
 VISUALISATION OF COMPLEX 3D CITY MODELS ON MOBILE WEBBROWSERS
USING CLOUD-BASED IMAGE PROVISIONING

M. Christen* a , S. Nebiker a

a Institute of Geomatics Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland -

 (martin.christen, stephan.nebiker)@fhnw.ch

Commission III, WG 5

KEY WORDS: Big Data, Rendering Geospatial Data, Processing Geospatial Data, Image Based Provisioning, Standards

ABSTRACT:

Rendering large city models with high polygon count and a vast amount of textures at interactive frame rates is a rather difficult to
impossible task as it highly depends on the client hardware, which is often insufficient, even if out-of-core rendering techniques and
level of detail approaches are used. Rendering complex city models on mobile devices is even more challenging. An approach of
rendering and caching very large city models in the cloud using ray-tracing based image provisioning is introduced. This allows
rendering large scenes efficiently, including on mobile devices. With this approach, it is possible to render cities with nearly
unlimited number of polygons and textures.

* Corresponding author

1. INTRODUCTION AND RELATED WORK

Over the last decade, we have witnessed the emergence and
maturing of web-based 3D geoinformation services, namely 3D
virtual globes. This has also spurred ongoing research both in
the automated generation and in the efficient visualisation of
very large and increasingly complex 3D city models. Some of
the main trends in urban 3D reconstruction include procedural
modelling approaches (e.g. Haegler et al., 2009) as well as
image-based reconstruction – both from oblique aerial and
ground-based imagery (Haala and Kada, 2010; Musialski et al.,
2013). Both approaches are used to automatically reconstruct
very large urban scenes with huge image textures and
increasingly complex geometries and with potentially very large
variations in level of detail. Over the last few years a great
amount of research has been conducted on efficient web-based
3D graphics in general (Evans et al., 2014) and in web- and
cloud-based architectures for large and complex geospatial 3D
scenes in particular (Christen et al., 2012 & 2014).
Recently some interesting approaches for rendering massive
geospatial datasets on mobile devices have been introduced.
Hildebrandt et al. (2011), for example, proposed an architecture
for server-side rendering of massive 3D panoramas using cube
maps. In their solution the 3D model is preprocessed and
provided as a panorama image from the server. Another
approach is the provisioning of massive, virtual 3D city models
on web browsers, smartphones or tablets assembled from
artificial oblique image tiles. It concluded that when using
image provisioning techniques, the complexity of the 3D city
model data is decoupled from data transfer complexity (Klimke
et al., 2014). Also noteworthy is the HuMoRS system (Huge
models Mobile Rendering System), where a networked 3D
graphics system for interactively streaming and exploring
massive 3D mesh models on mobile devices has been proposed
(Rodríguez, 2014).
The Open Geospatial Consortium (OGC) and the Web3D
Consortium have both been actively addressing the need for
interoperability in the field of geospatial 3D visualisation, in
particular handling complex datasets, mastering access speed,

and allow a diversity of devices. The Web3D Consortium has
focused on open standards for real-time 3D visualization,
including streaming. The OGC has focused on developing a
service interface to provide interoperable access to 3D
geospatial data servers. In 2012, a group of OGC members,
building on work done in both organizations, completed the 3D
Portrayal Interoperability Experiment to develop and evaluate
best practices for 3D portrayal services (Open Geospatial
Consortium, 2015). The current state of the portrayal service
has been used to implement the proposed 3dmaps.ch
framework.

In this paper we first introduce our cloud-based image
provisioning approach including the underlying architecture.
We then introduce two very demanding use cases with large and
complex 3D city models, one of which was created using
image-based modelling, the other one using procedural
modelling. We subsequently present first results obtained with
our cloud-based image provisioning prototype and provide an
outlook and conclusion.

2. PROPOSED CLOUD-BASED TILED IMAGE
PROVISIONING APPROACH

In the following, we introduce the 3dmaps.ch framework, which
uses the view-extension of the 3D portrayal service for server
and the browser-based visualisation. For the visualisation, an
image-based provisioning approach is used. Different views of a
city model can be rendered, cached in the cloud, and streamed
to the client in the form of image tiles. The rendering step
supports different zoom levels and view orientations of the city
model. The resulting images follow the principle of G-buffers
(Saito 1990). The first image tile type is a diffuse map,
containing unlit colors of the scenery, the second tile type is a
normal map containing normals encoded in RGB. With these
two tile types, it is possible to support dynamic lighting of the
scene. A third tile type contains ids of the 3D objects in the
scene encoded as RGBA color values, which can be used for the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-517-2015

517

identification of objects. The fourth image tile type is the Z-
buffer tile containing the 32-bit per pixel depth values. With this
tile type, it is possible to get the 3D position of every pixel on
screen. All tiles are streamed as images in the png format since
almost any kind of data can be encoded in and decoded from
RGB and RGBA images (Christen, 2005).

2.1 Creating New Scenes

The 3dmaps.ch web application consists of several python
scripts, which are handled by a web interface. The web interface
uses flask (Flask, 2015; Lerner, 2014) and makes use of
MongoDB, an open-source, document database designed for
scalability (MongoDB, 2015). The web interface is optional and
the scripts can also be called directly.

Scene creation – First, there is the script "createScene.py"
which creates a new scene. A scene consists of assets such as
3D geometry, textures, and material definitions. If a 3D format
without semantics is used, 3D geometries should be handled as
a file per building so an id per Object can be created. In this
case the id is simply the filename of the geometry.

Addition of scene contents – New geometry can be added to a
scene by uploading the data via the web interface or by calling
the script "addFilesToScene.py". If orthophotos are used in
combination with elevation data, they must be provided as 3D
geometry with textures. A python script to create a 3D model
from orthophotos and elevation data has been developed for this
purpose. Once the scene is complete it can be optimized by
removing duplicate vertices, faces and material definitions.

As the subsequent rendering performance is critical, a spatial
data structure is created for acceleration. The bounding volume
hierarchy (BVH) is of the most popular spatial data structures
(Barringer 2014). The BVH is used for 3D objects, including all
buildings and terrain. To support very large 3D cities and to
keep the memory footprint low, the BVH is stored as multiple
files in the file system. The textures are converted to a format
with multiresolution support to reduce time for pixel lookup.

2.2 Rendering Scenes

Once all assets are uploaded to the server so called renderings
can be configured. These rendering configurations consist of the
3D tile types to be rendered, the view directions which are used
to render the view of the 3D city. The view position can be
configured using a pitch angle (Figure 1) and a look-at angle
(Figure 2). In Figure 2, we see a look-at angle of 0° looking
north and a second view with an angle of 45° looking north-
west. The pitch in this example is 22°. There is no limitation as
to how many different renderings can be created. A new
rendering is defined using the script "createRendering.py".

Figure 1: A scene rendered with a pitch of 10°, 22.5°, and 45°

Figure 2: Using different look-at directions

Perspective image tiles are created in a quadtree structure, as
shown in Figure 3. Instead of using a perspective projection for
the oblique views, a parallel projection. As a result a uniform
level of detail can be used across the entire field of view and
that buildings are shown with a uniform scale across the entire
screen. An additional advantage of the quadtree structure is that
only the lowest pyramid level needs to be rendered and that the
remaining levels can be calculated using image processing
operations. Thus, the full potential of the acceleration structure
is exploited. A simple tiling example is shown in Figure 4.

Figure 3: Quadtree scheme for 3D tiles

Figure 4: 3D tiles of a test scene at zoom level 1

The actual scene rendering is done using ray-tracing, to handle
large amounts of textures and polygons in an efficient way. For
the time being, an own implementation of a ray-tracer was not a
priority, so RenderMan (Renderman 2015) is used for rendering
the tiles. However, it would be possible to use other renderers
instead or to implement our own rendering solution.

The tiles to be rendered are stored as render-jobs in MongoDB.
The rendering can be distributed in the cloud using as many
nodes as needed for processing tiles since each node processes a
new job retrieved from the database. Once all full-resolution
tiles are processed the remaining zoom levels are calculated and
stored in the cloud.

2.3 Server Architecture

The server architecture follows the principles of the upcoming
OGC 3D portrayal service. In the first version, the View
Extension has been implemented for retrieving the images from
the server. For each tile, a new view is calculated. The server
implementation also supports a caching strategy, so that each
request is stored and not being calculated twice. The
architecture is shown in Figure 5.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-517-2015

518

Figure 5: Client/Server Architecture of 3dmaps.ch

2.4 Viewer API

For displaying the scene in a webbrowser a JavaScript library
has been implemented. It is called "map3d.js" and can be used
to create custom scenes.

As shown in Listing 1, a new 3D map is created by specifying
an id of a canvas element. Then a new layer is created. For the
layer the URL(s) to the preprocessed tiles are provided. It is
possible (and recommended) to specify many tile servers to
speed up downloads, as the number of simultaneous persistent
connections per server is limited in Web browsers. The layer is
then added to the map. Currently, only a single 3D layer can be
added to the map. In future, there will be support of multiple 3D
layers, which can be combined using their z-buffers. Finally, we
add two markers to the scene. The markers use real 3D positions
of the objects. With this, the 3D scene is ready and the result is
shown in Figure 6.

var map = new map3d.map("mapcanvas");

var layer = new map3d.imageLayer([
 "http://t1.3dmaps.ch/tiles/teatime",
 "http://t2.3dmaps.ch/tiles/teatime",
 "http://t3.3dmaps.ch/tiles/teatime",
 "http://t4.3dmaps.ch/tiles/teatime"]) });

layer.addTo(map);

var teapot_marker = new map3d.marker("Green
Teapot", [0,0,0]);
teapot_marker.addTo(map);

var cube_maker = new map3d.marker("Green Cube",
[80.5, 11.5, 10.5]);
cube_maker.addTo(map);

Listing 1. Using the viewer API

Figure 6. Scene for Listing 1 with markers using 3D world

positions.

The map3d.js library contains an event system supporting
custom events such as clicking on an object or building,
selecting a marker, and so on. A building can be highlighted
according to its id, which is retrieved from the color id tile. The
highlighting is then calculated and displayed as shown in Figure
7.

The viewer supports both canvas-only and WebGL-based
rendering modes. The WebGL version converts all tiles to
textures. Certain operations like highlighting are done completly
on the GPU. The texture of the color id tile and the RGB texture
are combined in the fragment shader. Also the Z-buffer is
written using the WebGL extension "EXT_Frag_Depth", which
will also be part of WebGL 2.0. This allows the combination of
polygonal 3D objects with the image-based view.

Figure 7. Highlighting objects

3. USE CASES

Currently there is a trend toward publishing textured 3D city
models in the CityGML format as open data. These city models
can be freely downloaded and usually be used for any purpose.
This promotes the development of new algorithms and
visualizations with real city data. Today, the list of city models
released as open data includes: Lyon (France), Hamburg
(Germany), Monréal (Canada), Rotterdam (Netherlands), and
Berlin (Germany). For the first use case, we chose the modern
city of Rotterdam, representing one of the open datasets. In our
second case study, we use a procedural city model of the
historic roman city of Augusta Raurica.

3.1 Use Case 1: The Rotterdam Dataset

The city model of Rotterdam is available to the public as
CityGML dataset. The dataset consists of:

• 90 CityGML files with a total size of 2.72 GB
• 26'474 textures with a size of 1024x1024, an

uncompressed total data volume of around 77 GB

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-517-2015

519

CityGML is an XML-based format for the storage and exchange
of virtual 3D city models. It is therefore not a format optimized
for viewing and can't simply be converted to an optimized
viewing format. In addition, the dataset consists of texture
atlases which are not optimized at all. Optimal results would be
achieved if a 3D designer would manually redesign all buildings
using 3D modelling software. However, we did not have the
resources and the intention of doing so. Instead, we
implemented a more general way for converting the models in
an automated process. In this process we use all original
textures and 3D data. In a first step the data is converted from
CityGML to Wavefront OBJ format using FME (Safe
Software). In a second step the materials and geometry are
optimized using a python script. The script does:

• remove untextured faces, as we only want textured
buildings

• remove triangles with double vertices
• optimize materials: use only one material per texture
• flip axis and face-orientation so we have a right

handed coordinate system for further processing

The textures themselves are not changed as we did not want to
reduce the given image quality. However, the original image
quality is quite low as we can see when loading the converted
dataset in a viewer such as MeshLab (Figure 8). Some city
blocks however were too big to be loaded with all textures.

Figure 8. 3D Visualization of a single district containing 151
textures using MeshLab

In addition to the buildings, we used the orthophoto of
Rotterdam, which is also available as open data (Figure 9). The
file was downloaded from the Rotterdam open data portal in
ECW Format. It has a size of 620'000x 248'696 Pixels. The
uncompressed size of the image is around 430 GB. With the
Wavelet based ECW compression the file is reduced to 8.4 GB.
For the 3D visualization we created 10'000 tiles with a size of
4096x4096 Pixels. This was necessary, since the RenderMan
renderer does not support ECW Format natively. The tiling has
been implemented using a simple python script. As part of the
tiling process, the script also creates a 3D file in the Wavefront
OBJ Format, including the materials.

The 3D map of Rotterdam has been processed using 8 zoom
levels on a single machine. For the demo a total of 87381 tiles
have been preprocessed and stored in the cloud. A visual
impression of the Rotterdam scene is shown in Figure 7.

Figure 9. The orthophoto of Rotterdam (RDAM_lufo2014.ecw)

3.2 Use Case 2: The Roman City of Augusta Raurica

The second use case is a digital reconstruction of the historical
Roman City of Augusta Raurica, located some 10 kilometres
east of today's city of Basel in Switzerland. Augusta Raurica
was one of the largest Roman cities north of the Alps with
estimated 15'000 inhabitants in the 1st and 2nd century AD. The
digital reconstruction of the historical city and its continual
evolution is part of a long lasting research cooperation between
the archaeological team of Augusta Raurica and the Institute of
Geomatics Engineering of the University of Applied Sciences
and Arts Northwestern Switzerland (FHNW).

The new digital model of Augusta Raurica is the result of a
procedural reconstruction based on an accurate excavation GIS
database and on the latest scientific findings by the
archaeological team. These findings were translated into rule
sets for ESRI's CityEngine, which was subsequently used for
generating a multi-resolution digital reconstruction of the entire
city. This multi-resolution modelling approach allows the new
digital model to be used for a broad range of applications. The
model with a lower LOD, for example, was used for creating
one of the largest bronze models of a historic city (Figures 10,
11) (Schaub, 2014). The high-resolution model featured in this
paper, provides the basis for the upcoming «AR App Augusta
Raurica», a location-based visitors guide incorporating state-of-
the art augmented reality features. In order to allow for the
interactive exploitation of the large and complex 3D model on a
standard mobile device, we used the proposed image
provisioning approach.

Figure 10. The bronze model of Augusta Raurica, which is on
display outside the Roman museum in Augst (Schaub, 2014)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-517-2015

520

Figure 11. Detail view of the bronze model of Augusta Raurica

The high-resolution 3D model of Augusta Raurica covers an
area of approx. 2 km x 2.5 km and includes over 4000
geospatial objects (such as buildings, roads, vegetation features
and the terrain) at three levels of detail. This leads to a geometry
dataset of approx. 172 MB and textures in the order of 350 MB
(compressed). The rendering is shown in Figures 12 and 13.

Figure 12: Overview of the rendered Augusta Raurica

Figure 13: Detail view of the rendered Augusta Raurica

4. FIRST RESULTS OFFERED BY IMAGE-BASED-
PROVISIONING

For the Augusta Raurica scene, color map tiles (Figure 14) and
normal map tiles (Figure 15) are rendered. These two image
types are combined on the fly with a simple lighting equation
(Figure 16). The lighting is done using the Lambert's cosine law
(Lambert, 1760). First, a light direction l is defined and then the
normal n is decoded from the normal map. For each pixel, the
normalized dot product of l and n is multiplied with the r-, g-

and b-component of the corresponding pixel from the colormap.
This allows for dynamic lighting as the light direction may
change over time – for example simulating the sun position.
This lighting also works without WebGL, since pixels can also
be accessed using the canvas API.
In addition to the color map and normal map tiles a color id map
is also generated to allow identification and highlighting of
buildings (Figure 17). Every color represents an id, supporting a
total of 232 different ids in an 8-bit per channel RGBA image.

Figure 14. Color map of Augusta Raurcia

Figure 15. Normal map of Augusta Raurcia

Figure 16. Color and normal map combined with a lighting

equation

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-517-2015

521

Figure 17. In the id map every color represents an object id

5. OUTLOOK AND CONCLUSION

In this paper we introduced a cloud-based approach for 3D
image provisioning supporting large and complex 3D city
models. The 3D map of Rotterdam and the historic roman city
of Augusta Raurica. The city model of Rotterdam has been
created from a very large CityGML model with textures and
Augusta Raurica has been generated in CityEngine using a
procedural modeling approach. The Augusta Raurica case
showed that screen space rendering techniques can be used on
the fly to create dynamic lighting, even if WebGL is not used.
The scenes can be rendered on common mobile and desktop
web browsers.
The current state of the view extension of the OGC 3D
Portrayal specification has proven to be suitable for the
visualisation of different types of city models.
In future, more lighting models will be implemented, such as
screen-space ambient occlusion (Kajalin, 2009). In that case the
depth map would be used to retrieve the object positions.
Another planned feature will be the support of multiple layers.
Layers will be combined by using the depth maps of each layer
in order to determine which pixel is in front and which in the
back. This will also allow to combine scenes with point clouds,
as proposed by Nebiker et al., 2010.
Once the OGC 3D Portrayal specification is finalized the
3dmaps.ch server will be adapted to ensure full compatibility.

REFERENCES

Barringer R. and Akenine-Möller T., 2014. Dynamic ray stream
traversal. ACM Trans. Graph. 33, 4, Article 151 (July 2014), 9
pages.

Christen M., 2005. Implementing Ray Tracing on the GPU. In
Wolfgang Engel, editor, ShaderX4 - Advanced Rendering
Techniques, pages 413–424. Charles River Media

Christen, M., Nebiker, S. and Loesch, B., 2012. Web-Based
Large-Scale 3D-Geovisualisation Using WebGL. International
Journal of 3-D Information Modeling, 1(3), pp.16–25.

Christen M., Hürbi K., Nebiker S., 2014. OpenWebGlobe: 3D-
Visualisierung und Caching von globalen Stadtmodellen aus
OpenStreetMap mittels Cloud-basiertem Framework, DGPF
Tagungsband 2014, Hamburg

Evans, A. et al., 2014. 3D graphics on the web: A survey.
Computers & Graphics, 41(0), pp.43–61.

Flask, 2015. Flask Documentation / User's Guide, available
online http://flask.poco.org/docs/0.10/, accessed April 23, 2015.

Haala, N. and Kada, M., 2010. An update on automatic 3D
building reconstruction. ISPRS Journal of Photogrammetry and
Remote Sensing, 65(6), pp.570–580.

Haegler, S., Müller, P. & Van Gool, L., 2009. Procedural
Modeling for Digital Cultural Heritage. EURASIP Journal on
Image and Video Processing, 2009(852392), pp.1–11.

Hildebrandt D., Klimke J., Hagedorn B., and Döllner J., 2011.
Service-oriented interactive 3D visualization of massive 3D city
models on thin clients. In Proceedings of the 2nd International
Conference on Computing for Geospatial Research &
Applications (COM.Geo '11). ACM, New York, NY, USA

Kajalin V., 2009. Screen-Space Ambient Occlusion. In
Wolfgang Engel, editor, ShaderX7 - Advanced Rendering
Techniques, pages 413–424. Charles River Media

Klimke J., Hagedorn B., and Döllner J., 2014. Scalable Multi-
Platform Distribution of Spatial 3D Contents. Int. J. 3D Inf.
Model. 3, 3 (July 2014), 35-49.

Lambert, J. H., 1760. Photometria, sive de Mensura et Gradibus
Luminis, Colorum et Umbrae, Augsburg.

Lerner M.R., 2014. At the forge: flask. July 2014 Issue of Linux
Journal, Belltown Media, Houston, TX.

MongoDB, 2015. The MongoDB 3.0 Manual, available online
http://docs.mongodb.org/manual/, accessed April 20, 2015.

Musialski, P. et al., 2013. A survey of urban reconstruction.
Computer Graphics Forum, 32(6), pp.146–177.

Nebiker S., Bleisch S., Christen M., 2010. Rich point clouds in
virtual globes – A new paradigm in city modeling?, Computers,
Environment and Urban Systems, Volume 34, Issue 6,
November 2010, Pages 508-517, ISSN 0198-9715,
http://dx.doi.org/10.1016/j.compenvurbsys.2010.05.002.

Open Geospatial Consortium (OGC), 2015. OGC seeks public
comment on candidate 3D Portrayal Service Standard, OGC
Press Release, last accessed: April 19, 2015
 http://www.opengeospatial.org/pressroom/pressreleases/2165

Renderman, 2015. Pixar Renderman Pro Server, available
online http://renderman.pixar.com, accessed April 20, 2015.

Rodríguez M. B., Agus M., Marton F., and Gobbetti E., 2014.
HuMoRS: huge models mobile rendering system. In
Proceedings of the Nineteenth International ACM Conference
on 3D Web Technologies (Web3D '14). ACM, New York, NY,
USA.

Saito T. and Takahashi T., 1990. Comprehensible rendering of
3-D shapes. In Proceedings of the 17th annual conference on
Computer graphics and interactive techniques (SIGGRAPH
'90). ACM, New York, NY, USA, 197-206.

Schaub, M., 2014. Das Bronzemodell von Augusta Raurica:
vom Stadtplan zum Stadtmodell. Augusta Raurica Magazin,
2014(1), 7-9.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-517-2015

522

