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ABSTRACT:

Kinect-style RGB-D cameras have been used to build large scale dense 3D maps for indoor environments. These maps can serve many
purposes such as robot navigation, and augmented reality. However, to generate dense 3D maps of large scale environments is still
very challenging. In this paper, we present a mapping system for 3D reconstruction that fuses measurements from a Kinect and an
inertial measurement unit (IMU) to estimate motion. Our major achievements include: (i) Large scale consistent 3D reconstruction is
realized by volume shifting and loop closure; (ii) The coarse-to-fine iterative closest point (ICP) algorithm, the SIFT odometry, and
IMU odometry are combined to robustly and precisely estimate pose. In particular, ICP runs routinely to track the Kinect motion. If
ICP fails in planar areas, the SIFT odometry provides incremental motion estimate. If both ICP and the SIFT odometry fail, e.g., upon
abrupt motion or inadequate features, the incremental motion is estimated by the IMU. Additionally, the IMU also observes the roll
and pitch angles which can reduce long-term drift of the sensor assembly. In experiments on a consumer laptop, our system estimates
motion at 8Hz on average while integrating color images to the local map and saving volumes of meshes concurrently. Moreover, it is

immune to tracking failures, and has smaller drift than the state-of-the-art systems in large scale reconstruction.

1. INTRODUCTION

In recent years visual simultaneous localization and mapping (SL-
AM) has focused more on real-time solutions for dense mapping
with hand-held cameras, which have broad applications in navi-
gation, semantic mapping and robotics. To this end, multi-view
stereo (MVS) [Furukawa and Ponce, 2010] achieved relatively
dense reconstruction with accurate camera tracking. However,
with cameras that does not sense depth, it is challenging to re-
construct surfaces without ambient light or sufficient texture. In
contrast, RGB-D cameras like a Kinect, can capture color images
along with the corresponding depth information at high rates.
Following the advent of RGB-D sensors, a plethora of approaches
have been proposed to solve for dense 3D mapping. A typical
dense 3D mapping system consists of three major components:
(1) Camera tracking based on the spatial alignment of consec-
utive frames; (2) Live scene reconstruction based on estimated
camera pose and RGB-D data; (3) Loop closure detection and
pose graph optimization.

To track the RGB-D sensor reliably, previous methods [Kerl et
al., 2013]- [Endres et al., 2014] only relied on RGB-D data to es-
timate incremental motion. In environments with well distributed
2D and 3D features, visual odometry based solely on RGB-D data
can be very accurate. However, it is prone to failures in scenes
of few features and depth variations. In contrast, inertial sensors
does not have such requirements on surroundings in localization.
They have been used successfully in conjunction with visual sen-
sors for terrestrial navigation [Kelly and Sukhatme, 2011]. An
inertial measurement unit (IMU) can continuously estimate the
motion with high frequency and small latency compared to vi-
sual sensors, but a consumer-grade IMU is subject to large drift
over time. Such a drift can be constrained by the visual odome-
try estimates when the environment of rich features is traversed.
Thus, it is highly desirable to fuse visual and inertial cues.
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This paper combines the ICP algorithm [Besl and McKay, 1992],
SIFT-based visual odometry [Lowe, 2004], and IMU-based track-
ing, to precisely and continuously estimate Kinect poses. This
method does not assume good feature association and small mo-
tion, thus promises to improve continuity and quality of 3D re-
construction. To begin with, the relative orientation between the
Kinect depth camera and the IMU was calibrated. During the al-
gorithm’s execution, the ICP is utilized at all epochs; the SIFT
odometry is only performed when the ICP algorithm fails; when
both break down, the IMU tracking module acts as a fall-back so-
lution. As for the IMU module, an extended Kalman filter (EKF)
propagates the IMU states with inertial readings, and corrects
them by using inclinations observed by accelerometers, and po-
sition observations from ICP or SIFT odometry. Finally, detected
loop closure provides further constraints to the map of which the
pose graph is then optimized.

The following section discusses related work. Next, we intro-
duce our 3D reconstruction system in Section 3. Then, experi-
ments and results are presented in Section 4. Finally, Section 5
concludes this paper.

2. RELATED WORK

Many latest 3D reconstruction systems use RGB-D sensors like
Kinect, to capture RGB images and depth data of the scene. One
seminal system for real-time tracking and mapping is KinectFu-
sion [Izadi et al., 2011], which proposes real-time dense surface
mapping and tracking [Newcombe et al., 2011]. In the Kinect-
Fusion system, a surface model within a volume is generated and
refined by recursively integrating depth frames. For each depth
frame, its pose in the volume is determined by the coarse-to-fine
ICP algorithm. Thanks to the surface model that serves as the ref-
erence, 3D reconstruction is achieved with robustness and great
details. However, this system can only map small areas in real
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time due to high computational resource demand.

The Kinfu system [Rusu and Cousins, 2011] extends the Kinect-
Fusion to large scale reconstruction by using volume shifting and
volume slice extraction. However, after going through several
volumes, significant tracking drift may be observed especially at
the loop closures. Moreover, the ICP algorithm for tracking often
breaks down with rapid motion or in planar scenes, such as corri-
dor.

To reduce drift and overcome such tracking failures, Kintinu-
ous [Whelan et al., 2013] combines ICP and RGB-D tracking
algorithms to estimate poses. Then they adopt deformation-based
loop closure for large scale dense RGB-D SLAM [Whelan et
al., n.d.]. In a similar spirit, RTAB-Map [Labbé and Michaud,
2011] used sparse features extracted from RGB images to aid
ICP tracking. Moreover, it achieved large scale multi-session
graph-based SLAM, which used online loop closure detection
and graph-based map optimization. Shortly, [Henry et al., 2012]
extracted sparse features from two consecutive color images and
estimated an initial incremental motion with RANSAC-based align-
ment. The initial motion is then used to initialize the ICP estima-
tion. With an off-line sparse bundle adjustment, highly accurate
dense maps represented by surfels were achieved.

However, the tracking modules of these systems may fail in cases
of few features. To estimate motion without failures, an inertial
sensor is highly advantageous in combination with a Kinect. The
literature on visual-inertial fusion teems with successful appli-
cations [Jones and Soatto, 2011]- [Kelly and Sukhatme, 2011].
As for fusing data collected by a Kinect and an IMU, [Niener
et al., 2014] proposed a method to robustly estimate inter-frame
motion by incorporating inertial data. However, its effectiveness
was only demonstrated on small areas.

Prior to combining visual and inertial cues, precise inter-sensor
calibration is imperative. [Lobo and Dias, 2007]- [Mirzaei and
Roumeliotis, 2008] provided basic approaches for calibrating off-
the-shelf cameras and inertial sensors. The continuous approach
proposed in [Furgale et al., 2013] with open source is a handy and
accurate tool for IMU-camera calibration.

3. EXTENDED KINECTFUSION FOR LARGE SCALE
RECONSTRUCTION

3.1 Preliminaries

Assume the RGB and depth cameras are calibrated well, then
for most pixels in the RGB image, their depth can be retrieved
from the depth frame captured by the depth camera. Thus, we
can reconstruct a point p from its coordinates in the depth frame
u = (u,v,1)7, and the corresponding depth measurement d(u)

as follows: .
p= { )K" ] (1)

where K is the intrinsic matrix of the depth camera. Note as
points are computed with regard to depth camera frames, so are
the incremental motions.
In order to project a world point, pw onto the depth frame, it is
first transferred from the world frame, W, to the current depth
camera frame, C', through a rigid body transformation, Ecw , as
in equation 2.

0" 1

Ecw also represents the camera pose with regard to the world
frame. Then the point is projected onto the depth frame through
a pinhole model as in equation 3.
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Changes to the camera pose can be represented by a 4 x 4 cam-
era motion M, which is also a member of SE(3), Ecryy =
MEcw = exp(pu)Ecw. Here p is the minimal representation

u = proj
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of Min SE3), p = [t w] " where w represents the rotation
part, and £ the translation part.

3.2 Overview of Fusing the Kinect and IMU data

This paper presents an extended KinectFusion system that fuses
measurements from a Kinect and an IMU for tracking and map-
ping. The tracking component integrates three sources of odome-
try information, IMU, ICP, and SIFT odometry. The IMU module
integrates IMU readings to predict Kinect attitudes, and corrects
IMU biases and attitudes by using accelerometer readings and
position observations from ICP and SIFT odometry. The rotation
between two consecutive frames is predicted by the IMU module
as follows. We timestamp frames and pose estimates from the
IMU with the CPU clock time. These pose estimates are stored
in a buffer, from which pose estimates closest to both frames in
time can be retrieved and used to compute the inter-frame rota-
tion. The inter-frame translation can also be computed, however,
empirically a low cost MEMS IMU only estimates relative rota-
tion reliably. With such a rotation estimate, the ICP algorithm
tries to align the current depth frame and the predicted surface
from the reconstructed surface model. Once ICP concludes, the
incremental rotation by the IMU module can be used to check
the validity of its motion estimate. If ICP fails, SIFT features
are extracted and matched between these two frames. Thanks to
the depth frames, these features form 3D point correspondences.
Then, the SIFT odometry module tries to estimate motion by
minimizing discrepancies between 3D point matches, again ini-
tialized and checked with the rotation estimate from the IMU.
If SIFT odometry fails too, then the incremental motion is set as
that of the IMU. Otherwise, the updated camera position is sent to
the IMU module as observation to correct IMU states. However,
empirically the IMU states do not benefit much from such obser-
vations. In addition, since the Kinect often moves with small ac-
celeration, the IMU can roughly sense the gravity direction, thus
constraining roll and pitch drift in the long run. As a result, the
roll and pitch estimated by the IMU can be used to correct Kinect
poses. Figure 1 shows the work flow and heuristics of the whole
extended KinectFusion system.

3.3 Large Scale KinectFusion

In general, large scale reconstruction is achieved by volume shift-
ing and concatenating multiple volumes. Both earlier methods
Kinfu [Rusu and Cousins, 2011] and Kintinuous [Whelan et al.,
2013] start a new volume once the distance between the previous
volume center and current camera position exceeds a threshold.
To this end, we use both the Euclidean distance and the number
of pixels in the depth frame that are matched to the surface model.
Therefore, both large displacement and large rotation will result
in creating a new volume. For a new volume, its center sits at
the optical center of the depth frame which is captured upon its
creation. In our tests, volumes are generated, shifted, and saved
online. During execution, loop closure constraints are computed
using the combined odometry method discussed in Section 3.2
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Figure 1: Workflow of extended KinectFusion system. (a) We
only use the rotation of IMU from time k to k+1: {wéﬁ_Ul cpr 0F
(b) The camera pose estimated by ICP contains the rotation and
translation: {wéfflck , téiflck }; (c) The camera pose esti-
mated by SIFT odometry is {wgvifchk , tgﬁchk }; (d) Check if
the difference between incremental rotation estimated by ICP and
that by the IMU module is greater than a threshold: Hw(";fflck —

wét{ﬁ o || > T.; (e) Check if the difference between incremen-

tal rotation estimated by the SIFT odometry and that by the IMU
module is greater than a threshold: ||wg£ifck — wgl\ﬁ{ cll >

T..

given detected revisits. With these constraints, the pose graph in
terms of SE(3) of the map is optimized with g2o [Kiimmerle et
al., 2011]. Finally, using these optimized poses, volumes of point
clouds or meshes are updated and combined to make the large
scale map.

3.4 SIFT Odometry

Similar to the IMU module, the SIFT odometry provides incre-
mental motion between two depth frames, utilizing both depth
and color frames. It is invoked only when ICP fails and the color
and depth frames are well synchronized. The current color frame
is firstly mapped to its synchronized depth frame, so that most
pixels in the color frame correspond to some points in the depth
coordinate system. Secondly, SIFT interest points are extracted
from the current and previous color images and matched to ob-
tain correspondences. For this step, we adopted SiftGPU [Wu,
2007]. Thirdly, for each correspondence, which is associated
with a 3D point, its location in each color frame is mapped to
a depth pixel in the respective depth frame through the calibra-
tion parameters. If both depth pixels have valid measurements,
coordinates of the point observed in the previous (C) and current
(C") depth coordinate system, p and p, respectively, can be
computed by equation 1. Given a set of point matches (at least
three), S = {(pjc,p]-c/),j =0,..,n—1,n > 2}, the relative
camera motion Fc/c can be obtained by iteratively updating it
by a small amount g, i.e., left-multiplication with a 4 X 4 cam-
era motion matrix, exp(p). The camera pose update, p, can be
computed with the weighted least squares by minimizing a ro-
bust objective function of discrepancies. To begin with, Ec/¢ is
initialized as identity. Then in each iteration, the following cal-
culations are performed:

1) For points in the previous frame, predict their positions in the
current frame, compute the discrepancies, e;, and their weights
which are determined by Obj(e7,07), the Tukey bi-weight ob-
jective function, where o7 is a median-based estimate of the stan-

dard deviation of these discrepancies:
ej =Pjcr — Ecrepjc

p = argmin ) _ Obj(ef, 07)e] “
B jes

2) Optimize p by using the weighted least squares method. The
Jacobian for each predicted point, p = (E¢/cp;c)1:3 are com-
puted as follows:

Oex Eciep;
J; = W!M =l —px] O
Here px denotes the skew matrix generated from the 3-vector
p. Concatenating all J;, Obj(e3,07), and e;, we can get the
whole Jacobian J, weight matrix W, and error vector e, respec-
tively. The optimal g is the solution for the Gauss-Newton equa-
tion JTWJu = JTWe.

3) Update E¢ ¢ by applying p, i.e., exp(pn)Ecrc.

3.5 Calibration of the Kinect and IMU Rig

In order to use the incremental motion estimate from the IMU
module, the transformation between Kinect cameras and the IMU
needs to be known. The calibration between the RGB camera and
the depth camera is done in factory and relevant parameters are
written in hardware. Therefore, we only have to calibrate for the
relative transformation between the depth camera and the IMU.
In our tests, we used a low cost MEMS IMU, Steval-MKI062V?2
developed by STMicroelectronics. It is rigidly attached to the
Kinect as shown in Figure 2. Since both the Kinect depth camera
and IMU can measure rotation accurately, it is easy to estimate
their relative rotation, Rcs.

Figure 2: Combination of Kinect and IMU sensors.

The rotation calibration was conducted in a small workspace with
rich 3D features, so that ICP can reliably estimate the attitude of
the depth camera. First, synchronized data from the IMU and
Kinect are collected. For a specific epoch, k, it includes the an-
gular rate reading from gyros @5 expressed in the IMU sensor
frame, and the rotation matrix from the ICP algorithm, Rw ¢, .

Considering that the calibration procedure takes only a few min-
utes, we assume that errors in @j, consist of a constant bias and
Gaussian noise. As a result, the constant bias can be estimated as
the average of gyro readings in the static mode. Subtracting this
bias from @y leads to estimated angular rates in the IMU frame,

Secondly, using the rotation matrices from ICP, the angular rate
of the Kinect and IMU rig expressed in the depth camera frame,
@¢, can be approximated by:

[t(k + 1) — t(k)] &% x = Rwey,, " Bwey, — Is.
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where &Y = Reos@g for all k, and the best fit of Ros can be
estimated from the SVD of H = Y"7_, &7 (@F)". The least
squares solution is found as Rcs = UV” given H = UXV7T
[Arun et al., 1987].

The estimation of the lever arm between the Kinect cameras and
the IMU is rather involved. The coarse value of lever arm be-
tween the RGB camera and the IMU is manually measured. Then
several calibration tests were conducted with the Kalibr pack-
age [Furgale et al., 2013]. Due to the rolling shutter of the RGB
camera, the lever arm estimate in different tests fluctuated about
the manually measured values. As a result, the mean of these es-
timates was used as the lever arm in later experiments.

3.6 IMU Odometry Based on EKF

The IMU tracking module maintains states consisting of position
and velocity of the IMU in the world frame, pY and v, respec-
tively, rotation from the world frame to the IMU frame expressed
by a quaternion, gsw , accelerometer biases b, and gyro biases
b,. In sum, the whole state vector is

x = {pY, v, qsw,ba, by} (6)

The world frame’s origin is anchored at the origin of the IMU
frame at the start of an experiment. Its Z axis is aligned with
the local gravity vector. Its other two axes are defined such that
the rotation between the IMU frame at the beginning of an ex-
periment and the world frame involves zero yaw angle. The re-
alization of this world frame is achieved by using zero velocity
update (ZUPT) and accelerometer readings at a test’s start. The
propagation model for the IMU states are formulated in equation
7.

dPZV -
dt °
w
M st rgt ozl v D

Rsw = (wj. — wis) X Rsw

where w;, represent the Earth rotation rate with respect to the
inertial frame expressed in the IMU sensor frame, and gW =
[0,0, g}T is the nominal local gravity. Assume constant gravity
in the local area, ignore the Earth rotation, and model accelerom-
eter and gyro biases as random walk processes, the linearized
continuous transition model is derived and given by:

ddp?’ —svV
dt °
dsv? . -5 s
- —Rws (a — ba) X 97 4+ Rws (ba + ng) ®)
49 = — (@ —by) x ¥ + b +n,

RSW =(1- IZJSX)RSW ba = Ngw Bg =Ny

We use EKF to correct the states given observations such as ZUPT
(equation 9) and measured gravity direction by accelerometers
(equation 10). Because the small acceleration assumption does
not always hold true, we apply the gravity observation model to
constrain roll and pitch only when the magnitude of the estimated
acceleration, ||a° — b, ||, deviates from g less than a cutoff value
(our tests used 1.5 m/s?):

O:vZVJrnU )

g = —Rws(a® —b,) +n, (10)

(b) (©)

Figure 3: Meshes for the office after loop closure. The upper pic-
ture shows the whole loop of the office and the lower two views
represent the details of the two small loops. Since we didn’t cap-
ture sufficient data in the second small loop, there are some miss-
ing parts here.

4. EXPERIMENTS AND RESULTS

Several indoor experiments are conducted to validate our method’s
advantages over other motion estimation methods, including ar-
eas with insufficient depth and color features. The proposed method
runs in real time on a computer with a 2.4 GHz CPU and 8 GB
RAM. Three experiments are presented: One was conducted in
an large office of travel distance around 36 m, one in a corridor
of around 65 m, and the last on several flights of stairs of around
83 m. Each test was started with a static session of about 45
seconds to calibrate the IMU and to ensure the initial roll and
pitch converged. In order to observe the drift effect, each test
contained a loop. For comparison, state-of-the-art tracking meth-
ods, ICP and SIFT, were used to estimate motion for the datasets
collected in three experiments. The ICP based approach broke
down in areas without enough depth features, such as corridor
and stairs. SIFT odometry was more robust to failures than ICP
but often got rather coarse orientations in featureless areas. In
contrast, our combined odometry (ICP+SIFT+IMU) ran through
entire experiments smoothly and resulted in less drift for large
scale reconstruction. We present the trajectories generated by the
SIFT odometry, our combined odometry (ICP+SIFT+IMU) and
the combined odometry with loop closure. The trajectory from
ICP is not presented because it frequently failed due to insuffi-
cient depth features.

For the test in an office, the meshes of the office area after loop
closure are shown in figure 3. The two closer views at its second
row illustrates details of meshes. The missing and discontinuous
texture are primarily due to the volume shifting step as each vol-
ume is confined by a cube and cannot integrate texture beyond it.
In the future, we will use a volume slicing and rotating technique
as in Kintinuous [Whelan et al., 2013] to solve this problem. Fig-
ure 4 shows the view of trajectories in X-Z plane of the depth
camera frame at the test start.

Similarly, for the corridor test, figure 5 shows the meshes of corri-
dor after loop closure. Again, its bottom row displays two closer
view of the reconstructed scene. The 2D trajectories in the X-Z
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Figure 4: Trajectories projected to X-Z plane of the depth camera
frame at the start of the office test. ”o” marks the starting point
and ”x” the finish point. Large orientation erros are observed in
the SIFT odometry. Combined odometry gives better results, but
still suffers in heading. This may be caused by many movements
close to pure rotations in the test. The loop closure handles the

orientation inconsistency very well.

'

e

Figure 5: Meshes for the corridor after loop closure. The upper
picture shows the whole loop of the corridor and the lower two
views represent the inner view and one part of the loop. The
missing and discontinuous texture are due to the volume shifting
step as each volume is confined by a cube and cannot integrate
texture beyond it.

(b) (©

plane are drawn in figure 6. For the test in a stairway, the meshes
of four flights after loop closures are depicted in figure 7. Figure
8 shows the corresponding trajectories.

5. CONCLUSION

We presented an extended KinectFusion system for real-time large
scale 3D reconstruction by fusing Kinect and IMU data. In order
to estimate sensor pose robustly, the ICP algorithm, SIFT odom-
etry, and the IMU odometry are combined into a single pipeline.
This combined odometry bridges tracking failures often experi-
enced by methods only using RGB and depth information upon

Figure 6: Trajectories projected to X-Z plane of the depth camera
frame at the start of the corridor test. o™ marks the starting point
and ”x” the finish point. The SIFT odometry keeps the shape well
despite a scale change. Combined odometry gives better results
in orientation and scale. The loop closure removes the trajectory

inconsistency.

(b) (©

Figure 7: Meshes for stairs after loop closure. The upper picture
shows the panorama of four flights of stairs and the lower two
views represent the stairs to the second and fourth floor. The
missing and discontinuous texture is partially caused by quick
motion and hence inadequate color images.

abrupt camera motion or inadequate features. It is verified that
the system we developed outperforms state-of-the-art methods in
reducing drift and ensuring continuous motion estimates. Based
on motion estimation from the combined odometry and loop clo-
sure, large scale reconstruction of good quality is achieved.
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