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ABSTRACT:

Digital environmental data are becoming commonplace and the amount of information they provide is huge, yet complex to process,
due to the size, variety, and dynamic nature of the data captured by the available sensing devices. Making use of the data largely
relies on the availability of efficient methods to extract meaningful information, and requires to process the environmental events at
the speed data are acquired. This paper focuses on the evaluation of methods to approximate observed rain data, in real conditions of
sparsity of the observations. The novelty stands in the selection of a particularly complex area, Liguria region, located in the north-west
of Italy, where the orography and the closeness to the sea causes complex hydro-meteorological events. Approximation results are
compared on a fine granularity in terms of cumulated rain interval used, gathered from two different rain gauge networks, with different
characteristics and spatial distribution. Moreover, beside traditional cross-validation comparison, we provide a qualitative comparison
based on the analysis of the number and location of maxima of the approximation. Rain maxima are indeed crucial features of rain
fields needed for storm tracking, to support effective monitoring of meteorological events.

1. INTRODUCTION

The large amount of digital data provide an extremely rich, yet
difficult to process, amount of information about our environ-
ment, geographic and meteorological phenomena. The geograph-
ical area selected for presenting our results, the Liguria region in
Italy, is an exemplary case study: the territory is characterized by
an articulated orography close to the sea, with many small catch-
ment basins that are highly influenced by local maxima of pre-
cipitation. Moreover, the proximity to the sea causes additional
problems during storms, concurring to the creation of secondary
low pressure areas, also known as the Genova Low, which in-
creases the amount of precipitation and increases the risk of crit-
ical flash floods. The continuous observation of rain data during
critical events, as well as the analysis of historical time series of
precipitation, are definitely crucial to support a better understand-
ing and monitoring of hydro-geological risks, such as floods and
landslides (Keefer et al., 1987, Hong et al., 2007, Wake, 2013,
Hou et al., 2014).

In this context, the paper discusses the evaluation of three dif-
ferent approximation techniques in relation to their suitability to
capture the behavior of precipitation events: LR (Locally Refin-
able) B-Splines and meshless approximation with kriging, and
Radial Basis Functions (RBFs). The comparison of methods for
rainfalls approximation has been addressed in the literature both
at the theoretical level (Scheuerer et al., 2013) and for domain-
specific analysis (Skok and Vrhovec, 2006). Our study contributes
to this topic extending the analysis to other approximation tech-
niques, LR B-Splines in particular, and using a new setting for
the comparison, inspired by the theory of topological persistence
(Edelsbrunner et al., 2002). The basic idea is that in order to char-
acterize precipitation events, it is important to focus on the main
features of the rainfall fields and their configuration, discarding
irrelevant details that do not contribute to understanding the over-
all event structure. With this motivation in mind, the prominence
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of precipitation maxima is measured through the notion of per-
sistence, which allows for hierarchically organize maxima by im-
portance, and possibly filter out irrelevant (i.e., non-prominent)
ones. Based on this, we developed a criteria to compare different
approximation methods, by analyzing the number and location of
the most prominent maxima they produce. Finally, we want to
remark that the interest here is to evaluate the performance of the
approximation methods in real conditions of sparsity: the num-
ber of the measuring gauges is quite low with respect to the area
covered and their distribution is quite uneven. This fact makes
the experimental evaluation more interesting.

The comparative study was conducted selecting Liguria as area
of interest, and the precipitation event recorded on September 29,
2013: the precipitation was characterized by light rain with 2 dif-
ferent thunderstorms, which caused local flooding and landslides.
The observed rain data are heterogeneous both in terms of spatial
distribution of the rain gauges and acquisition frequency, there-
fore adding a further variability that deserves analysis. More-
over, results are shown for the integration of another source of
rain data, namely, extracted by radar data acquired the day of the
selected event.

For the approximation of the sparse rainfall data, we considered
LR B-Spline and two meshless approximation, kriging and radial
basis functions. LR B-Splines are particularly useful as a com-
pact representation of functions over large domains: they use a
(locally) regular domain parameterization and can be locally re-
fined according to the required approximation error. Ordinary
kriging and RBFs use a variogram or a kernel, which are adapted
to the spatial distribution of the data (e.g., through the selection
of the kernel width). The three approximation methods define
slightly different functions, whose behavior is studied both at the
numerical level (accuracy, sensitivity to sparsness, computational
issues) and at a qualitative level, by measuring the difference
among the configuration of precipitation maxima induced by the
three approximation techniques.
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To contextualize better the comparison discussed, we start with a
short overview of related work on rain observation methods, ap-
proximation and comparison techniques (Sect. 2.). We present
the setting adopted for the evaluation with details on the rain
event and metrics used for the comparison (Sect. 3.). Then, we
give the formal definition of the three approximation methods dis-
cussed (Sect. 4.) and discuss the performances of the approxima-
tions schemes with respect to approximation, sparsity, and com-
putational aspects (Sect. 5.). Then, the approximation schemes
are compared by analyzing the difference in the configuration and
prominence of the detected maxima (Sect. 6.). Finally (Sect. 7.),
we summarize our study.

2. RELATED WORK

We briefly review previous work on measuring, approximating,
and analyzing rainfall data and precipitation fields.

Measuring rainfall data Rainfall intensities are traditionally
derived by measuring the rain rate through rain gauges, weather
radar, or by measuring the variations in soil moisture with micro-
wave satellite sensors (Brocca et al., 2014). Even though satellite
precipitation analysis allows the estimation of rainfall data at a
global scale and in areas where ground measures are sparse, the
evaluation of light rainfalls is generally difficult, thus generat-
ing an underestimation of the cumulated rainfalls (Kucera et al.,
2013). To bypass this issue, in (Brocca et al., 2014) the soil water
balance equation is applied to extrapolate the daily rainfall from
soil moisture data. The integration of rainfall data at regional and
local levels is also intended to provide a more precise approxi-
mation of the underlying phenomenon on urban areas, which are
sensitive to spatial variations in rainfalls (Segond, 2007). Fur-
thermore, the spatial and temporal variations (e.g., speed, direc-
tion) of rainfalls are important to characterize their variability and
peaks, together with their effects on catchments.

Approximating rainfall data Different approaches have been
developed for the approximation of rainfall data. In (Thiessen,
1911), rainfalls recorded in the closest gauge are associated with
un-sampled locations, by identifying a Voronoi diagram around
each weather station and assigning the measured rainfall to the
respective cell. In 1972, the U.S. National Weather Service pro-
posed to estimate the unknown rainfall values as a weighted aver-
age of the neighboring values; the weights are the inverse of the
squares of the distances between the un-sampled locations and
each rainfall sample. The underlying assumption is that the sam-
ples are autocorrelated and their estimates depend on the neigh-
boring values. This method has been extended in (Teegavarapu
and Chandramouli, 2005) through the modified inverse distance
and the correlation weighting method, the inverse exponential
and nearest neighbor distance weighting method, and the artifi-
cial neural network estimation. In (McRobie et al., 2013), storms
are modeled as clusters of Gaussian rainfall cells, where each cell
is represented as an ellipse whose axis is in the direction of the
movement and the rainfall intensity is a Gaussian function along
each axis (Willems, 2001).

McCuen (McCuen, 1989) proposed the isoyetal method that al-
lows the hydrologists to take into account the effects of differ-
ent factors (e.g., elevation) on the rainfall field by drawing lines
of equal rainfall depths among the rain-gauges and taking into
account the main factors that influence the distribution of the
rain field. Then, the rainfalls at new locations are approximated
by interpolation starting from the isohyets. Geo-statistical ap-
proaches allow us to take into account the spatial correlation be-
tween neighboring samples and to predict the values at new loca-
tions (Journel and Huijbregts, 1978, Goovaerts, 1997, Goovaerts,

2000). Furthermore, the geo-statistic estimator includes addi-
tional information, such as weather-radar data (Creutin et al.,
1988, Azimi-Zonooz et al., 1989) or elevation from a digital model
(Goovaerts, 2000, Di Piazza et al., 2011).

Comparing rainfall data approximations For the comparison
of the precipitation fields originated from different approximation
schemes, we have adopted a number of standard metrics to as-
sess the differences and performance of the schemes. Moreover,
we extend the evaluation approach by comparing the differences
in the configurations of meaningful features, namely prominent
maxima, of the approximated fields. The motivation for this eval-
uation is that precipitation maxima convey important information
for storm tracking, a crucial analysis of dynamic measures of rain
data.

In storm tracking, different sets of meaningful features associ-
ated with distinct time frames, are matched to track their evo-
lution along time. Previous work in this area focuses on the
identification of regions of interest on radar images, usually char-
acterized by high reflectivity and sufficiently large area. Vari-
ous characteristics of these regions, such as centroids, area, ma-
jor/minor radii, and orientation, are computed. Finally, regions
are matched across the two consecutive time frames,according
to the idea that the best candidate for matching minimizes some
distance between the considered characteristic (Lakshmanan and
Smith, 2009). For example, the TITAN algorithm (Dixon and
Wiener, 1993) combines both centre of mass and area of regions
for final decision of tracking. The SCIT algorithm (Johnson et al.,
1998, Han et al., 2009) forecasts the centroid locations of cells at
a given time: regions at the next time step are then assigned to
the closest centroid location within a certain radius.

In this paper, we take inspiration from a storm tracking strategy
recently proposed in (Biasotti et al., 2015), and apply it to the
comparison of the different fields. The approach is based on a
topological analysis of rainfall data, which focuses on the most
prominent precipitation maxima instead of regions. Indeed, the
granularity of the analysis is more appropriate for the character-
istics of the geographic area selected; at the same time, the in-
troduction of an ad-hoc bottleneck distance allows for matching
prominent maxima of two consecutive time frames, and hence
tracking their evolution along time. The same strategy for match-
ing maxima is used to compare the configuration of maxima of
different approximation results, treating them as if they were snap-
shots at different times.

3. CASE STUDY AND EVALUATION METRICS

The area selected for the evaluation is the Liguria region, in the
north-west of Italy. Liguria can be described as a long and nar-
row strip of land, squeezed between the sea, the Alps and the
Apennines mountains, with the watershed line running at an av-
erage altitude of about 1000 m. The orography and the close-
ness to the sea make this area particularly interesting for hydro-
meteorological events, frequently characterized by heavy rain due
to Atlantic low pressure area, augmented by a secondary low
pressure area creating from the Ligurian sea (Genoa Low). More-
over the several and small catchments are causing fast flooding
events, and even small rivers exhibit high hydraulic energy due to
the quick variation of altitude. This is the main motivation behind
our analysis, which targets the understanding of the best approx-
imation method to capture important and potentially dangerous
precipitation events.

In Liguria, observed rainfall data are captured by two different
rain gauges networks. The first rain gauge network is owned by
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the ARPAL team of Regione Liguria, and consists of 143 pro-
fessional measure stations distributed over the whole region; the
measures are acquired every 5-20 minutes, and the stations are
connected by GPRS and radio link connection, producing about 2
MB data per day. The second rain gauge network is owned by the
Genova municipality and consists of 25 semi-professional mea-
suring stations spread within the city boundary; the acquisitions
are done every 3 minutes, and the stations are linked by GPRS or
LAN connections, with an average production of 1Mb data per
day. The configuration of the rain gauge networks is shown in
Fig. 1.

The two rain gauge networks act as sampling devices of the true
precipitation field, working at two different scales, that is, at two
different spatial distributions. Since the temporal interval is dif-
ferent for each network, we have cumulated the station rainfalls
to a step of 30 minutes. This selection is also motivated by the
desire to produce a fine-grained evaluation of the approximation
methods in the perspective of a real-time precipitation monitor-
ing. Note that the cumulated interval is a much smaller than the
one used in (Skok and Vrhovec, 2006), where an interval of 24
hours was used. Concerning the precipitation events, we selected
a rainy day, September 29, 2013, which was characterized by
light rain over Liguria with 2 different thunderstorms that caused
local flooding and landslides, without damages. The maximum
rain-rate over all time step is 60mm/30′ and the average rain-
rate is 1.12mm/30′.

To establish a formal evaluation setting, let us formulate the prob-
lem of rainfall approximation as follows. Given a set of points
P := {pi}ni=1, which represent the position of the measurement
instruments, let f : P → R be the precipitation field, measured
at the n sample points. An approximation of f is defined as
F : R2 → R such that d(F (p) − f(p)) ≤ ε for some required
distance d(·, ·) and threshold ε. When d(F (p) − f(p)) = 0 the
approximation is an interpolation of f . The map F can be used
to evaluate the value of the precipitation at any point other then
those in P , with results differing according to the approach used
to define F . In our case, we will consider three different F ap-
proximation functions. The color coding used for the illustration
of the computed approximation ranges from blue (i.e., smallest
rain rate) to brown (i.e., highest rain rate), passing through green,
yellow, and orange (i.e., intermediate values).

To compare the approximations, we adopt a cross-validation strat-
egy, implemented in two ways. First, every rainfall station at pi
is iteratively turned off, that is, it is not used in the computa-
tion of F ; the approximation function F obtained is sampled at
that position pi and compared with the rain value measured at
pi, which acts as a ground truth (leave-one-out strategy). Sec-
ond, the rainfall data measured by the municipality stations are
used as ground-truth to validate the values approximated from
the ARPAL data set: in this setting, the cross-validation aims at
evaluating the capability of the different methods to estimate the
local features of rain fields interpolated over a sparse data set,
with different spatial distribution.

The comparative study also includes the analysis of the spatial
configuration of local maxima extracted from the rainfall fields
produced by each approximation scheme. In this case, local max-
ima are endowed with a notion of prominence borrowed from
topological persistence, which is used to quantify the importance
that a maximum has in characterizing the associated rainfall field.
This comparative analysis is motivated by the fact that, in order
to understand the evolution of precipitations and tracking their
changing along time, local maxima and their configuration pro-
vide a useful description for capturing the important elements of

(a)

(b)

Figure 1: (a) Input rainfall measures at 143 stations (regional
level, white points) and 25 stations (municipality level, red cir-
cles). (b) Map of the rain rate maximum recorded at each weather
station, which highlights that only the central west of the region
has been involved by heavy rain and the remaining part were in-
terested by drizzle.

the underlying rainfall field. Indeed, they have a relevant seman-
tic content and, at the same time, are formally well-defined. For
this set of experiments, the approximated rainfalls were sampled
at the vertices of a digital terrain model, producing a discretiza-
tion of the precipitation field whose maxima were compared. The
DTM used is coming from the SRTM (Shuttle Radar Topography
Mission (Farr et al., 2007)), available in public domain at the
URL http://www2.jpl.nasa.gov/srtm/, and with a spatial
resolution of 100 mt.

4. THEORETICAL BACKGROUND

In the following, we give an overview of the three approxima-
tion methods compared and of the persistence analysis frame-
work used to analyze the evolution of precipitations (Fig. 2).

4.1 Approximation schemes

LR B-Splines The rainfall values are parameterized on the xy-
values of the corresponding geographic location and the rainfall
is approximated by a 2.5D LR B-spline surface (Dokken et al.,
2013). The approximation of the rainfall data is performed by an
iterative procedure starting from a lean tensor-product B-spline
surface being constantly equal to zero. For each iteration the dis-
tance between the current surface and the rainfall data is com-
puted, the surface is refined locally where a given tolerance is not
met, and the surface coefficients are updated using Multilevel B-
spline approximation (MBA) (Lee et al., 1997) adapted for LR B-
splines. The MBA method is a local and explicit approximation
method, where the surface coefficients are updated based on the
data points situated in the support of the corresponding B-spline.
The performance depends on three components, which are done
at each iteration step: the refinement of the LR B-spline, distance
computations, and update of the surface coefficients. The latter
two elements are the most time consuming. For each iteration, the
coefficients are updated twice and one additional distance com-
putation is performed. Let the number of data points be N . The
number of non-zero B-splines for each data point varies, but will
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(a)

(b)

(c)

Figure 2: Rainfall fields computed for the event of September,
23: (a) LR B-Spline, (b) RBF, (c) Kriging.

be in the magnitude of (d1 + 1)× (d2 + 1) where d1 and d2 are
the polynomial degrees in the two parameter directions of the sur-
face. The surface is bi-quadratic so d1 = d2 = 2. In our tests, the
algorithm is run with 20 iterations giving a total of 3×20×N×9
bi-variate B-spline evaluations.

Implicit approximation with radial basis functions Implicit
approximation computes the map F (p) :=

∑n
i=1 αiϕi(p) as

a linear combination of the basis B := {ϕi(p) := ϕ(‖p −
pi‖2)}ni=1, where ϕ is the kernel function (Aronszajn, 1950, Dyn
et al., 1986, Micchelli, 1986, Patanè et al., 2009). Depending on
the properties of ϕ, we distinguish globally- (Carr et al., 2001,
Turk and O’Brien, 2002) and compactly-supported (Wendland,
1995, Morse et al., 2001) supported radial basis functions. Then,
the coefficients (αi)

n
i=1 solve a n × n linear system, which is

achieve by imposing the interpolating constraintsF (pi) = f(pi),
i = 1, . . . , n. Since a n × n linear system is solved once,
the computational cost of the approximation with globally- and
locally-supported RBFs is O(n3) and O(n logn), respectively.
In our experiments, we have chosen the Gaussian kernelϕ(st) :=
exp(−st), which has a global support; in fact, its fast decay
makes it suitable to approximate rainfalls with a sparse spatial
distribution that change quickly in time. To this end, the width
of each basis function is automatically adapted to the local sam-
pling density by selecting its width according to the local spatial
distribution of the rainfall stations (Dey and Sun, 2005, Mitra and
Nguyen, 2003).

Kriging The previous two approximation methods do not take
into account in an explicit manner; correlation among observa-
tions may have unwanted effects especially in the case of un-
evenly distributed observations. Furthermore, there is no natural
mechanism for propagating the individual quality of the obser-
vations into a quality description of the estimation. A class of
methods that takes care of these issues is kriging, (Wackernagel,
2003), which is a common technique in environmental sciences
and a special case of the maximum likelihood estimation. The
underlying assumptions are that the quality of the observations

Figure 3: A function F : M → R, color-coded from blue
(low) to red (high) values, and the associated local maxima hav-
ing persistence greater than α(maxF −minF ), with α = 0.05,
0.15 (middle) and 0.25.

is given as variance values, and that the covariance between ob-
servations only depends on their mutual spatial or temporal dis-
tance, and not on their location. Formally, kriging is expressed
as F (p) :=

∑n
i=1 ωif(pi), where the weights ωi are defined as

Ω = C−1 × D with C the covariance matrix of the measured
values and D is the matrix defined by the covariance between
the known values and the points to be estimated. The covariance
is expressed by the variogram model, which reflects the priors
on the spatial variability of the values. The main problem with
kriging is the low computational efficiency, as the solution of the
linear systems scales quadratically with the number of observa-
tions. In the implementation used, the problem is addressed by
combining kriging with deterministic spatial division techniques,
which efficiently restrict the number of observations to the clos-
est ones. More specifically, the Kd-tree is used to select only the
20 closest neighbors for the matrix inversion.

4.2 Prominent rainfall maxima via persistence analysis

The importance of precipitation maxima is evaluated by means
of the persistence analysis. Given a scalar field F : M → R
(e.g., the interpolated rainfall field) and sweeping t in R, new
connected components of the superlevel setsMt = {p ∈ M :
F (p) ≥ t} are either born, or previously existing ones are merged
together. A connected component is associated with a local max-
imum p of F , where the component is first born. When two
components corresponding to local maxima p1, p2, F (p1) <
F (p2), merge together the component corresponding to p1 dies.
In this case, the component associated with the smaller local max-
imum is merged into that associated with the larger one. Each
local maximum p of F is associated with its a persistence value
persF (p), which is defined as the difference between the birth
and the death level of the corresponding connected component.
Maxima associated with a higher persistence value identify rele-
vant features and structures of the underlying phenomena.

To compute the local maxima and the associated persistence val-
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Method Max Mean Median Std. dev. MSE
Method [mm] [mm] [mm] [mm] [mm2 ]
Ord. krig. 32.44 (54.1%) 0.02 5.85E-05 2.38 5.64
RBFs 37.80 (63.0%) 0.97 0.34 2.12 5.44
LR B-Splines 27.2 (45.3%) -0.04 1.20E-5 2.73 7.05

Table 1: Summary statistics for the error distribution of the cross
validation.

Figure 4: Leave-one-out cross validation MSE: y-axis reports the
MSE [mm2] for each time step x-axis.

ues, F is interpolated on the vertices of a triangle meshM. The
points ofM are first sorted in decreasing values, from maxF to
minF ; then, the classical 0th-persistence algorithm (Edelsbrun-
ner et al., 2002, Edelsbrunner and Harer, 2010) is used. The cost
of sorting the n points ofM isO(n logn); by using a union-find
data structure, the persistence algorithm requires linear storage
and running time at most proportional to O(mα(m)), where m
is the number of edges in the mesh and α(·) is the inverse of
the Ackermann function. An example for the extraction of local
maxima at three different persistence levels is given in Fig. 3.

5. APPROXIMATION BEHAVIOR

The first set of results we discuss is related to the comparison
of the behavior of the three methods according to approxima-
tion performance and computational complexity. Concerning the
leave-one-out cross-validation strategy, we have checked the re-
sults by computing the three approximation fields turning off, it-
eratively, each rainfall station at pi, for each cumulated interval.
The value of the approximation function F obtained was then
compared at pi with the rain value measured by the correspond-
ing rain gauge at pi, acting as a ground truth. The statistics of
the evaluation are shown in Table 1; in this case, ordinary krig-
ing and LR B-Splines have the smaller maximum error, but the
RBFs have a smaller mean-squares error and standard devitation.
In Fig. 4, the plot of the MSE distribution for the three methods
is shown, per each time interval.

The second set of results concerns the cross-validation done using
the rainfall data measured by the municipality stations as ground-
truth to validate the values that approximate only the ARPAL data
set. This validation aims at gathering indicators on the behavior,
in terms of accuracy, on different spatial distribution of the sam-
ple points. This approach is meaningful as the two observation
networks cover an overlapping region of the study area. The net-
work from Genova municipality is located within the boundary
of the city and is denser than the ARPAL one, which covers the
whole study area, and some of the ARPAL stations are located
in the Genova municipality. Comparing the approximation re-
sults at these two scales, we have evaluated the sensitivity of the
approximation to local distributions of the samples and the capa-
bility to estimate the local features of rain fields interpolated over

(a)

(b)

(c)

(d)

Figure 5: Ordinary kriging approximation of rainfalls computed
with (a) rain gauges and (b) integrated with radar measurements.
(c) Rain gauges weights and (d) radar data set mapped in (b).

a sparser data set. The results are shown in Table 2: in this case,
ordinary kriging and LR B-Splines have the smaller maximum
error, but the RBFs have a smaller mean-squares error.

Finally, concerning computational complexity, the different al-
gorithms have been tested over a 64 bits workstation 8 cores
at 1.6GHZ and RAM of 16 GB. The system runs an Ubuntu
14.04LTS with 3.13.0 kernel. The run of LR B-Splines takes
19.33 seconds to compute the approximation over the whole re-
gion (20K points) for the 48 time intervals. For the same task, the
ordinary kriging takes 1.746 seconds and RBFs approximation
takes 6.23 seconds. One important point to make here is that,
for all the methods, the computational complexity and the timing
collected are well below the time interval analyzed (30min). This
important characteristic tells us that we could use any of them for
real-time monitoring of the rain events. The analysis carried until
now does not tell us much about the scalability of the methods
for a larger set of observation points, where the computational
complexity could become an issue. Preliminary results of this
situation are presented later on, in Fig. 5, where results of kriging
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Method Max Mean Median Std. dev. MSE
[mm] [mm] [mm] [mm] [mm2 ]

Ord. krig. 28.62 (47.7%) 0.59 3.26E-3 4.45 20.21
RBFs 36.77 (61.2%) 1.41 0.44 3.25 12.58
LR B-Splines 30.39 (50.6%) 0.59 3.71E-3 4.45 20.19

Table 2: Summary statistics for the error distribution of the accu-
racy evaluation at different scales.

Table 3: Statistics for the average number of extracted persistent
maxima.

Method τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig. 7.4375 3.4792 2.3334 1.7292
RBFs 6.8750 3.4 2.4250 1.7250
LR B-Splines 7.6667 3.7917 2.5208 1.8333

obtained integrating radar rain data are presented.

6. PERSISTENT RAINFALL MAXIMA

Tables 3 and 4 report the comparative results about the extrac-
tion of persistent maxima when considering the rainfall fields
produced by the three approximation schema. For our tests, rain-
fall fields have been computed based on the data set described
in Sect. 3.. Hence, for each approximation scheme, we consid-
ered the 48 approximated fields, one for each cumulative step.
For each field F , the associated persistence maxima have been
extracted according to four different values for the persistence
threshold ε, namely ε = τ(maxF − minF ) with τ = 0.05,
0.15, 0.25, 0.35. In practice, a maximum is preserved only if its
persistence is larger than ε, while the others are filtered away.
Table 3 reports the total number of extracted persistent maxima,
averaged by the amount of considered cumulative steps; Table 4
shows the maximum number of local maxima that have been ex-
tracted, method by method, from the 48 rainfall fields. Despite
some slight differences in the results, the general trend is to have
a decreasing number of persistent maxima as the threshold τ in-
creases. This is actually not surprising, since a higher persistence
threshold implies that a larger portion of local maxima are pruned
out. Also, for low values of the persistence threshold, we can
relate the number of detected maxima to the smoothness of the
considered approximation: in this view, the RBF schema appears
to have a higher smoothing effect, as indicated by the smaller
number of maxima characterized by a low persistence value.

6.1 Comparing sets of persistent maxima

In order to refine the above comparative analysis, we make use
of the tracking procedure introduced in (Biasotti et al., 2015) to
quantitatively assess a (dis)similarity measure between two sets
of local maxima, originated from the three approximation schema
when considering the same cumulative step. Before presenting
results, we briefly recall the main ideas of (Biasotti et al., 2015).

For two sets F , G of local maxima of two rainfall fields F,G :
M → R, it is possible to compare them by measuring the cost
of moving the points associated with one function to those of
the other one, with the requirement that the longest of the trans-
portations should be as short as possible. Interpreting the local
maxima in F and G as points in R3 (i.e., geographical position
and persistence value), the collections of local maxima are com-
pared through the bottleneck distance between F and G, which is
defined as

dB(F ,G) = inf
γ

sup
p

d(p, γ(p)),

where p ∈ F , γ ranges over all the bijections between F and G,
d(·, ·) is the pseudo-distance

d(p,q) := min{‖p− q‖,max{persF (p), persG(q)}},

which measures the cost of moving p to q, and ‖ ·‖ is a weighted
modification of the Euclidean distance. In practice, the cost of

Table 4: Statistics for the maximum number of extracted persis-
tent maxima.

Method τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig. 20 12 8 5
RBFs 18 10 8 5
LR B-Splines 21 10 8 5

Figure 6: Two fields F,G : M → R, color-coded from blue
(low) to red (high) values, and the associated local maxima. On
the right, bottleneck matching between local maxima.

taking p to q is measured as the minimum between the cost of
moving one point onto the other and the cost of moving both
points onto the plane xy : z = 0. Matching a point p with a
point of xy, which can be interpreted as the annihilation of p, is
allowed by the fact that the number of points for F and G is usu-
ally different. The matching γ between the points of F and those
of G, for which dB is actually occurred, is referred to as a bot-
tleneck matching (Fig. 6). Through the bottleneck matching and
the bottleneck distance, it is then possible to derive quantitative
information about the differences in the spatial arrangement and
the rain measurements for the points in F and G.

The bottleneck distance can be evaluated by applying a pure graph-
theoretic approach or by taking into account geometric infor-
mation that characterize the assignment problem. We opt for a
graph-theoretic approach, which is independent of any geometric
constraint and our implementation is based on the push-relabel
maximum flow algorithm (Cherkassky and Goldberg, 1997). For
each iteration, the algorithm runs inO(k2.5), where k is the num-
ber of local maxima involved in the comparison. We note that the
computational complexity is not an issue, because the number of
points to be considered is very limited in general. For example,
in tracking applications the number of persistent maxima to be
monitored is usually no more than a dozen for each time sample.

Experimental results For each cumulative step, we consider
the rainfall fields interpolated by the three methods, and extract
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Table 5: Table of results for the averaged geographical distance
(measured in km) between sets of local maxima (Liguria area
size: 5.410 km2).

Method1/Method2 τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig / RBFs. 15.514 km 2.798 km 2.768 km 2.685 km
RBFs / LR B Spline 35.08 km 10.30 km 5.71 km 4.054 km
krig / LR B-Splines 35.36 km 6.528 km 3.388 km 2.326 km

Table 6: Table of results for the averaged rainfall distance (mea-
sured in mm) between sets of local maxima.

Method1/Method2 τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig/RBFs. 4.127 mm 2.438 mm 1.900 mm 1.884 mm
RBFs/LR B Sp. 9.029 mm 5.111 mm 3.930 mm 3.960 mm
Krig./LR B-Sp. 6.707 mm 3.345 mm 2.105 mm 1.991 mm

the sets of local maxima according to the four persistence thresh-
olds discussed above. For each threshold, the three collections of
persistent maxima are pairwise compared as follows. Since ge-
ographic coordinates and rainfall measurements come with dif-
ferent reference frames and at different scales, local maxima to
be matched are first normalized so that their coordinates range
in [0,1]; then, they are processed by computing the associated
bottleneck matching and the bottleneck distance, and afterwards
projected back in the original reference frames. Finally, a mea-
sure of their distance in terms of both geographical coordinates
and rainfall values is derived by combining the information con-
tained in the bottleneck matching and the associated numerical
(dis)similarity score. Precisely, we consider the geographical and
rainfall distances, which are defined as the largest difference in
geographical position and rainfall value, respectively, for two per-
sistent maxima that have been paired by the bottleneck matching.

Tables 5 and 6 report the obtained results, in terms of geographi-
cal and rainfall distances, respectively, averaged by the total num-
ber of considered cumulative steps. To have a clearer picture
of the comparative evaluation in terms of the two distances, the
results included in Tables 5 and 6 should be jointly interpreted
for each persistence threshold. For instance, when τ = 0.05
we have (relatively) high values for the geographical distance to-
gether with quite low rainfall distance values: this can be inter-
preted as slight numerical variations for the three approximations,
possibly appearing spatially far one from each other. Note, how-
ever, that in this view that the RBF and the kriging techniques
appear to have a more similar behavior, both producing higher
values for the geographical and rainfall distances when compared
with LR-B Splines. On the other hand, moving to higher persis-
tence thresholds, the values of geographical distance decrease, as
an effect of filtering out non-relevant maxima. As a consequence,
the corresponding rainfall distance values reveal now the differ-
ences occurring at prominent maxima, which appear to be quite
small.

We conclude by proposing in Table 7 a similar analysis to com-
pare the results that are obtained when rainfall fields are inter-
polated by considering either observed rainfall measurements or
an integration of these data with radar acquisitions (Sect. 5.). In-
deed, integrated data can reveal useful, e.g., for tracking appli-
cations: although rainfall measurements are more reliable, inte-
grating them with radar data makes it possible to extend the rain-
fall field interpolation in larger areas and to have a clearer picture
about the temporal evolution of the associated precipitation event.
As can be seen from the results in Table 7, characterized by high
values in both the geographic and the rainfall distance, consid-
ering radar data can sensibly change the spatial location and the
rainfall value of persistent maxima. This can be interpreted as the
introduction of complementary information with respect to rain-
fall measurements, which hopefully can help in having a clearer
understanding of precipitation events.

Table 7: Averaged geographical (measured in km) and rainfall
distance (measured in mm) between sets of local maxima.

Krig/(Radar + Krig) τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Geogr. dist. 45.453 km 23.387 km 18.568 km 13.28 km
Rainfall dist. 23.97 mm 21.227 mm 18.533 mm 16.396 mm

7. CONCLUSIONS AND FUTURE WORK

The aim of this study was the comparison of different spatial ap-
proximation methods finalized to compute the amount of rainfalls
for hydro-metereological analysis and civil protection. As a final
remark, we point out that all these approaches easily support the
integration of further sources of rain measures, for instance those
captured by radar. Fig. 5 shows the results of estimation achieved
by kriging (a) with the rain gauges only and (b) with the inte-
gration of this data with radar information. In (c,d), we show
the contribution of each data set in the estimated map plotted in
(b). The color scale varies from blue to red corresponding respec-
tively to a contribution varying from null to full. Since we have
selected only two different data sets, the two maps in (c,d) are
complementary.

Finally, we plan to proceed further with the presented compari-
son framework, including several more aspects and extending the
evaluation to more elaborate correlation analysis, taking into ac-
count other relevant data, such as terrain morphology, satellite
imagery, and meteorological situation. We will further investi-
gate this possibility and especially the effect on approximation
results on storm tracking.
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