
ANALYSIS OF THE PERFORMANCE OF A LASER SCANNER FOR PREDICTIVE
AUTOMOTIVE APPLICATIONS

J. Zeislera,b, H.-G. Maasa

a Technische Universität Dresden, Institute of Photogrammetry and Remote Sensing, 01062 Dresden,
Germany - hans-gerd.maas@tu-dresden.de

b BMW Group, 80788 Munich, Germany - joeran.jz.zeisler@bmw.de

Commission III, WG III/2

KEY WORDS: LIDAR, Advanced Driver Assistance Systems, Object Detection, Bayesian Networks.

ABSTRACT:

In this paper we evaluate the use of a laser scanner for future advanced driver assistance systems. We focus on the important task of
predicting the target vehicle for longitudinal ego vehicle control. Our motivation is to decrease the reaction time of existing systems
during cut-in maneuvers of other traffic participants. A state-of-the-art laser scanner, the Ibeo Scala B2 R©, is presented, providing its
sensing characteristics and the subsequent high level object data output. We evaluate the performance of the scanner towards object
tracking with the help of a GPS real time kinematics system on a test track. Two designed scenarios show phases with constant distance
and velocity as well as dynamic motion of the vehicles. We provide the results for the error in position and velocity of the scanner and
furthermore, review our algorithm for target vehicle prediction. Finally we show the potential of the laser scanner with the estimated
error, that leads to a decrease of up to 40% in reaction time with best conditions.

1. INTRODUCTION

The usage of light detection and ranging (LIDAR) in automotive
application dates back to the 1990’s (Watanabe et al., 1995). First
implementations determined the distance and position of preced-
ing vehicles for Adaptive Cruise Control (ACC) systems, which
is still common today for Japanese manufacturers. Furthermore,
there has been an extensive use of laser scanners in the field of
automotive and robotic challenges, for example during the Grand
(2004, 2005) and Urban Challenge (2007) of the Defense Ad-
vanced Research Projects Agency (DARPA). Detecting obstacles
and identifying available free space to predict the future driving
path are an example of the major tasks.

The winning team vehicle (Fig. 1c) was equipped with four dif-
ferent laser scanner systems with a total of 11 scanners (Darms
et al., 2009). Herein, the size and number of the sensors is point-
ing towards the complexity of a series implementation. Besides
design issues, automotive applications have to face the trade-off
between performance in range, accuracy and the covered area
of detection as well as cost and the specific automotive operat-
ing requirements. Cameras and radio detection and ranging sys-
tems (RADAR) were given preference up to now, particularly to
gather information of relevant objects in the surrounding area of
the car. Common functions are fusion-based collision mitigation
and ACC systems as well as camera-only applications like sign
and lane marking detection.

20 years ago, members of the Carnegie Mellon University (win-
ners of the DAPRA Urban Challenge) initiated the first on-road
field research on autonomous driving towards lateral control (Jo-
chem et al., 1995). Looking towards future series advanced driver
assistant systems (ADAS), the development of partially and highly
automated functions leads to an increased demand on sensor de-
tection performance and redundancy for long-term availability.

In this paper we give an insight to the implementation and perfor-
mance of a laser scanner for a predictive task, that supports the

(a) Laser scanner Ibeo ScaLa B2 R©(Ibeo Automotive, 2015).

(b) Research vehicle with a front
mounted ScaLa B2 R©.

(c) Autonomous vehicle from the
DARPA Urban Challenge 2007
(Darms et al., 2009).

Figure 1: Automotive laser scanner.

longitudinal control by determining position, velocity, behavior
and the resulting relevance of surrounding vehicles as target ob-
jects. First, we motivate our work, showing the current lack of de-
tection performance of target vehicles for autonomous functions.
A state-of-the-art automotive laser scanner (Fig. 1a), its sensing
characteristics and the integration into a research vehicle (Fig.
1b) are presented. We validate the accuracy achieved with a test
setup with the use of a GPS real time kinematics (RTK) system
on a test track. Moreover, we determine an estimate for the error
with the use of our current algorithm for target vehicle detection,
that is reviewed consecutively. A closer insight towards the rela-
tion of sensor accuracy and the resulting detection performance
is shown. Finally, we conclude with summary and outlook.
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vego

vpto

(a) Phase 0: Uniform motion of the
ego vehicle (red) and potential target
object PTO (blue).

(b) Phase 1: Begin of lane change
maneuver of the PTO with the pro-
jected path.

jego

(c) Phase 2: Begin of deceleration
with a defined maximum jerk (yel-
low) of the ego vehicle after detec-
tion of the lane change maneuver.

aego

(d) Phase 3: Uniform deceleration
(green) of the ego vehicle until the
required minimum time gap and ve-
locity is reached.

Figure 2: Typical lane change scenario of a potential target vehicle on a highway and the respective phases. Not drawn to scale.

2. MOTIVATION

The most important aspect for a safe and comfortable ADAS is
to detect obstacles and traffic participants, that require an inter-
vention in the maintained lateral or longitudinal control, as early
as possible. Within our work, we focus on the task of determi-
nation and prediction of the target vehicle for longitudinal con-
trol, which has been challenging ever since the development of
ACC systems, especially for close cut-in maneuvers (Winner et
al., 2012). Besides avoiding collisions, the systems have to main-
tain a minimum time gap τmin to the preceding vehicle, presently
defined in (ISO, 2009) and the respective regulations of the coun-
try. The time gap τ is determined to

τ =
∆s

∆v
, (1)

where ∆s: longitudinal distance between the vehicles,
∆v: velocity difference between the vehicles.

During a cut-in maneuver, the process of a lane change could be
divided into four specific phases (Fig. 2), where the determina-
tion of the translational variables solely takes place in longitudi-
nal direction:

• Phase 0: Uniform motion. The ego vehicle is traveling with
a constant velocity vego0 , that is maintained by the ACC or
autonomous system. There is no current target object in this
example but another traffic participant in an adjacent lane,
that is a potential target object (PTO). This observed vehicle
is traveling at the velocity vpto0 .

• Phase 1: Begin of lane change maneuver. The ego vehicle
continues with constant velocity, while the PTO starts to cut
into the lane of the ego vehicle at time t1 = 0s, with the
current time gap τ1. If at any time t one has τ(t) < τmin
the control needs to increase the time gap by decelerating,
that is assumed in this example.

Phase vi(t) si(t)

1 const., v1 = v0 v1 · t+ s0

2 1
2
j · t2 + v1

1
6
j · t3 + v1 · t+ s1

3 a · t+ v2
1
2
a · t2 + v2 · t+ s2

Table 1: Velocity and distance traveled of the ego vehicle at
t; i ∈ 1 . . . 3, representing the phases. The use of index i − 1
in the determination for phase i refers to the last sample of phase
i− 1.

• Phase 2: Begin of reaction. After detection of the cut-in
maneuver at t2, the ego vehicle starts to react by deceler-
ating, as τ2 < τmin. In this example and for further con-
siderations, we assume, that the time of detection equals the
moment in time, when the reaction takes place. The deceler-
ation aego(t) increases comfortably with the given jerk jego
(first derivative of acceleration) by: aego(t) = jego · t until
the maximum deceleration is reached.

• Phase 3: Uniform deceleration. The ego vehicle continues
decelerating after it has reached the maximum deceleration
aego at t3 until τ ≥ τmin.

Generally, control systems decrease the deceleration again if τ is
stabilizing, which is not regarded at this point, as our main goal
is to avoid a collision between the two objects under a given ve-
locity difference (∆v), depending on the time of reaction (t2).
Therefore, we take a closer look at Eq. 1. Assuming the ego
vehicle is traveling at a higher or equal velocity (vego(ti) ≥
vpto(ti), i ∈ 0, 1) and behind the PTO within the first two phases
(sego(t1) < spto(t1)), we derive the time gap τ(t) at any time
by

τ(t) =
∆s(t)

∆v(t)
=
spto(t)− sego(t)
vego(t)− vpto(t)

. (2)

We keep the velocity of the PTO constant at all time in this ex-
ample: vpto(t) = vpto, const. and derive the traveled distance
to

spto(t) = vpto · t+ spto0 , (3)

where spto0 is the initial distance at the start of observation.

The counterparts for the ego vehicle differ, depending on the spe-
cific phase and can be derived from Table 1 (subscript ego is
omitted for better readability). Regarding a freeway scenario, we
simulate the resulting minimum time gap between the ego vehicle
and the PTO. Therefore, we choose a considerable set of velocity
differences and we alter the detection performance within a given
range for the time of detection (t2). Furthermore, we need an ini-
tial time gap (τ1) at the time, the lane change starts and a total
time for the lane change (TLC) of the PTO:

vego0 = 130.0km/h,

aego = −4.0m/s2,

jego = −2.5m/s3,

TLC = 5.0s,

∆v = 0.0 . . . 50.0km/h,

t2 = 0.3 . . . 4.0s.

The given motion parameters (velocity, deceleration and jerk) for
the ego vehicle are derived from the current maximum traveling
speed of a highly automated driving function (Aeberhard et al.,
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Figure 3: Simulation of the resulting minimum time gap τ [s] un-
der given conditions. The gray areas hint towards unavoidable
collisions.

2015) and research towards control laws for vehicle platoons (Li
et al., 1997), the average time for lane change has been examined
by (Salvucci and Liu, 2002). One can see from Fig. 3, that a
collision with a difference velocity of ∆v = 50km/h can only be
avoided, if the reaction to the maneuver takes place immediately
after the start of the maneuver, which is due to the fact, that the
distance of the small time gap τ1 is reduced very quickly. State-
of-the-art ACC systems detect objects within t2 ≥ 2.5s under
ideal circumstances (Winner et al., 2012), as the implemented
logic accepts a vehicle as target object, if more than the half of
the shape of the object is in the future driving path (or lane) of the
ego vehicle. Difference velocities ∆v > 30km/h between the
ego vehicle and the PTO will lead to a collision in this case.

Within the currently given ranges of the motion parameters for
the ego vehicle, it is our motivation to decrease the time until
a detection of a lane change maneuver takes place and allow to
handle higher velocity differences as a consequence.

3. LASER SCANNER PERFORMANCE

Laser scanners provide 3D information on the observed scene and
allow to determine the positions of objects directly. Thus, we
evaluate the performance of a laser scanner for automotive appli-
cation in combination with the algorithm, that will be introduced
in chapter 4. At first, we have a look at the sensor characteristics
and raw data processing, followed by the accuracy evaluation of
the features, that are extracted for the use in the algorithm.

Figure 4: Camera capture (left) of a scene and visualization of
scanner data (right). Ego vehicle is drawn as gray model, the
classified (car, blue) target ahead. Current scan points are drawn
as red, blue and green pixel. Objects reference points are red
spheres. The green vector between ego and target is the reference
(GPS-RTK) resultant.

3.1 Overview of the Ibeo Scala B2 R©

The Ibeo ScaLa B2 R©(Fig. 1a, further refered to as ScaLa) is a
laser scanner, that has been developed to match the requirements
of the automotive industry. As a consequent advancement of the
Ibeo Lux (Velupillai and Guvenc, 2009) towards an implemen-
tation in series, it is designed as a 2D-scanner with 4 scanning
layers. An in-house rotating mirror deflects the emitted beam and
receives the returned echoes, which allows for a integration in
the body of the vehicle (Fig. 1b). Besides raw data (3D coor-
dinates and reflectance for every point), the sensor delivers high
level data of the surrounding objects (Fig. 4). The most relevant
specifications are shown in Table 2 (Ibeo Automotive, 2015).

Feature ScaLa

Scanning horizontal vertical
Field of view 145.0◦ 3.2◦ (4 layers)

Resolution/Divergence 0.25◦/0.10◦ 0.80◦/0.80◦

frequency
Scanning

scanned alternating at 12.5Hz.)
25.0Hz (top and bottom layer are

Duration of a scan 16ms (9ms flyback)
Max. output per scan 1743 points

Distance range 0.3 . . . < 350m

Distance resolution 4.0cm

Distance error σd = 10.0cm

High level data
Reference

to the middle of the scan.
NTP time stamp, referring

Object identification
Pedestrian, Bike, Car).
Unique ID and classification (e.g.

Dimension
of the bounding box.
Length (l) and width (w)

Position

reference point (RP ).
deviation (σx, σy) for the
position (x, y) and standard
Longitudinal and lateral

Orientation
and standard deviation (σψ).
Object orientation (ψ)

Velocity

deviation (σvx, σvy).
velocity (vx, vy) and standard
Longitudinal and lateral

Table 2: ScaLa characteristics.

Designed as a black box system, all subsequent steps after scan-
ning, such as the segmentation of points to objects, as well as the
tracking, filtering and classification are within the know how of
Ibeo. At the end of every scan, the high level object data is avail-
able in real-time. All processing takes place inside the scanner in
the electronic control unit (ECU). Input of motion data (velocity
and yaw rate) of the ego vehicle, and the bore-sight-alignment pa-
rameters (3D translation and rotation related to the origin of the
vehicle coordinate system) is required to derive tracked object
data related to the vehicle coordinate system.

Using an available CAD model of the ego vehicle (Fig. 1b), we
determine the extrinsic position of the scanner during mounting
in the front bumper. The yaw angle of the scanner has been de-
termined by the use of a thin pole. Placed in sufficient distance
within the longitudinal axis of the car, a single echo is returned,
that should refer to the beam in the middle of the horizontal FOV.
The pitch angle is calibrated by the known height of the scanner
over ground and the returns from the horizontal plane, the vehi-
cle is standing on. Determining the roll angle is neglected, since
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Figure 5: Test setup for performance evaluation. Green variables refer to the reference system and red to the scanner. The blue variables
show the desired observations for our algorithm. Not drawn to scale.

the error during mounting is very low and has no effect on the
performance. No information is given on intrinsic calibration or
the accuracy of the angular deflection. Therefore, we assume the
error of the given yaw angle α, resulting from our calibration - as
difference between 2 adjacent rays: σα = 0.25◦.

The derived high level data of the observed objects relate to the
coordinate system, defined by: the x-axis points in the driving
direction of the ego vehicle and the y-axis to the left. Angular
measurements are mathematically positive, starting with the x-
axis in counter-clockwise direction towards the y-axis.

3.2 Performance Evaluation

In this subsection we will assess the scanner regarding the achiev-
able performance for the approach, introduced in chapter 4.1.

3.2.1 Error Propagation To evaluate the performance of the
scanner, we need to derive information of the error of the geomet-
ric features lateral offset (olat) and lateral velocity (vlat). Since
both are not part of the scanner output, they are determined from
the available object data as described in chapter 4.1. Fig. 5 shows
the data derived from the scanner (red) and the required data, to
determine the relevance of an object (blue). In this evaluation,
we simplify the scenario, assuming a non-curved flat part of road,
where the ego lane is described as a straight path (ψ ≈ 0). The
distance d to the object rear center is derived from the lateral po-
sition y and the half width of the ego path (wegolane). As no
rotations are applied to the derived object velocity vector ~v, the
lateral velocity equals the one of the object vy. Thus, the geo-
metrical features are determined by

olat = y − 0.5 · wegolane − 0.5 · w,
vlat = vy.

(4)

Given Eq. 4, the standard deviations of the features could be
determined by

σolat =
√

(σy)2 + (0.5 · σw)2,

σvlat = σvy.
(5)

3.2.2 Practical Evaluation To get an overall impression of
the accuracy of the scanner under real world conditions, we set
up two scenarios on a test track using a GPS-RTK system oper-
ating as reference. The ego vehicle, equipped with the scanner,
follows the target vehicle, and observations from the ego vehicle
scanner and the reference system are compared. Specifically, two
scenarios (Fig. 6) were tested with cloudy and dry conditions:

• Scenario: Follow.
The ego vehicle follows the target vehicle in the same lane
for a whole loop of the test track (6:00min) and varies the
distance within 20 . . . 100m by accelerating and decelerat-
ing. The target vehicle keeps its velocity constant at 80km/h.

• Scenario: Sinus.
Similar to Follow, the ego vehicle stays behind the target at
80km/h, this time keeping a constant distance of approxi-
mately 50m. The target vehicle performs cut-in and out ma-
neuvers to and from the ego lane for 1:00min on a straight
part of the road.

We use a OXTS RT3000 v2 GPS-RTK system, referenced as RT,
that receives input from two reference stations, located at the east
and west part of the test track, which has a width of approxi-
mately 3600m and a 10◦ degree offset to the east-west axis. The
a-priori standard deviations of each RT of the reference system
within best conditions are (OXTS Ltd., 2015):

0 370 741 1111 1482 1852 2223 2593 2963 3334 3704

0

111

222

334

445

556

667

778

890

1001

X [m]

Y
 [m

]

Sample:1 Sample:2000

Sample:4000
Sample:6000

Sample:8000

Figure 6: Overview of the scenarios (Follow: red, Sinus: blue) on the test track. A red dot is drawn for each 1000. sample of Follow.
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• σPos = 1.0cm for the position,
• σV el = 1.4cm/s for the velocity,
• σY aw = 0.1◦ for the heading.

Table 3 shows the observed values, that are provided by the refer-
ence system. If we compare the resulting standard deviation for
the lateral components to the one of the a-priori values, a large
difference is visible, resulting from the influence of the heading,
that is taken into account to determine the lateral offset and ve-
locity as seen from the ego vehicle.

Scenario σry σrvy

Follow 10.0cm 4.0cm/s

Sinus 11.0cm 4.0cm/s

Table 3: Reference system standard deviation for each scenario.

The RT systems are mounted on a fixed position in the back of
each car and the bore-sight-alignement has been calibrated. As
shown in Fig. 5, the position offset between the RT system for
the ego vehicle (RTego) and the target vehicle (RTt), is reduced
to the position offset, as seen from the scanner. For every object
the handed position refers to the reference point RPh, where h
denotes eight possible positions - the four edges of the rear/front
and left/right side as well as the four points in the middle of each
side (E.g. RPrl points to the rear left RP). Time-reference is
given, as the RT provides the UTC stamp via the NTP interface.

To derive an estimation for the desired standard deviations σq
(σy , σw and σvy), we regard the uncertainties uq(k), at each con-
secutive sample k between the reference (r) and the scanner (s)
for all observations q as

uq(k) = qs(k)− qr(k). (6)

The derived uncertainties of the samples for distance and velocity
error are shown in Fig. 7. Although the y-component is of main
interest for the algorithm, we show the longitudinal parts also,
as they might be of interest for further research. We provide the
standard deviation estimates (σx, σy, σvx, σvy), derived from ob-
ject tracking of the scanner, as well. For future noise assessment
(chapter 4.2), we want to evaluate if an equality between filter-
derived standard deviations and those, determined by reference,
is given.

During both scenarios the track of the target was stable and the
classification (car) valid for each sample. At a first glance an
overall positive bias is visible in both scenarios for the position
and velocity derived by the scanner, regarding the determined un-
certainties. The estimated standard deviation of the scanner is al-
ways shown as positive value, since it results from the root of the
variance. As the uncertainties to the reference show large ampli-
tude and high frequent changes, the estimated standard deviations
show a more stable behavior. Hence, the mean estimated standard
deviation approximates the mean uncertainty determined.

Having a closer look at scenario Follow, the position offset shows
a range between −0.5 . . . 0.5m with peaks for longitudinal off-
set around samples 500, 3350, 4900 and 7000. At these samples
the ego vehicle shows a deceleration and increases the distance
to the target. Situations of acceleration of the ego vehicle are
around sample 1300 or 2500. The resulting negative peaks show
a smaller amplitude than these for deceleration. The estimated
standard deviation from tracking (σx) doesn’t represent this is-
sue. The lateral uncertainties are around sample 500 and 6500,
where the first peak might result from the driven bend, whereas
the second bend shows no influence on the lateral uncertainty.
The second peak around sample 6500 is with a straight part of
the road, where no deceleration applies as well, but the target is
in a distance of approximately 80m to the ego object. Interest-
ingly the maximum distance of 100m around sample 2900 shows
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Figure 7: Uncertainties (uq) to reference and estimated standard deviations (σq) of the scanner for position and velocity during the
scenarios.
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less influence on the lateral position uncertainty. Regarding the
lateral standard deviation from tracking (σy) the peaks aren’t rep-
resented in the estimates. The peaks of the velocity uncertainties
follow these of the position, where the estimated standard devia-
tion of the scanner shows a lower value for the longitudinal part
(σvx), though representing certain peaks. A good proximity for
the lateral part (σvy) is handed.

The offset range in position, seen with Sinus is slightly smaller,
but shows positive biases for x and y as well. One can find an
alternating pattern for the lateral position offset, following the
frequency of the lane changes within a range of −0.2 . . . 0.4m.
Similar to Follow, the estimated standard deviations (σx, σy) don’t
represent the derived uncertainty (ux, uy) behavior. The lateral
velocity offset seems to follow the maneuver driven as it increases
and decreases with every lane change between +2 . . . − 1m/s.
Taking a closer look at the lateral velocity, the samples show, that
the maximum is reached approximately 280ms later in the data
of the scanner. Furthermore, the difference in the amplitude max-
imum shows much higher values for positive lateral velocities in
the data of the scanner (max(vys(k + 280ms) − vyr(k)) ≈
1.3m), where as for negative lateral velocities the difference is
less than the half. Comparing the estimated standard deviation of
the scanner, the difference doesn’t become obvious. One might
take from the first evaluation, that the estimated standard devia-
tions of the scanner should not be used for further accuracy eval-
uation, especially in situations with acceleration for longitudinal
and lateral direction.

An estimate for the standard deviation is given by the overall
uncertainty ūq (σq ≈ ūq), derived as RMS of the uncertainties
uq(k) (Eq. 6) over all samples K of

ūq =

√∑K
k=1 (uq(k))2

K
. (7)

We derive the uncertainties of interest, shown in Table 4. The
width of the target object, determined by the scanner, was com-
pared against the ground truth. An overall error of 10cm is de-
rived, as the scanner estimated the object slightly thinner for Fol-
low and Sinus. Looking at the results, one can find a mostly equal
uncertainty for ūolat ≈ 0.2m in both scenarios. Regarding the
lateral velocity (vlat), Sinus shows a significantly higher error,
that is of interest, as typical cut-in maneuvers are similar to the
ones, driven within this scenario.

Scenario ūy ūw ūolat ūvy/ūvlat

Follow 0.22m 0.10m 0.23m 0.40m/s

Sinus 0.18m 0.11m 0.20m 0.66m/s

Table 4: Derived uncertainties for the scenarios.

4. REVIEW AND ANALYSIS OF AN ALGORITHM FOR
TARGET VEHICLE PREDICTION

With the given objective (reducing the detection time) we focus
on an algorithm to determine the relevance of surrounding traffic
participants, such as motorcycles, cars and trucks for further clas-
sification as target objects. Consecutively, we review the func-
tionality of a proposed algorithm, that implements a Bayesian
network (BN) to determine the probability (relevance) of an ob-
served object, and analyze the handling of sensor noise and the
resulting performance, that can be achieved.

Lateral Evidence True False
Trajectory True False True False

LBC=True 1 1 1 0
LBC=False 0 0 0 1

Table 5: Conditional probability table for the node Lane Bound-
ary Crossing

4.1 A Target Object Prediction using Bayesian Networks

The use of Bayesian networks is an approach to determine evi-
dence for real world problems (Koller and Friedman, 2009). One
obtains the desired likelihood within a directed acyclic graph,
that consists of nodes, representing given observations and the
conditional dependence between them, defined in a conditional
probability table (CPT) or by the use of a conditional probability
distribution.

An implementation towards modeling a general validation for the
prediction of potential target objects is shown in (Zeisler et al.,
2015). One of the key features of this approach is modeling a
lane and the respective boundaries out of the ego motion param-
eters (velocity and yaw rate). Subsequently, the surrounding ob-
jects are related to these boundaries. Fig. 8 represents the derived
and reduced network that would apply to determine the evidence
for the example shown in Fig. 2, where the vehicle right to the
ego lane attempts to change to the left. All nodes X in this rep-
resentation return a likelihood P (X = xi) ∈ [0, 1] for their re-
spective states xi. The last node Object Relevance determines the
likelihood P (OR|LC,Pos) for the observed object as a relevant
target vehicle. Position Classes (Pos) and Lane Change (LC)
are the input nodes, providing evidence on the current position of
the object (Pos ∈ left, right, infront) and the likelihood for a
lane change event (LC ∈ Left,Right, Follow).

In this example, the evidence in position is P (Pos = right) = 1
and the probability of a lane change is determined for a follow
and left change event solely. The input for this event is deter-
mined from the node Lane Boundary Crossing Left (LBCleft),
which evaluates the possible crossing of the boundary of our ego
vehicle driving path. Table 5 provides the specification to derive
the probability for a lane boundary crossing by

P (LBC) = P (LE) · P (TR)+

P (LE) · P (TR)+ (8)

P (LE) · P (TR),

Object Relevance

Lane Change
Position
Classes

Lane Boundary
Crossing Left

Lateral Evidence Trajectory

olatvlat alatmax

Tlcr φlane

Figure 8: Representation of the reduced BN to determine the rel-
evance of an object, located right to the ego vehicle.
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where Lateral Evidence (LE) and Trajectory (TR) are input nodes
with a single binary state, that could be true or false. The no-
tation P (X) relates to the true state P (X) = True, whereas
P (X) relates to the false state P (X) = False. Furthermore, the
probabilities of the binary state sum to 1 per definition: P (X) +
P (X) = 1. LE and TR are the behavior nodes for the imple-
mented BN implementing the following geometric features (Gi)
as input to derive their probability (Kasper et al., 2012):

• Lateral offset (olat) towards the boundary

olat = d− 0.5 · w, (9)

where d is the distance of the object’s rear center point to
the derived boundary of the determined ego lane and w is
the width of the object.

• Lateral velocity (vlat) towards the boundary

~vlat = R(α) · ~v, (10)

where R(α) denotes a two-dimensional rotation by the de-
rived angle α, resulting from the determined ego lane at the
position of the object. The vector ~v represents the measured
velocity of the object as seen from the ego vehicle. Finally,
vlat is the lateral part of the derived vector.

• Max. lateral acceleration (alatmax ) towards the boundary.
• Time to line crossing (Tlcr) until the boundary.
• Relative angle (φlane) towards the boundary.

As the geometric features are of different units and ranges, lo-
gistic functions (sigmoid curves, Fig. 10a) are used to translate
the features within given borders into probabilities. The resulting
probability of the behavior nodes (B ∈ LE, TR) determines, im-
plementing the logistic function and assuming the independence
of the features, to

P (B|Gi) =

n∏
i=1

ai
ai + exp(bi ·Gi)

, (11)

where the geometric features Gi are discretized and ai, bi are the
weighting parameters (n = 2 ∀ LE, n = 3 ∀ TR). They have
been learned applying logistic regression and with the help of a
test and training set, that has been labeled by an expert. A signif-
icant increase in performance detection, compared to manually
chosen parameters has been shown (Schönert, 2015).

All geometric features (alatmax , Tlcr, φlane) of Trajectory are
derived, using an iterative lane change model and the input of
olat and the traveled distance. Therefore, the main performance
of the detection depends on the inputs of Lateral Evidence. With
regard to Eq. 8, the maximum probability P (LBC) = 1 might
be reached evenly from the single input of LE, if TR is neglected.
We will concentrate on the evaluation of olat and vlat for further
evaluation. Table 6 hands an impression for the resulting output
from the example in Fig. 2, where the determined ego lane is as-
sumed to be equal to the road lane (width: 3.5m) and the vehicles
(w = 2.0m) are in the middle of their respective lanes at the start
of the maneuver.

With given assumption P (TR) = 0, the resulting probability
P (LE) is consequently passed through the Bayesian network
(Fig. 8), resulting in the probability P (OR) = P (LE) for the
relevance of the object. Finally, we apply a threshold S = 65%,
that achieves a good balance between type I and type II errors,
for the acceptance of the PTO as target object. Assuming best
conditions, the resulting reaction time decreases to t2 ≈ 1.0s for
this example.

Phase olat[m] vlat[m/s] P (LE|olat, vlat)

1 (Fig. 2b) 0.7 0.0 0.01

2 (Fig. 2c) 0.5 −0.8 0.13

3 (Fig. 2d) −0.3 −1.0 0.85

Table 6: Example for the resulting probability of LE during a lane
change maneuver.

4.2 Performance under Noise

Generally, the geometric features (Gi) are derived by the input
of a sensor system (O; consisting of a single or multiple sensors),
providing observations of the surrounding objects and the sensors
(E), providing information of the ego vehicle, used to derive the
ego lane of

Gi = f(O,E). (12)

The sensor data output is erroneous due to the sensor noise on
measure and the noise effects in the data processing chain. We
implement the approach characterized in (Weidl et al., 2005) to
deal with noisy observations. To show the influence on the per-
formance for the sensor under test, we proceed under the assump-
tion, that the data of all sensors of the ego vehicle is free of bias:
σO = 0. The expectational value (G) for a given feature deter-
mines with evidence of variance (Gσ2 ) and the measured value
(Gmeas), assuming a Gaussian distribution and a zero mean error
of all measurements to

p(Gmeas|G,Gσ2) = N(G,Gσ2). (13)

With the help of intercausal inference, the BN approach (Fig. 9a)
allows to determine the probabilities P (Gi,k) for the distributed
expectational value for every feature Gi, where k depends on
the amount of discretization steps K. Fig 9b shows an example,
where K = 7 and the standard deviation is set to σ = 0.6.

Determining the probability of a behavior node (Eq. 11) enhances
to

P (B|Gi) =

n∏
i=1

K∑
k=1

P (Gi,k) · ai
ai + exp(bi ·Gi,k)

. (14)

Fig. 10a shows the resulting probability plot of olat and vlat with
assumed standard deviation. The derived probability P (LE) is
given in Fig. 10b. Blue areas reveal a low probability for the
relevance of a PTO, whereas the red area shows a high potential,
that the observed vehicle is a target object. Regarding the defined
threshold S, one can find the curves for the detection of a target
object from Fig. 10c, that is simulated under the assumption of

Gmeas

Gσ2 G

(a) Generic BN to handle
measurement noise. Gray
nodes show evidence input.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
0

0.1

0.2

0.3

0.4

P(G
k
|G

meas
=0,Gσ2=0.36)

G
k

P

(b) Propability for the expectational val-
ues G with given measurement Gmeas and
variance Gσ2 .

Figure 9: Handling noisy features.
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Figure 10: Probability under the presence of noise and resulting
performance with given threshold.

a standard deviation distribution from σ = 0.03 . . . 0.90 for the
geometric features. The red curve relates to the probability plot
in Fig. 10b and gives an impression towards the values of the ge-
ometric features, required for a target object detection. If the lat-
eral offset olat equals 0.0m, the lateral velocity vlat must at least
be −0.8m or less, otherwise P (LE) < S. With increasing sen-
sor noise and higher standard deviation, the conditions, required
to detect the target objects, increase as well. Furthermore, the re-
action time increases. Assuming σ = 0.03, it is approximately
t2 ≈ 1.25s.

With the use of the resulting uncertainties of chapter 3.2, one
finds the resulting threshold curve in Fig. 10c, with the identifier
Evaluation. As shown, it is similar to the curve, that results from
an overall noise of 0.4m for olat and vlat. The performance, un-
der this assumptions, depends much more on the lateral velocity,
observed for a vehicle during the lane change. Given best con-
ditions (vlat ≤ −1.3m/s), the reaction time will be t2 ≈ 1.5s,
that equals a decrease of 40% compared to current state-of-the-
art systems. A lane change, characterized by slow lateral velocity
will result in a much worse time, t2 ≈ 2.5s.

5. CONCLUSION AND OUTLOOK

In this paper we have shown the need for precise sensing tech-
nologies towards the use for future ADAS. Detecting cut-in ma-
neuvers of traffic participants is one of the key goals to achieve
autonomous driving functions. The laser scanner ScaLa has been
presented and its sensing characteristics have been described. A
field evaluation shows the sensor performance for position and
velocity determination in object tracking. Compared to the algo-
rithm, the determined performance shows potential, in particular
for the derived velocities of the tracked objects.

Future work concentrates on the evaluation of a sensor-fusion
setup and advanced approaches towards the target vehicle detec-
tion using Bayesian networks.
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