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ABSTRACT: 
 
Rendering large city models with high polygon count and a vast amount of textures at interactive frame rates is a rather difficult to 
impossible task as it highly depends on the client hardware, which is often insufficient, even if out-of-core rendering techniques and 
level of detail approaches are used. Rendering complex city models on mobile devices is even more challenging. An approach of 
rendering and caching very large city models in the cloud using ray-tracing based image provisioning is introduced. This allows 
rendering large scenes efficiently, including on mobile devices. With this approach, it is possible to render cities with nearly 
unlimited number of polygons and textures. 
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1. INTRODUCTION AND RELATED WORK 

Over the last decade, we have witnessed the emergence and 
maturing of web-based 3D geoinformation services, namely 3D 
virtual globes. This has also spurred ongoing research both in 
the automated generation and in the efficient visualisation of 
very large and increasingly complex 3D city models. Some of 
the main trends in urban 3D reconstruction include procedural 
modelling approaches (e.g. Haegler et al., 2009) as well as 
image-based reconstruction – both from oblique aerial and 
ground-based imagery (Haala and Kada, 2010; Musialski et al., 
2013). Both approaches are used to automatically reconstruct 
very large urban scenes with huge image textures and 
increasingly complex geometries and with potentially very large 
variations in level of detail. Over the last few years a great 
amount of research has been conducted on efficient web-based 
3D graphics in general (Evans et al., 2014) and in web- and 
cloud-based architectures for large and complex geospatial 3D 
scenes in particular (Christen et al., 2012 & 2014). 
Recently some interesting approaches for rendering massive 
geospatial datasets on mobile devices have been introduced. 
Hildebrandt et al. (2011), for example, proposed an architecture 
for server-side rendering of massive 3D panoramas using cube 
maps. In their solution the 3D model is preprocessed and 
provided as a panorama image from the server. Another 
approach is the provisioning of massive, virtual 3D city models 
on web browsers, smartphones or tablets assembled from 
artificial oblique image tiles. It concluded that when using 
image provisioning techniques, the complexity of the 3D city 
model data is decoupled from data transfer complexity (Klimke 
et al., 2014). Also noteworthy is the HuMoRS system (Huge 
models Mobile Rendering System), where a networked 3D 
graphics system for interactively streaming and exploring 
massive 3D mesh models on mobile devices has been proposed 
(Rodríguez, 2014).  
The Open Geospatial Consortium (OGC) and the Web3D 
Consortium have both been actively addressing the need for 
interoperability in the field of geospatial 3D visualisation, in 
particular handling complex datasets, mastering access speed, 

and allow a diversity of devices. The Web3D Consortium has 
focused on open standards for real-time 3D visualization, 
including streaming. The OGC has focused on developing a 
service interface to provide interoperable access to 3D 
geospatial data servers. In 2012, a group of OGC members, 
building on work done in both organizations, completed the 3D 
Portrayal Interoperability Experiment to develop and evaluate 
best practices for 3D portrayal services (Open Geospatial 
Consortium, 2015). The current state of the portrayal service 
has been used to implement the proposed 3dmaps.ch 
framework.  
 
In this paper we first introduce our cloud-based image 
provisioning approach including the underlying architecture. 
We then introduce two very demanding use cases with large and 
complex 3D city models, one of which was created using 
image-based modelling, the other one using procedural 
modelling. We subsequently present first results obtained with 
our cloud-based image provisioning prototype and provide an 
outlook and conclusion. 
 
 

2. PROPOSED CLOUD-BASED TILED IMAGE 
PROVISIONING APPROACH 

In the following, we introduce the 3dmaps.ch framework, which 
uses the view-extension of the 3D portrayal service for server 
and the browser-based visualisation. For the visualisation, an 
image-based provisioning approach is used. Different views of a 
city model can be rendered, cached in the cloud, and streamed 
to the client in the form of image tiles. The rendering step 
supports different zoom levels and view orientations of the city 
model. The resulting images follow the principle of G-buffers 
(Saito 1990). The first image tile type is a diffuse map, 
containing unlit colors of the scenery, the second tile type is a 
normal map containing normals encoded in RGB. With these 
two tile types, it is possible to support dynamic lighting of the 
scene. A third tile type contains ids of the 3D objects in the 
scene encoded as RGBA color values, which can be used for the 
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identification of objects. The fourth image tile type is the Z-
buffer tile containing the 32-bit per pixel depth values. With this 
tile type, it is possible to get the 3D position of every pixel on 
screen. All tiles are streamed as images in the png format since 
almost any kind of data can be encoded in and decoded from 
RGB and RGBA images (Christen, 2005). 
 
2.1 Creating New Scenes 

The 3dmaps.ch web application consists of several python 
scripts, which are handled by a web interface. The web interface 
uses flask (Flask, 2015; Lerner, 2014) and makes use of 
MongoDB, an open-source, document database designed for 
scalability (MongoDB, 2015). The web interface is optional and 
the scripts can also be called directly.  
 
Scene creation – First, there is the script "createScene.py" 
which creates a new scene. A scene consists of assets such as 
3D geometry, textures, and material definitions. If a 3D format 
without semantics is used, 3D geometries should be handled as 
a file per building so an id per Object can be created. In this 
case the id is simply the filename of the geometry.  
 
Addition of scene contents – New geometry can be added to a 
scene by uploading the data via the web interface or by calling 
the script "addFilesToScene.py". If orthophotos are used in 
combination with elevation data, they must be provided as 3D 
geometry with textures. A python script to create a 3D model 
from orthophotos and elevation data has been developed for this 
purpose. Once the scene is complete it can be optimized by 
removing duplicate vertices, faces and material definitions. 
 
As the subsequent rendering performance is critical, a spatial 
data structure is created for acceleration. The bounding volume 
hierarchy (BVH) is of the most popular spatial data structures 
(Barringer 2014). The BVH is used for 3D objects, including all 
buildings and terrain. To support very large 3D cities and to 
keep the memory footprint low, the BVH is stored as multiple 
files in the file system. The textures are converted to a format 
with multiresolution support to reduce time for pixel lookup.   
 
2.2 Rendering Scenes 

Once all assets are uploaded to the server so called renderings 
can be configured. These rendering configurations consist of the 
3D tile types to be rendered, the view directions which are used 
to render the view of the 3D city. The view position can be 
configured using a pitch angle (Figure 1) and a look-at angle 
(Figure 2). In Figure 2, we see a look-at angle of 0° looking 
north and a second view with an angle of 45° looking north-
west. The pitch in this example is 22°. There is no limitation as 
to how many different renderings can be created. A new 
rendering is defined using the script "createRendering.py". 
 
 

     
Figure 1: A scene rendered with a pitch of 10°, 22.5°, and 45° 

 

   
Figure 2: Using different look-at directions 

 
Perspective image tiles are created in a quadtree structure, as 
shown in Figure 3. Instead of using a perspective projection for 
the oblique views, a parallel projection. As a result a uniform 
level of detail can be used across the entire field of view and 
that buildings are shown with a uniform scale across the entire 
screen. An additional advantage of the quadtree structure is that 
only the lowest pyramid level needs to be rendered and that the 
remaining levels can be calculated using image processing 
operations. Thus, the full potential of the acceleration structure 
is exploited. A simple tiling example is shown in Figure 4. 
 

 
Figure 3: Quadtree scheme for 3D tiles 

 
 

 
Figure 4: 3D tiles of a test scene at zoom level 1 

 
The actual scene rendering is done using ray-tracing, to handle 
large amounts of textures and polygons in an efficient way. For 
the time being, an own implementation of a ray-tracer was not a 
priority, so RenderMan (Renderman 2015) is used for rendering 
the tiles. However, it would be possible to use other renderers 
instead or to implement our own rendering solution. 
 
The tiles to be rendered are stored as render-jobs in MongoDB. 
The rendering can be distributed in the cloud using as many 
nodes as needed for processing tiles since each node processes a 
new job retrieved from the database. Once all full-resolution 
tiles are processed the remaining zoom levels are calculated and 
stored in the cloud.  
 
2.3 Server Architecture 

The server architecture follows the principles of the upcoming 
OGC 3D portrayal service. In the first version, the View 
Extension has been implemented for retrieving the images from 
the server. For each tile, a new view is calculated. The server 
implementation also supports a caching strategy, so that each 
request is stored and not being calculated twice. The 
architecture is shown in Figure 5.  
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Figure 5: Client/Server Architecture of 3dmaps.ch 
 
2.4 Viewer API 

For displaying the scene in a webbrowser a JavaScript library 
has been implemented. It is called "map3d.js" and can be used 
to create custom scenes.  
 
As shown in Listing 1, a new 3D map is created by specifying 
an id of a canvas element. Then a new layer is created. For the 
layer the URL(s) to the preprocessed tiles are provided. It is 
possible (and recommended) to specify many tile servers to 
speed up downloads, as the number of simultaneous persistent 
connections per server is limited in Web browsers. The layer is 
then added to the map. Currently, only a single 3D layer can be 
added to the map. In future, there will be support of multiple 3D 
layers, which can be combined using their z-buffers. Finally, we 
add two markers to the scene. The markers use real 3D positions 
of the objects. With this, the 3D scene is ready and the result is 
shown in Figure 6. 
 
var map = new map3d.map("mapcanvas"); 
 
var layer = new map3d.imageLayer([ 
  "http://t1.3dmaps.ch/tiles/teatime", 
  "http://t2.3dmaps.ch/tiles/teatime", 
  "http://t3.3dmaps.ch/tiles/teatime", 
  "http://t4.3dmaps.ch/tiles/teatime"]) }); 
 
layer.addTo(map); 
 
var teapot_marker = new map3d.marker("Green 
Teapot", [0,0,0]); 
teapot_marker.addTo(map); 
 
var cube_maker = new map3d.marker("Green Cube", 
[80.5, 11.5, 10.5]); 
cube_maker.addTo(map); 
 

Listing 1. Using the viewer API 
 
 

 
Figure 6. Scene for Listing 1 with markers using 3D world 

positions. 
 

The map3d.js library contains an event system supporting 
custom events such as clicking on an object or building, 
selecting a marker, and so on. A building can be highlighted 
according to its id, which is retrieved from the color id tile. The 
highlighting is then calculated and displayed as shown in Figure 
7. 

The viewer supports both canvas-only and WebGL-based 
rendering modes. The WebGL version converts all tiles to 
textures. Certain operations like highlighting are done completly 
on the GPU. The texture of the color id tile and the RGB texture 
are combined in the fragment shader. Also the Z-buffer is 
written using the WebGL extension "EXT_Frag_Depth", which 
will also be part of WebGL 2.0. This allows the combination of 
polygonal 3D objects with the image-based view. 

Figure 7. Highlighting objects 

 
3. USE CASES 

Currently there is a trend toward publishing textured 3D city 
models in the CityGML format as open data. These city models 
can be freely downloaded and usually be used for any purpose. 
This promotes the development of new algorithms and 
visualizations with real city data. Today, the list of city models 
released as open data includes: Lyon (France), Hamburg 
(Germany), Monréal (Canada), Rotterdam (Netherlands), and 
Berlin (Germany). For the first use case, we chose the modern 
city of Rotterdam, representing one of the open datasets. In our 
second case study, we use a procedural city model of the 
historic roman city of Augusta Raurica. 
 
3.1 Use Case 1: The Rotterdam Dataset 

The city model of Rotterdam is available to the public as 
CityGML dataset. The dataset consists of: 
 

• 90 CityGML files with a total size of 2.72 GB 
• 26'474 textures with a size of 1024x1024, an 

uncompressed total data volume of around 77 GB 
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CityGML is an XML-based format for the storage and exchange 
of virtual 3D city models. It is therefore not a format optimized 
for viewing and can't simply be converted to an optimized 
viewing format. In addition, the dataset consists of texture 
atlases which are not optimized at all. Optimal results would be 
achieved if a 3D designer would manually redesign all buildings 
using 3D modelling software. However, we did not have the 
resources and the intention of doing so. Instead, we 
implemented a more general way for converting the models in 
an automated process. In this process we use all original 
textures and 3D data. In a first step the data is converted from 
CityGML to Wavefront OBJ format using FME (Safe 
Software). In a second step the materials and geometry are 
optimized using a python script. The script does: 
 

• remove untextured faces, as we only want textured 
buildings 

• remove triangles with double vertices 
• optimize materials: use only one material per texture 
• flip axis and face-orientation so we have a right 

handed coordinate system for further processing 
 
The textures themselves are not changed as we did not want to 
reduce the given image quality. However, the original image 
quality is quite low as we can see when loading the converted 
dataset in a viewer such as MeshLab (Figure 8). Some city 
blocks however were too big to be loaded with all textures. 
 

Figure 8. 3D Visualization of a single district containing 151 
textures using MeshLab 

In addition to the buildings, we used the orthophoto of 
Rotterdam, which is also available as open data (Figure 9). The 
file was downloaded from the Rotterdam open data portal in 
ECW Format. It has a size of 620'000x 248'696 Pixels. The 
uncompressed size of the image is around 430 GB. With the 
Wavelet based ECW compression the file is reduced to 8.4 GB. 
For the 3D visualization we created 10'000 tiles with a size of 
4096x4096 Pixels. This was necessary, since the RenderMan 
renderer does not support ECW Format natively. The tiling has 
been implemented using a simple python script. As part of the 
tiling process, the script also creates a 3D file in the Wavefront 
OBJ Format, including the materials. 

The 3D map of Rotterdam has been processed using 8 zoom 
levels on a single machine. For the demo a total of 87381 tiles 
have been preprocessed and stored in the cloud. A visual 
impression of the Rotterdam scene is shown in Figure 7. 
 

 
Figure 9. The orthophoto of Rotterdam (RDAM_lufo2014.ecw) 

3.2 Use Case 2: The Roman City of Augusta Raurica 

The second use case is a digital reconstruction of the historical 
Roman City of Augusta Raurica, located some 10 kilometres 
east of today's city of Basel in Switzerland. Augusta Raurica 
was one of the largest Roman cities north of the Alps with 
estimated 15'000 inhabitants in the 1st and 2nd century AD. The 
digital reconstruction of the historical city and its continual 
evolution is part of a long lasting research cooperation between 
the archaeological team of Augusta Raurica and the Institute of 
Geomatics Engineering of the University of Applied Sciences 
and Arts Northwestern Switzerland (FHNW).  
 
The new digital model of Augusta Raurica is the result of a 
procedural reconstruction based on an accurate excavation GIS 
database and on the latest scientific findings by the 
archaeological team. These findings were translated into rule 
sets for ESRI's CityEngine, which was subsequently used for 
generating a multi-resolution digital reconstruction of the entire 
city. This multi-resolution modelling approach allows the new 
digital model to be used for a broad range of applications. The 
model with a lower LOD, for example, was used for creating 
one of the largest bronze models of a historic city (Figures 10, 
11) (Schaub, 2014). The high-resolution model featured in this 
paper, provides the basis for the upcoming «AR App Augusta 
Raurica», a location-based visitors guide incorporating state-of-
the art augmented reality features. In order to allow for the 
interactive exploitation of the large and complex 3D model on a 
standard mobile device, we used the proposed image 
provisioning approach. 
 

 
Figure 10. The bronze model of Augusta Raurica, which is on 
display outside the Roman museum in Augst (Schaub, 2014) 
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Figure 11. Detail view of the bronze model of Augusta Raurica 

 
 
The high-resolution 3D model of Augusta Raurica covers an 
area of approx. 2 km x 2.5 km and includes over 4000 
geospatial objects (such as buildings, roads, vegetation features 
and the terrain) at three levels of detail. This leads to a geometry 
dataset of approx. 172 MB and textures in the order of 350 MB 
(compressed). The rendering is shown in Figures 12 and 13. 
 

 
Figure 12: Overview of the rendered Augusta Raurica  

 
 

 
Figure 13: Detail view of the rendered Augusta Raurica  

 
 

4. FIRST RESULTS OFFERED BY IMAGE-BASED-
PROVISIONING 

 
For the Augusta Raurica scene, color map tiles (Figure 14) and 
normal map tiles (Figure 15) are rendered. These two image 
types are combined on the fly with a simple lighting equation 
(Figure 16). The lighting is done using the Lambert's cosine law 
(Lambert, 1760). First, a light direction l is defined and then the 
normal n is decoded from the normal map. For each pixel, the 
normalized dot product of l and n is multiplied with the r-, g- 

and b-component of the corresponding pixel from the colormap. 
This allows for dynamic lighting as the light direction may 
change over time – for example simulating the sun position. 
This lighting also works without WebGL, since pixels can also 
be accessed using the canvas API. 
In addition to the color map and normal map tiles a color id map 
is also generated to allow identification and highlighting of 
buildings (Figure 17). Every color represents an id, supporting a 
total of 232 different ids in an 8-bit per channel RGBA image. 
  
 

 
Figure 14. Color map of Augusta Raurcia 

 
 

 
Figure 15. Normal map of Augusta Raurcia 

 
 

 
Figure 16. Color and normal map combined with a lighting 

equation  
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Figure 17. In the id map every color represents an object id 

 

5. OUTLOOK AND CONCLUSION 

In this paper we introduced a cloud-based approach for 3D 
image provisioning supporting large and complex 3D city 
models. The 3D map of Rotterdam and the historic roman city 
of Augusta Raurica. The city model of Rotterdam has been 
created from a very large CityGML model with textures and 
Augusta Raurica has been generated in CityEngine using a 
procedural modeling approach. The Augusta Raurica case 
showed that screen space rendering techniques can be used on 
the fly to create dynamic lighting, even if WebGL is not used. 
The scenes can be rendered on common mobile and desktop 
web browsers.  
The current state of the view extension of the OGC 3D 
Portrayal specification has proven to be suitable for the 
visualisation of different types of city models. 
In future, more lighting models will be implemented, such as 
screen-space ambient occlusion (Kajalin, 2009). In that case the 
depth map would be used to retrieve the object positions. 
Another planned feature will be the support of multiple layers. 
Layers will be combined by using the depth maps of each layer 
in order to determine which pixel is in front and which in the 
back. This will also allow to combine scenes with point clouds, 
as proposed by Nebiker et al., 2010. 
Once the OGC 3D Portrayal specification is finalized the 
3dmaps.ch server will be adapted to ensure full compatibility. 
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