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ABSTRACT:

In this paper, we propose a new framework for segmenting feature-based moving objects under affine subspace model. Since the
feature trajectories in practice are high-dimensional and contain a lot of noise, we firstly apply the sparse PCA to represent the original
trajectories with a low-dimensional global subspace, which consists of the orthogonal sparse principal vectors. Subsequently, the local
subspace separation will be achieved via automatically searching the sparse representation of the nearest neighbors for each projected
data. In order to refine the local subspace estimation result, we propose an error estimation to encourage the projected data that span
a same local subspace to be clustered together. In the end, the segmentation of different motions is achieved through the spectral
clustering on an affinity matrix, which is constructed with both the error estimation and sparse neighbors optimization. We test our
method extensively and compare it with state-of-the-art methods on the Hopkins 155 dataset. The results show that our method is
comparable with the other motion segmentation methods, and in many cases exceed them in terms of precision and computation time.

1 INTRODUCTION

In the past years, dynamic scenes understanding has been receiv-
ing increasing attention especially on the moving camera or mul-
tiple moving objects. Motion segmentation as a part of the video
segmentation is an essential part for studying the dynamic scenes
and many other computer vision applications (Yang and Rosen-
hahn, 2014). Particularly, motion segmentation aims to decom-
pose a video into different regions according to different moving
objects that tracked throughout the video. In case of feature ex-
traction for all the moving objects from the video, segmentation
of different motions is equivalent to segment the extracted feature
trajectories into different clusters. One example of feature-based
motion segmentation is presented in Fig. 1.

Figure 1: Example results of the motion segmentation on the
real traffic video from the Hopkins 155 dataset (Tron and Vidal,
2007).

Generally, the algorithms of motion segmentation are classified
into 2 categories (Dragon et al., 2012): affinity-based methods
and subspace-based methods. The affinity-based methods focus
on computing the correspondences of each pair of the trajectories,
whereas the subspace-based approaches use multiple subspaces
to model the multiple moving objects in the video and the seg-
mentation of different motions is accomplished through subspace
clustering. Recently, some affinity-based methods (Dragon et al.,
2012, Ochs et al., 2014) are proposed to cluster the trajectories
with unlimited number of missing data. However, the computa-
tion times of them are so high that require an optimizing platform
to be reduced. Whereas, the subspace-based methods (Elham-
ifar and Vidal, 2009, Ma et al., 2007) have been developed to

reconstruct the missing trajectories with their sparse representa-
tion. The drawback is that they are sensitive to the real video
which contains a large number of missing trajectories. Most of
the existing subspace-based methods still fall their robustness for
handling missing features. Thus, there is an intense demand to
explore a new subspace-base algorithm that can not only segment
multiple kinds of motions but also handle the missing and cor-
rupted trajectories from the real video.

Contributions We propose a new framework with subspace mod-
els for segmenting different types of moving objects from a video
under affine camera 1. We cast the motion segmentation as a two
stage subspace estimation: the global and local subspace estima-
tion. Sparse PCA (Zou et al., 2006) is adopted for optimizing the
global subspace in order to defend the noise and outliers. Mean-
while, we seek a sparse representation for the nearest neighbors
in the global subspace for each data point that span a same lo-
cal subspace. In order to refine the local subspace estimation, we
propose an error estimation and build the affinity graph for spec-
tral clustering to obtain the clusters. To the best of our knowl-
edge, our framework is the first one to simultaneously optimize
the global and local subspace with sparse representation. In the
end, we evaluate our method and state-of-the-art motion segmen-
tation algorithms on the Hopkins 155 dataset (Tron and Vidal,
2007). Our experimental results testify our two stage sparse op-
timization framework outperforms other state-of-art methods in
terms of both robustness and computation time.

The remaining sections are organized as follows. The related
works are discussed in Sec. 2. The basic subspace models for
motion segmentation are introduced in Sec. 3. The proposed ap-
proach will be described in detail in Sec. 4. Furthermore, the
experimental results are presented in Sec. 5. Finally, this paper is
concluded in Sec. 6.

1This paper is an extension of our preliminary work (Yang et al.,
2014).
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2 RELATED WORK

During the last decades, either the subspace-based techniques
(Elhamifar and Vidal, 2009, Ma et al., 2007) or the affinity-based
methods (Dragon et al., 2012, Ochs et al., 2014) have been re-
ceiving an increasing interest on segmentation of different types
of motions from a real video. The existing works based on sub-
space models can be divided into 4 main categories: algebraic,
iterative, sparse representation and subspace estimation.

Algebraic approaches, such as Generalized Principal Component
Analysis (GPCA) (Vidal et al., 2005), which uses the polynomi-
als fitting and differentiation to obtain the clusters. The general
procedure of an iterative method contains two main aspects: find
the initial solution and refine the clustering results to fit each sub-
space model. RANSAC (Fischler and Bolles, 1981) selects ran-
domly the number of points from the original dataset to fit the
model. It is robust to the outliers and noise, but it requires a good
initial parameter selection. Sparse Subspace Clustering (SSC)
(Elhamifar and Vidal, 2009) is one of the most popular method
based on the sparse representation. SSC exploits a fact that each
point can be linearly represented with a sparse combination of the
rest of other data points. SSC has one of the best accuracy com-
pared with the other subspace-based methods and can deal with
the missing data. The limitation is that it requires a lot of com-
putation times. Another popular algorithm based on the sparse
representation is Agglomerate Lossy Compression (ALC) (Ma
et al., 2007), which uses compressive sensing on the subspace
model to segment the video with missing or corrupted trajecto-
ries. However, the implementation of ALC cannot ensure that
find the global maximum with the greedy algorithm. By the way
ALC is highly time-consuming in order to tune the parameter.

Our work combines the subspace estimation and sparse repre-
sentation methods. The subspace estimation algorithms, such
as Local Subspace Affinity (LSA) (Yan and Pollefeys, 2006),
firstly project original data set with a global subspace. Then the
projected global subspace is separated into multiple local sub-
spaces through K-nearest neighbors (KNN). After calculating the
affinities of different estimated local subspaces with principle an-
gles, the final clusters are obtained through spectral clustering. It
comes to the issue that the KNN policy may overestimate the lo-
cal subspaces due to noise and improper selection of the number
K, which is determined by the rank of the local subspace. LSA
uses the model selection (MS) (Kanatani, 2001) to estimate the
rank of global and local subspaces, but the MS is quite sensitive
to the noise level.

3 MULTI-BODY MOTION SEGMENTATION WITH
SUBSPACE MODELS

In this section, we introduce the motion structure under affine
camera model. Subsequently, we show that under affine model
segmentation of different motions is equivalent to separate mul-
tiple low-dimensional affine subspaces from a high-dimensional
space.

3.1 Affine Camera Model

Most of the popular algorithms assume an affine camera model,
which is an orthographic camera model and has a simple math-
ematical form. It gives us a tractable representation of motion
structure in the dynamic scenes. Under the affine camera, the
general procedure for motion segmentation is started from trans-
lating the 3-D coordinates of each moving object to its 2-D loca-
tions in each frame. Assume that {xfp}p=1,...,P

f=1,...,F ∈ R
2 represents

one 2-D tracked feature point p of one moving object at frame f ,
its corresponding 3-D world coordinate is {Xp}p=1,...,P ∈ R3.
The pose of the moving object at frame f can be represented with
(Rf , Tf ) ∈ SO(3), where Rf and Tf are related to the rotation
and translation respectively. Thus, each 2-D point xfp can be
described with Eq. 1

xfp = [Rf Tf ]Xp = AfXp (1)

where Af =

[
1 0 0
0 1 0

]
[Rf Tf ] ∈ R2×4 is the affine trans-

formation matrix at frame f .

3.2 Subspace models for Motion Segmentation under Affine
View

The general input for the subspace-based motion segmentation
under affine camera can be formulated as a trajectory matrix con-
taining the 2-D positions of all the feature trajectories tracked
throughout all the frames. Given 2-D locations {xfp}p=1,...,P

f=1,...,F ∈
R2 of the tracked features on a rigid moving object, the corre-
sponding trajectory matrix can be formulated as Eq. 2

W2F×P =

 x11 · · · x1P
...

...
...

xF1 · · · xFP

 (2)

under affine model, the trajectory matrix W2F×P can be further
reformulated as Eq. 3

W2F×P =

 A1

...
AF


2F×4

[
X1 · · · XP
1 · · · 1

]
4×P

(3)

we can rewrite it as following,

W2F×P = M2F×4S
T
P×4 (4)

where M2F×4 is called motion matrix, whereas SP×4 is struc-
ture matrix. According to Eq. 4, we can obtain that under affine
view the rank of trajectory matrix W2F×P of a rigid motion is
no more than 4. Hence, as the trajectory matrix is obtained, the
first step is reducing its dimensionality with a low-dimension rep-
resentation, which is called the global subspace transformation.
Subsequently, each projected trajectory from the global subspace
lives in a local subspace. Then the obstacle of multi-body motion
segmentation is to separate these underlying local subspaces from
the global subspace, which means the segmentation of different
motions is related with segmenting different subspaces.

4 PROPOSED FRAMEWORK

Our proposed framework extends the LSA (Yan and Pollefeys,
2006) with sparse optimization for both the global and local parts.
As shown in Fig. 2, given a general trajectory matrix, we firstly
transform it into a global subspace with Sparse PCA (Zou et al.,
2006), which is robust to noise and outliers. Furthermore, instead
of the KNN estimation we use the sparse neighbors to automat-
ically find the projected data points span a same subspace. To
correct the overestimation and encourage the projected data from
the same subspace to be collected, we propose an error function
to build the affinity matrix for spectral clustering.
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Input: Video sequences

... ...

High dimensional Low dimensional
Low dimensional 

with normalization

(a) Global subspace transformation

...

Sparse nearest neighbors searching

(b) Local subspace estimation

(c) error estimation(d) Build affinity matrix for 
spectral clustering

Output: Segmented video sequences

Figure 2: Overview of the proposed framework.

4.1 Global Subspace Transformation

Due to the trajectory matrix of a rigid motion has a maximal rank
4, most people choose the projected dimension to be m = 4n or
5, where n is the number of the motions in the video. Assume that
the trajectory matrix isW2F×P , where F is the number of frames
and P is the number of extracted trajectories. The traditional way
to projectW2F×P is Principal Component Analysis (PCA) (Abdi
and Williams, 2010), which can be formed as following,

z∗ = max
zT z≤1

zTΣz, (5)

where Σ = WTW is the covariance matrix of W , solutions z∗

represent the principal components. Usually, PCA can be ob-
tained through performing singular value decomposition (SVD)
for W . The solutions z∗ are fully observed, which means they
are constructed with all the input variables. However, if the prin-
cipal components z∗ are built with only a few number of original
variables but still can represent the original data matrix well, it
should be easier to separate the underlying local subspaces from
the transformed global subspace. The sparse PCA technique has
been proved that it is robust to the noise and outliers in terms
of dimensionality reduction and feature selection (Naikal et al.,
2011), which aims to seek a low-dimensional sparse representa-
tion for the original high-dimensional data matrix. In contrast to
PCA, sparse PCA produces the sparse principal components that
achieve the dimensional reduction with a small number of input
variables but can interpret the main structure and significant in-
formation of the original data matrix.

In order to contain the orthogonality of projected vectors in the
global subspace, we apply the generalized power method for sparse
PCA (Journée et al., 2010) to transform the global subspace. Given
the trajectory matrix W2F×P = [w1, ..., wF ]T , where wf ∈
R2×P , f = 1, ..., F contains all the tracked P 2-D feature points
in each frame f . We can consider a direct single unit form as Eq.
6 to extract one sparse principal component z∗ ∈ RP (Zou et al.,
2006, Journée et al., 2010).

z∗(γ) = max
y∈BP

max
z∈B2F

(yTWz)2 − γ‖z‖0 (6)

where y denotes a initial fixed data point from the unit Euclidean
sphere BP = {y ∈ RP |yT y ≤ 1}, and γ > 0 is the sparsity
controlling parameter. If project dimension is m, 1 < m < 2F ,
which means there are more than one sparse principal compo-
nents needed to be extracted, in order to enforce the orthogonality
for the projected principal vectors, (Journée et al., 2010) extends
Eq. 6 to block form with a trace function(Tr()), which can be
defined as Eq. 7

Z∗(γ) = max
Y ∈SP

m

max
Z∈[S2F ]m

Tr(Diag(Y TWZN)2)

−
m∑
j=1

γj‖zj‖0
(7)

where γ = [γ1, ..., γm]T is a positive m-dimensional sparsity
controlling parameter vector, and parameter matrix
N = Diag(µ1, µ2, ..., µm) with setting distinct positive diago-
nal elements enforces the loading vectors Z∗ to be more orthog-
onal, Spm = {Y ∈ RP×m|Y TY = Im} represents the Stiefel
manifold. Subsequently, Eq. 7 is completely decoupled in the
columns of Z∗(γ) as following,

Z∗(γ) = max
Y ∈SP

m

m∑
j=1

max
zj∈S2F

(µjy
T
j Wzj)

2 − γj ||zj ||0 (8)

Obviously, the objective function in Eq. 8 is not convex, but the
solution Z∗γ can be obtained after solving a convex problem in
Eq. 9

Y ∗(γ) = max
Y ∈SP

m

m∑
j=1

F∑
i=1

[
(µjw

T
i yj)

2 − γj
]
+

(9)

which under the constraint that all γj > µ2
j maxi ||wi||22. In

(Journée et al., 2010), a gradient scheme has been proposed to
efficiently solve the convex problem in Eq. 9. Hence, the sparsity
pattern I for the solution Z∗ is defined by Y ∗ after Eq. 9 under
the following criterion,

I =

{
active, (µjw

T
i y
∗
j )2 > γj ,

0, otherwise
(10)
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Figure 3: Illustration of 6-nearest neighbors and sparse nearest
neighbors policy. The circles and triangles represent the data
points from two different local subspaces respectively. The red
points denote the estimated neighbors for the observed data αi
from the same local subspace under the determinate searching
area.

As a result, the seeking sparse loading vectors Z∗ ∈ SPm are
obtained after iteratively solving Eq. 9. After normalization,
the global projected subspace W̃m×P = normalize(Z∗)T is
achieved, which is embedded with multiple orthogonal underly-
ing local subspaces.

4.2 Local Subspace Estimation

In order to cluster the different subspaces according to different
moving bodies, the first step is finding out the multiple under-
lying local subspaces from the global subspace. Generally, the
estimation of different local subspaces can be addressed as the
extraction of different data sets, which contain only the projected
trajectories from the same subspace. One of the most traditional
way is the local sampling (Yan and Pollefeys, 2006), which uses
the KNN. Specifically, the underlying local subspace spanned by
each projected data is found by collecting each projected data
point and its corresponding K nearest neighbors, which are cal-
culated by the distances (Yan and Pollefeys, 2006, Goh and Vidal,
2007). However, the local sampling can not ensure that all the ex-
tracted K-nearest neighbors truly span one same subspace, which
means an overestimation, especially for the video who contains a
lot of degenerated/depended motions or missing data. Moreover,
(Zappella et al., 2011) has testified that the selection of number
K is quite sensitive, which depends on the rank estimation. In
this paper, for the sake of avoiding the searching for only nearest
neighbors and solving the overestimation problem we adopt the
sparse nearest neighbors optimization to automatically find the
set of the projected data points that span a same local subspace.

The assumption of sparse nearest neighbors is derived from SMCE
(Elhamifar and Vidal, 2011), which can cluster the data point
from a same manifold robustly. Given a random data point xi that
draw from a manifold Ml with dimension dl, under the SMCE
assumption, we can find a relative set of points Ni = xj , j 6= i
from Ml but contains only a small number of non-zero elements
that passes through xi. This assumption can be mathematically
defined with Eq. 11

‖ci[x1 − xi, ..., xP − xi]‖2 ≤ ε, s.t 1T ci = 1 (11)

where ci contains only a few non-zero entries that denote the in-
dices of the data point that are the sparse neighbors of xi from the
same manifold, 1T ci = 1 is the affine constraint and P represent
the number of all the points lie in the entire manifold.

We apply the sparse neighbors estimation to find the underlying
local subspaces in our transformed global subspace. As shown
in Fig. 3, with the 6-nearest neighbors estimation, there are four
triangles have been selected to span the same local subspace with
observed data αi, because they are near to αi than the other cir-
cles. While, the sparse neighbors estimation is looking for only a

small number of data point that close to αi, in this way most of
the intersection area between the different local subspaces can
be eliminated. In particular, we constraint the searching area
of the sparse neighbors for each projected trajectory from the
global subspace with calculating the normalized subspace inclu-
sion (NSI) distances (da Silva and Costeira, 2009) between them.
NSI can give us a robust measurement between the orthogonal
projected vectors based on their geometrically consistent, which
is formulated as

NSIij =
tr{αTi αjαTj αi}

min(dim(αi),dim(αj))
(12)

where the input is the projected trajectory matrix
W̃m×P = [α1, ..., αP ], and αi and αj , i, j = 1, ..., P represent
two different projected data. The reason of using NSI distances
to constraint the sparse neighbors searching area is the geometric
property of the projected global subspace. Nevertheless the data
vectors which are very far away from αi definitely can not span
the same local subspace with αi. Moreover, in addition to save
computation times, the selection for the searching area with NSI
distances is more flexible, which has a wide range of values, than
tuning the fixed parameter K for nearest neighbors.

Furthermore, all the NSI distances are stacked into a vectorXi =
[NSIi1, ..., NSIiP ]T , the assumption from SMCE in Eq. 11 can
be solved with a weighted sparse L1 optimization under affine
constraint, which is formulated as following

min ‖Qici‖1
s.t ‖Xici‖2 ≤ ε, 1T ci = 1

(13)

where Qi is a diagonal weight matrix and defined as
Qi = exp(Xi/σ)

exp(
∑

t 6=iXit)/σ
∈ (0, 1], σ > 0. The effect of the

positive-definite matrix Qi is encouraging the selection of the
closest points for the projected dataαi with a small weight, which
means a lower penalty, but the points that are far away to αi will
have a larger weight, which favours the zero entries in solution
ci. We can use the same strategy as SMCE to solve the opti-
mization problem in Eq. 13 with Alternating direction method of
multipliers (ADMM) (Boyd et al., 2011).

As a result, we can obtain the sparse solutionsCP×P = [c1, ..., cP ]T

with a few number of non-zero elements that contain the infor-
mations and connections between the projected data point and
its estimated sparse neighborhoods. As investigated in SMCE
(Elhamifar and Vidal, 2011), in order to build the affinity ma-
trix with sparse solution CP×P we can formulate a sparse weight
matrix ΩP×P with vector ωi, which is built by ωii = 0, ωij =

cij/Xij∑
t6=i cit/Xti

, j 6= i. The achieved weight matrix ΩP×P con-
tains only a few non-zero entries in column, which give the in-
dices of all the estimated sparse neighbors and the distances be-
tween them. Hence, we can collect each data αi and its estimated
sparse neighbors Ni into one local subspace Ŝi according to the
non-zero elements of ωi.

4.3 Error Estimation

As illustrated in Figure 4, the local subspace estimation some-
times leads to incorrect overlapping sparse neighbors. We pro-
pose the following error function to resolve the overlapping esti-
mation problem:

eit = ‖(I − β̂iβ̂i
+

)αt‖22, t = 1, · · · , P (14)

where β̂i ∈ Rm×mi is the basis of estimated local subspace
Ŝi,mi = rank(Ŝi), and β̂i

+
is the Moore-Penrose inverse of
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Figure 4: The geometrical illustration of incorrect local sub-
space estimation with sparse neighbors. S1, S2, S3, S4 are
four estimated local subspaces spanned by the observed data
α1, α2, α3, α4 respectively.

β̂i, I ∈ Rm×m is an identity matrix. The geometrical mean-
ing of the error function eit is the distance between the esti-
mated local subspace and projected data. As a consequence, after
computing for each estimated local subspace Ŝi its correspond-
ing error vector ei = [ei1, · · · , eiP ], we build an error matrix
eP×P = [e1, · · · , eP ], which contains the strong connection be-
tween the projected data span a same local subspace.

In the end, we construct the affinity graph G = (V,E) with com-
bining the estimated error matrix eP×P and the sparse matrix
CP×P , whose the nodes V represent all the projected data points
and edges E denote the distances between them. In our affin-
ity graph, the connection between each two nodes αi and αj is
determined by both the eij and ωij . Therefore, the constructed
affinity graph contains only several connected elements, which
are related to the data points span the same subspace, whereas
there is no connection between the data points live in a differ-
ent subspace. Subsequently, we perform the normalized spec-
tral clustering (Von Luxburg, 2007) on the adjacent matrix of the
affinity graph, and obtain the final clusters with different labels,
and each cluster is related to one moving object.

5 EXPERIMENTAL RESULTS

Our proposed framework is evaluated on the Hopkins 155 dataset
(Tron and Vidal, 2007) with comparing with state-of-the-art sub-
space clustering and affinity-based motion segmentation algo-
rithms.

Implementation Details Most popular subspace based motion
segmentation methods (Elhamifar and Vidal, 2009, Yan and Polle-
feys, 2006, Ma et al., 2007, Dragon et al., 2012, Ochs et al.,
2014) have assumed that the number of motions has been already
known. For the Hopkins 155 dataset, we give the exactly num-
ber of clusters according to the number of motions. In this work,
the constrained area for searching the sparse neighbors is firstly
varied in a range variables [10, 20, 30, 50, 100], then it turns out
that the tuned constrained area performs equally well from 20
to 50, so we choose to set the number with 20, which accord-
ing to the alternative number of sparse numbers. In our exper-
iments, we have applied the PCA and sparse PCA for evaluat-
ing the performance of our framework on estimating the multiple
local subspaces from a general global subspace with dimension
m = 5. The sparsity controlling parameter for sparse PCA is set
to γ = 0.01 and the distinct parameter vector [µ1, ..., µm] is set
to [1/1, 1/2, ..., 1/m].

5.1 The Hopkins 155 dataset

The Hopkins 155 dataset (Tron and Vidal, 2007) contains 3 dif-
ferent kinds sequences: checkerboard, traffic and articulated. For

each of them, the tracked feature trajectories are already been pro-
vided in the ground truth and the missing features are removed as
well, which means the trajectories in the Hopkins 155 dataset are
fully observed and there is no missing data. We have computed
the average and median misclassification error for comparison
our method (O) with state-of-the-art methods: SSC (Elhamifar
and Vidal, 2009), LSA (Yan and Pollefeys, 2006), ALC (Ma et
al., 2007)and MSMC (Dragon et al., 2012), as shown in Table 1,
Table 2, Table 3. Table 4 refers to the run times of our method
comparing with two sparse optimization based methods: ALC
and SSC. Obviously, as Table 1 and Table 2 show, the overall er-

Method ALC SSC MSMC LSA Opca Ospca
Articulated, 11 sequences
mean 10.70 0.62 2.38 4.10 2.67 0.55
median 0.95 0.00 0.00 0.00 0.00 0.00
Traffic, 31 sequences
mean 1.59 0.02 0.06 5.43 0.2 0.48
median 1.17 0.00 0.00 1.48 0.00 0.00
Checkerboard, 78 sequences
mean 1.55 1.12 3.62 2.57 1.69 0.56
median 0.29 0.00 0.00 0.27 0.00 0.00
All 120 sequences
mean 2.40 0.82 2.62 3.45 1.52 0.53
median 0.43 0.00 0.00 0.59 0.00 0.00

Table 1: Mean and median of the misclassification (%) on the
Hopkins 155 dataset with 2 motions.

Method ALC SSC MSMC LSA Opca Ospca
Articulated, 2 sequences
mean 21.08 1.91 1.42 7.25 3.72 3.19
median 21.08 1.91 1.42 7.25 3.72 3.19
Traffic, 7 sequences
mean 7.75 0.58 0.16 25.07 0.19 0.72
median 0.49 0.00 0.00 5.47 0.00 0.19
Checkerboard, 26 sequences
mean 5.20 2.97 8.30 5.80 5.01 1.22
median 0.67 0.27 0.93 1.77 0.78 0.55
All 35 sequences
mean 6.69 2.45 3.29 9.73 2.97 1.94
median 0.67 0.20 0.78 2.33 1.50 1.30

Table 2: Mean and median of the misclassification (%) on the
Hopkins 155 dataset with 3 motions.

Method ALC SSC MSMC LSA Opca Ospca
all 155 sequences
Mean 3.56 1.24 2.96 4.94 1.98 0.70
Median 0.50 0.00 0.90 0.75 0.00

Table 3: Mean and median of the misclassification (%) on all the
Hopkins 155 dataset.

ror rate of ours with sparse PCA projection is the lowest for both
2 and 3 motions. Generally, the PCA projection has a lower accu-
racy than sparse PCA projection for the articulated and checker-
board sequences. However, the traffic video with PCA projec-
tion reaches a better result than the sparse PCA projection, which
gives us a conclusion that PCA is more robust to represent the
rigid motion trajectory matrix, but the sparse PCA projection can
better represent the trajectory matrix of independent or non-rigid
motions. We also notice that MSMC performs the best for the
traffic sequence with 3 motions, but our work with PCA projec-
tion is just slightly worse to MSMC and inferior to SSC, which
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Method ALC SSC OPCA OSPCA
Run-time [s] 88831 14500 1066 1394

Table 4: Computation-Time (s) on all the Hopkins 155 dataset.

is one of the most accurate subspace-based algorithm. But due to
the property of MSMC, which is based on computing the affini-
ties between each pair trajectories, it is highly time-consuming.
The checkerboard data is the most significant component for the
entire Hopkins dataset, which in particular contains a lot of fea-
tures points and many intersection problems between different
motions. To be specific, the most accurate results for the checker-
board sequences belong to our proposed framework with sparse
PCA projection, either for two or three motions. It means that
our method has the most accuracy for clustering different inter-
sected motions. Table 3 shows our method achieves the least
misclassification error for all the sequences from the Hopkins
dataset in comparison with all the other algorithms. Although
our method with sparse PCA or PCA projection is a bit loss of
precision for the traffic sequences, we save a lot of computation
times comparing with SSC and ALC as shown in Table 4. We
evaluate our method with sparse PCA projection in comparison
with LSA (Yan and Pollefeys, 2006), SSC (Elhamifar and Vidal,
2009), MSMC (Dragon et al., 2012), GPCA (Vidal et al., 2005),
RANSAC (Fischler and Bolles, 1981) and MSMC (Dragon et al.,
2012) in Figure 5 and Figure 6 on the Hopkins 155 dataset. Note
that MSMC has not been evaluated on the checkboard sequence.

6 CONCLUSIONS

In this paper, we have proposed a subspace-based framework for
segmenting multiple moving objects from a video sequence with
integrating global and local sparse subspace optimization meth-
ods. The sparse PCA performs a data projection from a high-
dimensional subspace to a global subspace with sparse orthog-
onal principal vectors. To avoid improperly choosing K-nearest
neighbors and defend intersection between different local sub-
spaces, we seek a sparse representation for the nearest neighbors
in the global subspace for each data point that span a same local
subspace. Moreover, we propose an error estimation to refine the
local subspace estimation. The advantage of the proposed method
is that we can apply two sparse optimizations and a simple error
estimation to handle the incorrect local subspace estimation. The
limitation of our work is the number of motions should be known
firstly and only a constrained number of missing data can be han-
dled accurately. The experiments on the Hopkins dataset show
our method are comparable with state-of-the-art methods in terms
of accuracy, and sometimes exceeds them on both precision and
computation time.
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Journée, M., Nesterov, Y., Richtárik, P. and Sepulchre, R., 2010.
Generalized power method for sparse principal component anal-
ysis. Journal of Machine Learning Research 11, pp. 517–553.

Kanatani, K., 2001. Motion segmentation by subspace separation
and model selection. In: ICCV, pp. 586–591.

Ma, Y., Derksen, H., Hong, W. and Wright, J., 2007. Segmen-
tation of multivariate mixed data via lossy data coding and com-
pression. PAMI 29(9), pp. 1546–1562.

Naikal, N., Yang, A. Y. and Sastry, S. S., 2011. Informative fea-
ture selection for object recognition via sparse pca. In: ICCV,
pp. 818–825.

Ochs, P., Malik, J. and Brox, T., 2014. Segmentation of moving
objects by long term video analysis. PAMI 36(6), pp. 1187–1200.

Tron, R. and Vidal, R., 2007. A benchmark for the comparison
of 3-d motion segmentation algorithms. In: CVPR, pp. 1–8.

Vidal, R., Ma, Y. and Sastry, S., 2005. Generalized principal
component analysis (gpca). PAMI 27(12), pp. 1945–1959.

Von Luxburg, U., 2007. A tutorial on spectral clustering. Statis-
tics and computing 17(4), pp. 395–416.

Yan, J. and Pollefeys, M., 2006. A general framework for motion
segmentation: Independent, articulated, rigid, non-rigid, degen-
erate and non-degenerate. In: ECCV, pp. 94–106.

Yang, M. Y. and Rosenhahn, B., 2014. Video segmentation with
joint object and trajectory labeling. In: IEEE Winter Conference
on Applications of Computer Vision, pp. 831–838.

Yang, M. Y., Feng, S. and Rosenhahn, B., 2014. Sparse opti-
mization for motion segmentation. In: ACCV 2014 Workshops-
Revised Selected Papers, pp. 375–389.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Comparison of Our approach with ground truth and the other approaches on the 1RT2RC video: 5(a): GroudTruth; 5(b):
GPCA, error: 44.98%; 5(c): LSA, error:1.94%; 5(d): RANSAC, error: 33.66%; 5(e): SSC, 0%; 5(f): Our, 0% on the 1RT2TC
sequence from the Hopkins 155 dataset.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: Comparison of Our approach with ground truth and the other approaches on the 1RT2RC video: 6(a): GroudTruth; 6(b):
GPCA, error: 19.34%; 6(c): LSA, error:46.23%; 6(d) MSMC, error: 46.23%; 6(e) SSC, 0%; 6(f): Our, 0%.
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