine the position and attitude 
in the absolute coordinate system all the time. 
 

 
Figure 2. The position and attitude estimation model 

 
2.2 Image Georeferencing Based on Single Photo Resection 

To increase the accuracy of the preliminary position and attitude, 
we combine the image georeferencing results based on Single 
Photo Resection (SPR). The SPR process determines the 
extrinsic camera parameters such as the position and attitude at 
the acquisition time of an image using the ground control points 
(GCP). Since the camera is rigidly mounted on a car, the position 
and attitude of the camera can be transformed into those of the 
car, which be effectively used to enhance the preliminary position 

and attitude. For the accurate transformation, we require the 
mounting parameters to describe how the camera is mounted on 
the car. These parameters are usually the position and attitude of 
the camera in the car body coordinate system, which should be 
determined by a prior system calibration process. 
The SPR process is based on the collinearity equations that 
represent the mathematical relationship between an object point 
and its projected image point. These equations are abstractly 
expressed as Eq. (7), where (x,y) describes an image point; and 
(𝑋𝑋𝑝𝑝, 𝑌𝑌𝑝𝑝, 𝑍𝑍𝑝𝑝) does an object point. (𝑋𝑋𝑐𝑐, 𝑌𝑌𝑐𝑐, 𝑍𝑍𝑐𝑐) and (ω,ϕ,κ) indicate 
the position and attitude of the camera, respectively. 

(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑋𝑋𝑐𝑐, 𝑌𝑌𝑐𝑐, 𝑍𝑍𝑐𝑐, 𝜔𝜔, 𝜙𝜙, 𝜅𝜅, 𝑋𝑋𝑝𝑝, 𝑌𝑌𝑝𝑝, 𝑍𝑍𝑝𝑝). 
(7)  

A pair of an object point and its corresponding image point 
provides two equations similar to Eq. (7). If we know the 
coordinates of the object point and find its corresponding image 
point using an image matching process, only six extrinsic camera 
parameters remain unknown. In theory, if we have more than 
three pairs providing six equations, we can solve this 
simultaneous equations to determine the camera parameters. 
Such object points with known coordinates are called ground 
control points. 
As shown in Figure 3, the single photo resection process requires 
four kinds of inputs such as ground control points, image points, 
intrinsic camera parameters and preliminary (or initial) extrinsic 
camera parameters. The ground control points are determined 
through GPS and total station survey. The image points are the 
points appearing in an image, which are corresponding to the 
ground control points. The intrinsic parameters means the 
parameters related to the optics of the camera, such as the focal 
length, the principal point, and lens distortion parameters. 
Although the extrinsic parameter are the output of the SPR 
process, we need initial approximations to such unknowns to 
solve the non-linear simultaneous equations. The initial values 
can be derived from GPS and in-vehicle sensory data. With these 
inputs, for each image, the SPR process produces the extrinsic 
parameters improved from the initial values. The accuracy of 
such extrinsic parameters mainly depends on the number, 
distribution, and accuracy of the ground control points. 
 

 
Figure 3. The procedures of the SPR process 

 
2.3 Sensor Fusion Using an Extended Kalman Filter 

In this process, the GPS data, in-vehicle sensory data and the 
image georeferencing results are combined together. For the 
accurate estimation of the position and attitude, we designed and 
used the EKF method. Whenever a kind of these data are acquired, 
position and attitude are estimated through an EKF process. The 
EKF that used in this paper is designed with six state parameters 
described in Table 4. 
 

Parameter Description 
𝑥𝑥, y, z Position 
𝜃𝜃 Direction 
𝑣𝑣 Velocity 
𝑤𝑤 Yaw rate 

Table 4. Kalman filter state parameters 
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According to Eqs. (5) and (6), the state equations of the EKF are 
mainly derived from the dead reckoning process, being expressed 
as Eq. (8). The state variables (z,v,w)   not being directly affected 
from the in-vehicle sensory data are assumed to be constant. 
These non-linear state equations are further linearized as Eq. (9). 

⎣
⎢
⎢
⎢
⎢
⎡
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
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⎥
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⎥
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 (9)  

Based on the prediction equations, the system keeps producing 
its predictions until new measurements occur. With the new 
measurement, the EKF calculates the Kalman gain value, state 
and covariance values. According to the kinds of the 
measurements, we derive different measurement models being 
represented Eqs. (10-12). 
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H = �

1
0
0
0

  

0
1
0
0

  

0
0
1
0

  

0
0
0
1

  

0
0
0
0

  

0
0
0
0

�, (10)  

 

𝑍𝑍 = �𝑥𝑥gps 𝑦𝑦gps 𝑧𝑧gps �T, H = �
1
0
0

  
0
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Z = [𝑣𝑣 𝑤𝑤]T, H = �00  00  00  00  10  01�, (12)  

where Z vector represents the measurement vector and H matrix 
does the relationship between the state and measurements. 
Whenever the sensor data are measured, the corresponding 
equations are used. Eq. (10) is used when the image 
georeferencing results are obtained. Similarly, Eqs. (11) or (12) 
is used when the GPS or in-vehicle sensor measurements are 
updated. 
 

3. EXPERIMENT 

To demonstrate the feasibility of the proposed method, we 
constructed a data acquisition system that can acquire the GPS, 
image and in-vehicle sensory data. Furthermore, we mounted the 
reference data acquisition equipment for accuracy evaluation. 
Before the position and attitude estimation, we verified the 
accuracy of the in-vehicle sensory data. We then estimated car 
position and attitude using the proposed algorithm. To evaluate 
the accuracy of the in-vehicle sensory data and the estimation 
results, we compare them with the reference data. 
 
3.1 Experimental Description 

We designed the data acquisition system for various sensor data 
acquisition and storing. This system acquires GPS data, images, 
in-vehicle sensory data and reference data. The in-vehicle 
sensory data can be collected through the CAN bus on a vehicle 
such as velocity and yaw-rate. For the collection, we built a data 

acquisition board, which collects the data through the CAN bus 
and transmit them to a laptop through a RS232 port. The 
acquisition system also has a front view camera, GPS and 
reference equipment (POSLV 420, Applanix). The specifications 
of the camera are summarized in Table 5. The specifications of 
the reference equipment are described in Table 7 (Applanix, 
2012). With this reference equipment, we can determine the 3D 
position of a moving car in an accuracy of less than 5 cm after 
post-processing. The overall data acquisition process is described 
in Figure 6 and the constructed system mounted on the car is 
shown in Figure 8. We mounted a GPS, a front view camera and 
a reference device on the roof of the car. Using a laptop inside of 
the car, we can collect and monitor the receiving sensory data in 
real time while the car is moving. 
 
 

Parameter Value Unit 

focal length 6 mm 

resolution 1024 x 768 pixels 

pixel size 4.65 μm 
Table 5. Specification of the camera 

 
 

 
Figure 6. The configuration of the data acquisition process 

 
 

 Parameters Post 
processing RTK DGPS 

With GPS 

X, Y [m] 0.020 0.035 0.300 

Z [m] 0.050 0.050 0.500 

Roll, Pitch [°] 0.015 0.015 0.015 

Heading [°] 0.020 0.020 0.020 

GPS Outage 
(60 seconds) 

X, Y [m] 0.120 0.340 0.450 

Z [m] 0.100 0.270 0.560 

Roll, Pitch [°] 0.020 0.020 0.020 

Heading [°] 0.020 0.030 0.030 

Table 7. Accuracy of the reference equipment 
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Figure 8. The data acquisition system mounted on the car 

 
This data acquisition system uses various sensors. The update 
frequency of each sensor is different. Besides, the in-vehicle 
sensors and camera do not inherently provide the accurate time 
tag of each data. Hence, when the data acquisition board collects 
the sensory data, it record the data with an accurate acquisition 
time based on its built-in clock. This clock is set to the GPS time, 
when the board is initialized with a GPS. In this way, all the 
sensory data are then collected and recorded with GPS time tags 
in real time. 
The experiment has been conducted on an urban road in Seoul, 
Korea. The test vehicle was a Hyundai Santa Fe DM and the 
driving time was approximately 15 minutes. The trajectory is 
shown in Figure 9 as a red line. We planned the trajectory to 
include straight and curved sections. It is a loop trajectory, where 
we finish the drive at the starting point to check the estimated 
finishing point is the same as the starting point. 
 

 
Figure 9. The test site and trajectory (a red line) 

 
3.2 Accuracy Verification of In-vehicle Sensors 

The proposed system use in-vehicle sensors for estimation but the 
car manufacturer does not open the specification of the sensors. 
We conducted the accuracy verification of the in-vehicle sensors 
before the estimation process. For the verification, we compare 
the acquired in-vehicle data with the reference data. The 
comparison results are shown in Figure 10 and 11. As shown in 
Table 12, the RMS of the discrepancy with respect to velocity 
and yaw rate are 1.1 km/h and 0.8 deg/s, respectively. 
 

 
Figure 10. The velocity difference between in-vehicle sensor 

and reference data 
 

 
Figure 11. The yaw rate difference between in-vehicle sensor 

and reference data 
 

 Velocity [km/h] Yaw rate [deg/s] 
Mean -0.68 -0.01 
STD 0.86 0.80 
RMS 1.10 0.80 
Max 3.87 7.20 
Min -4.55 -6.19 

Table 12. The discrepancy between built-in sensor data and 
reference data 

 
3.3 Estimation Results 

We applied our EKF based estimation algorithm and analysed the 
estimation results. To verify the accuracy, we assumed that the 
trajectory from the reference data is true and compared them to 
the estimation results. We have experimented with some 
assumptions. First, our goal is to develop a robust position 
estimation method whenever the GPS is working well or not. 
Therefore we assumed that the GPS outage can occur in the entire 
experimental area. Second, we assumed that we only use the 
image georeferencing results of only ten images. The SPR 
process requires ground control points that may not be densely 
available on the entire road and spends a long processing time. 
We thus cannot perform this process very often although the 
more SPR results provide the better accuracy. A trade-off should 
be performed between the required accuracy and the number of 
the SPR results. 
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The estimated results are shown in Figure 13, presenting three 
trajectories. The blue line indicates the trajectory from the 
reference data, being regarded as the true one. The green line is 
the one determined from in-vehicle sensory data only. Lastly, the 
red line is the one determined from the sensor fusion results with 
in-vehicle sensory data and the image georeferencing results. The 
cyan circle means the positions where the SPR results are 
available. According to the results, the sensor fusion results are 
more close to the reference data. 
 

 
Figure 13. The comparison of the estimated trajectory 

 
Figure 14 shows the distance differences comparing to the 
reference data. The red line means the comparison results of the 
in-vehicle sensor only method and the blue dashed line does the 
comparison result from the sensor fusion method. Table 15 
indicates the error statistics comparing with the reference data. 
The RMSE of the in-vehicle sensor only method and the 
proposed sensor fusion method are 21.4 m and 15.4 m 
respectively. This figure and table show the proposed estimation 
method is effective to reduce errors although we use only 9 SPR 
results. 
 

 
Figure 14. The estimated position difference 

 
Unit 
[m] 

In-vehicle Sensors Sensor combining 
X Y All X Y All 

Mean 1.52 -10.04 -4.26 6.81 2.73 4.77 
STD 21.89 18.29 20.98 14.97 14.11 14.69 
RMS 21.94 20.87 21.41 16.44 14.37 15.44 
Min -37.11 -68.97 -68.97 -19.28 -24.26 -24.26 
Max 66.03 26.45 66.03 43.29 29.47 43.29 

Table 15. Error statistics of the estimation results 

4. CONCLUSIONS 

We presented an improved car navigation system based on visual 
localization. A front view camera, GPS and in-vehicle sensors are 
employed for this system. An EKF based sensor fusion method 
is proposed to combine several sensory data and estimate the 
car’s position and attitude. The proposed method combines in-
vehicle sensor data, GPS data and image georeferencing results. 
It estimates the position and attitude every computation period or 
whenever new sensory data are acquired. Through this process, 
it can estimate the position and attitude more accurately. 
Moreover, it provide robust estimation results although the GPS 
signal blockage of a long period occurs. For verification, we have 
implemented the proposed estimation method and constructed 
the corresponding data acquisition system. This system acquires 
and archives the in-vehicle sensory data, image data and 
reference data during the test drive at the same time. The 
experimental results show that the proposed sensor fusion 
method can estimate the trajectory more accurately than the in-
vehicle sensor only method. The RMSEs in the estimated 
trajectory using the sensor fusion method are 15.4 m although 
only 9 sets of image georeferencing results are combined during 
the 15 minute drive with no GPS signals at all. 
Consequently, the proposed image based sensor fusion method 
can compensate the limitation of GPS dependent systems. In the 
near future, we will change the front view camera to stereo 
cameras to enhance the image based estimation algorithm. 
Furthermore, not only a single image based algorithm such as the 
SPR algorithm but also many image based estimation algorithm 
such as bundle adjustment will be investigated. Finally, it will be 
applied to a real time car navigation system. 
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