
POINT CLOUD SERVER (PCS) : POINT CLOUDS IN-BASE MANAGEMENT AND
PROCESSING

Rémi Cura, Julien Perret, Nicolas Paparoditis

Universite Paris-Est, IGN, SRIG, COGIT & MATIS, 73 avenue de Paris, 94160 Saint Mande, France

remi.cura@ign.fr, julien.perret@ign.fr, nicolas.paparoditis@ign.fr

KEY WORDS: RDBMS, point cloud, point cloud management, point cloud processing, filtering, indexing, compression, point cloud

storage, point cloud I/O, point cloud generalisation, patch, point grouping

ABSTRACT:

In addition to the traditional Geographic Information System (GIS) data such as images and vectors, point cloud data has become more

available. It is appreciated for its precision and true three-Dimensional (3D) nature. However, managing the point cloud can be difficult

due to scaling problems and specificities of this data type. Several methods exist but are usually fairly specialised and solve only one

aspect of the management problem. In this work, we propose a complete and efficient point cloud management system based on a

database server that works on groups of points rather than individual points. This system is specifically designed to solve all the needs

of point cloud users: fast loading, compressed storage, powerful filtering, easy data access and exporting, and integrated processing.

Moreover, the system fully integrates metadata (like sensor position) and can conjointly use point clouds with images, vectors, and

other point clouds. The system also offers in-base processing for easy prototyping and parallel processing and can scale well. Lastly,

the system is built on open source technologies; therefore it can be easily extended and customised. We test the system will several

billion points of point clouds from Lidar (aerial and terrestrial) and stereo-vision. We demonstrate ∼400 million pts/h loading speed,

user-transparent greater than 2 to 4:1 compression ratio, filtering in the approximately 50 ms range, and output of about a million pts/s,
along with classical processing, such as object detection.

1. INTRODUCTION

The last decades have seen the rise of GIS data availability, in par-

ticular through the open data movement. Along with the traditional

raster and vector data, point clouds have recently gained increased

usage1. Sensors are increasingly cheap, precise, and available,

and the point cloud complements images naturally. However,

due to their massive unstructured nature and limited integration

with other GIS data, the management of point clouds still remains

challenging. This makes point cloud data barely accessible to

non-expert users.

With many point clouds, data sets are commonly in the teraByte

(TByte) range and have very different usages; therefore every as-

pect of their management is complex. The first difficulty is simply

knowing which data-sets are available and where. Dealing with

(extended) meta-data is difficult, especially without a standard

data format. Because data is so big, it is essential to compress it,

while maintaining a fast read and write access. Similarly, so much

data cannot be duplicated and must be shared, which introduces

concurrency issues. Efficiently extracting (filtering) only the part

of the data needed is also important. Because displaying billions

of points is not possible, visualising point clouds necessitates

Level Of Details (LOD) strategies. Point clouds are geospatial

data complementary to vectors and rasters. Thus, they need to be

used conjointly to other data types, either directly or by converting

point clouds to images or vectors. Lastly, some users need to

design custom processing methods that must be fast and easy to

design, scale well, and be robust.

In this article, we propose the investigation of the use of a point

cloud server to solve some of these problems. The proposed

server architecture provides perspective for metadata, scalability,

concurrency, standard interface, co-use with other GIS data, and

fast method design. We create an abstraction level over points

1www.opentopography.org

clouds by dealing with groups of points rather than individual

points. This results in compression, filtering, LOD, coverage, and

efficient processing and conversion.

Historically, point clouds have been stored in files. To manage

large volumes of these files, a common solution is to build a hi-

erarchy of files (a tree structure) and access the data through a

dedicated set of softwares. This approach is continuously im-

proved (Hug et al., 2004; Otepka et al., 2012; Richter and Döllner,

2014) and a detailed survey of the features of such systems can

be found in (Otepka et al., 2013). However, using a file-based

system has severe limitations. These systems are usually built

around one file format, and are not necessarily compatible. Recent

efforts have been made towards format conversion2. Moreover,

these systems are not adapted to share data and use it with several

users simultaneously (concurrency).

Hofle (2007) proposed to use DataBase Management System

(DBMS) to cope with concurrency. The DBMS creates a layer of

abstraction over the file-system, with a dedicated data retrieval lan-

guage (SQL), native concurrency capabilities (supporting several

users reading/writing data at the same time), and the wrapping of

user interaction into transactions that can be cancelled in case of

errors. The DBMSs have also been used with image and vector

data for a long time, and the possibility to define relations in the

RDBMSs (Relational DBMS) offers a simple way to create robust

data models. Adding the capacity to create point clouds as ser-

vices, DBMSs solve almost all the problems we face when dealing

with point clouds. Usually, the database stores a great number of

tables, and each table stores a point per row (Lewis et al., 2012;

Rieg et al., 2014). Such a database can easily reach billions of

rows. Nevertheless, storing this many rows is problematic because

DBMSs have a non-negligible overhead per row, which reduces

the scaling possibilities, regarding the time it takes to create it, to

index it, or in the final space it takes.

2http://www.pdal.io/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-531-2015

531

LOAD
- server reads
- client sends

STORE
- groups of points
- compressed

METADATA
- secure and relational
- extended (trajectory, sources)
- generalisation/vis.

FILTER
- indexes
- can use other GIS data

PROCESSING
- in-base easy prototyping
- classic out-of-base workflow

EXPORT
- server sends
- client reads
- point streaming
- point cloud files
 as a service

RDBMS

Figure 1: In-base point cloud management pipeline.

These limitations have been studied and inspired NoSQL databases.

Again, the proposed NoSQL databases are used to store individual

points (Martinez-Rubi et al., 2014, 2015; van Oosterom et al.,

2015; Wang et al., 2014). NoSQL database are stripped DBMSs

that have been specially tailored for massive and weakly relational

data. They scale extremely well to many computers. However, this

comes at a price. NoSQL databases must drop some guarantees

on data, are not integrated with other GIS data, and have much

less functionality. Indeed, NoSQL databases are closer to being a

file-system distributed on many computers (with efficient index-

ing) than being DBMSs. Thus massive scaling still necessitates

specialised hardware, and the people to maintain it.

A possible workaround for this issue is to externalise the storage3

to cloud computing facilities, like Amazon S3, but it suffers from

the same aggravated limitations as the NoSQL.

Figure 2: Simplified schema for ”Server reads” data loading

All the previous data management systems try to solve a very diffi-

cult problem, managing massive number of points. The solutions

that scale well must focus on data storage and retrieval, and drop

the rest of the management problem. Recently, a new approach

was proposed by pgPointCloud (2014). The idea is to manage

groups of points (called patches) rather than points in a RDBMS.

Creating this abstraction layer over points allows retention of all

the advantages of an RDBMS, but without the overhead due to a

great number of rows. Moreover, the proposed abstraction offers

new theoretical possibilities. In this article, we present a point

cloud management system fully based on pgPointCloud (2014)

and open source tools. We test this system in every aspects of

point cloud management to prove that it answers all the global

needs of point cloud users.

Following the IMRAD format (Wu, 2011), the remainder of this

article is divided into three sections. Section 2. presents the

proposed system principles and details each of its parts. Section 3.

reports on the experiments that validate each part of the system.

Finally, the details of the system and new potential applications

are discussed in Section 4.

2. METHOD

The proposed solution relies on a PostgreSQL (2014) RDBMS

server using the PostGIS (2014) and pgPointCloud (2014) ex-

tensions. The key idea is to store groups of points into the server

3https://github.com/hobu/greyhound

table. Groups of points are called patches of point. An XML

schema defines the size and nature of each attribute for each point

type.

The user can load data into the server by several common means

(using major programming languages, Bash, SQL, Python), from

any format of point cloud that can be expressed as a list of values.

Point clouds are stored without loss and are compressed. The very

sophisticated database indexes allow efficient filtering of the points.

Point clouds can be used with vector and rasters and other point

clouds. Metadata are integrated and exploited. Furthermore, point

clouds can be easily converted into other GIS data (vector/raster).

Processing methods are directly accessible within the database;

more can be added externally or internally. Attaining points from

the database is also easy and can be done in several ways (whole

files, specific points and streaming).

Briefly, storing groups of points offers the advantages of generali-

sation (potentially more complex semantic objects), reduces the

number of rows by several orders of magnitude, reduces index

sizes, allows efficient compression, and offers a common frame-

work for different types of points. Working on groups of points

separates the filtering and retrieving of points. Groups can also

be easily split or fused at any point after data loading. However,

to obtain an individual point, we need to get the full group first.

This means that grouping points is only possible when points

can be categorised into groups that are coherent for the intended

applications.

Choosing to use groups of points instead of individual points

creates a generalisation of the data. For instance, if a group of

points locally forms a plan, geometrically representing this group

of points by a plan provides many more opportunities than just

reducing storage space. The plan is another representation of the

underlying object that has been sensed, and could be further used

as a semantical part of another, more complex object (a building

façade, for instance by Lafarge et al. (2013)). We propose several

generalisations that are tailored to different needs (Figure 9).

2.1 Loading

Writing data in a PostgreSQL RDBMS is standard. There are

conceptually two kinds of solutions. Either the database reads the

data (’server reads’), or a client connects to the server and writes

the data (’client writes’). Clients exist in all major programming

languages.

DBMSs are build for concurrency, we illustrate both of these

methods with parallelism.

Parallel loading (’server reads’) Our first loading method (Fig-

ure 2) reads point cloud files, convert them to a stream of attributes

and writes them to temporary tables in the database. The database

groups points into patches and adds the patches to the final point

cloud table. This method mixes ’server read’ and ’client sends’

approaches.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-531-2015

532

Distributed parallel loading (’Client sends’) In previous method,

the database performs the grouping of points into patches and the

actual writing of patches into tables. We could lessen the workload

of the server by allowing the client do the grouping.

We design a loading method of type ’client sends’ (Python).

It is similar to the method adopted by the PDAL4 project. The

clients read point cloud files, group points into patches, and send

the patches to the database. The database compresses the patches

and writes them into the final point cloud table.

2.2 Point Cloud and Context

The RDBMS has been designed to create relationships between

data. Our system manages point clouds rather than points. In

particular, our system can store the full meta-data model, as well

as more indirect meta-data like the trajectory of the sensor. It is

also possible to use several point clouds together as well as mix

point clouds and other GIS data (raster and vector), directly or

after converting point clouds to other GIS data types.

Figure 3: Example of a data model to store metadata. A more

realistic data model is given by Hofle (2007, p. 15).

Managing metadata The point cloud server offers the perfect

space to regroup all the metadata concerning the point cloud.

Unlike a file, it is possible to create a real relational model of the

metadata and to enforce it (automatically). It guarantees coherency

and enables searching points with a given set of characteristics.

For instance, looking for stereo-vision points rather than Lidar

points for an application based on colours.

Extended metadata We can extend the classical notion of meta-

data a step further and consider that it also concerns the raw in-

formation that was used to create the point cloud. For Lidar point

clouds, this would be the trajectory and position of the sensing

device, along with the raw sensing files. For stereo point clouds,

this would be the camera poses for every image used to construct

the point cloud, along with the images. This information can be

stored in the server, and leveraged in filtering (see Section 3.5) or

processing.

Using several point clouds and other GIS data Point clouds

are created by different sources, like stereo-vision, aerial Lidar,

terrestrial Lidar, RGBZ device (Kinect), etc. The point cloud

server mixes all this data, along with other GIS data (rasters and

vectors). Vectors and rasters are stored and exploited using Post-

GIS (2014). We can use geo-referenced point clouds together. For

instance, a user asks for points in a given area. The user obtains

points from a large 1 pt/m2 aerial Lidar point cloud automati-

cally complemented by a more detailed but very local 10 kpts/m2

stereo-vision point cloud.

4www.pdal.io

Coverage map Using the server, we create metadata-like point

clouds coverage (Figure 7, 8), similarly to (Lewis et al., 2012,

Figure 8). With this map, one can instantaneously and easily

check what type of point cloud is available in a given area using a

colour code (for instance).

Point cloud as raster or vector In the spirit of generalisation

(see Section 2.), it is advantageous for some applications to convert

points to other GIS data types, such as raster or vectors, directly

within the database. We propose several in-base groups of points

vector representation, such as bounding box, oriented bounding

box, concave envelope similar to alpha shape (Edelsbrunner et al.,

1983), and 3D plans (Figure 9). These representations can be used

to extract information at the patch level, accelerate filtering, enable

large scale visualisation, etc. We also propose two in-base means

to convert points to multi-band rasters by a Z projection. Rasterisa-

tion is a common first step in the literature because neighbourhood

relations are explicit between pixels, unlike points.

conversion to raster bilateral filter

gradient Line detection

Figure 4: A piece of a point cloud is converted to a raster.

We use bilateral smoothing, gradient (Sobel), and line detection

(RRANSAC by Chum and Matas (2002)) to reconstruct the pedes-

trian crossing. These operations are much faster and easier on

rasters rather than points.

2.3 Filtering Point Cloud

Point clouds are big; yet, we often need a very small part (Figure

5, parameters in 3.5). Thus, the capacity to filter a point cloud is

essential for many uses. Acceleration structures are the accepted

solutions. This essentially creates indexes on the data to accelerate

searches. Octree, B-tree, R-tree, and Morton-curves are popular

acceleration structures. Designing and optimising these indexes

is a major research subject (see (Kiruthika and Khaddaj, 2014),

for instance) and is also the main designing factor in point cloud

management systems.

Filtering strategy Because our system stores patches (groups

of points), we can separate the filtering and the retrieving of data.

Our strategy is to first efficiently filter data at the patch level

(reducing points from billions to millions, for instance), then, if

necessary, further filter the remaining points.

Indexing Our system extensively uses indexes (BTree, RTree)

that are native to PostgreSQL. We index patches (not points).

Basically, these indexes answer in about 10ms to any filtering,

such as ’What are the patches with f between .. and ..’; f can be

anything, a spatial position, an attribute of the points, a function,

etc.

Indexes of functions are very powerful and can save a lot of space

(no need to add an extra column). For instance, we may have

a fast function f that gives a measure in [0; 1] of how much the

patch looks like a vertical cylinder. Now, when looking for all

the patches p that really resemble cylinder (f(p) > 0.8), for

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-531-2015

533

Figure 5: Among billions of points, only those respecting complex filtering conditions are kept. Results are shown in QGIS. Parameters

in 3.5

instance), we do not need to recompute f each time for every

patch, nor store f results.

PostgreSQL also determines whether to use the indexes or not. In

some cases, it will be faster to simply read all the data (sequential

vs. random access). This decision is based on statistics on tables

and a genetic optimisation.

Filtering example The following query illustrates possible fil-

tering.

SELECT gid , p a t c h

FROM tmob 20140616 . r i e g l p c p a t c h s p a c e

WHERE /∗ f i l t e r i n g c o n d i t i o n ∗/

/∗ s p a t i a l f i l t e r i n g ∗/

S T I n t e r s e c t s (p a t c h : : geometry , . . .) = TRUE

/∗ f i l t e r i n g on a f u n c t i o n ∗/

AND Pc NumPoints (p a t c h) BETWEEN 10 AND 1000

/∗ f i l t e r i n g on an a t t r i b u t e range∗/

AND r c c o m p u t e r a n g e f o r a p a t c h (p a t c h , ’ g p s t i m e ’)

&& numrange (1 3 , 1 4)

/∗ f i l t e r i n g on o r i g i n a l s o u r c e f i l e name w i t h r eg e x p∗/

AND f i l e n a m e ILIKE E ’ .∗TerMob.∗ 2 . p l y ’

/∗ k e e p i n g o n l y p o i n t s t h a t are i n s i d e b u i l d i n g s (v e c t o r l a y e r) ∗/

AND EXISTS (SELECT 1

FROM o p d a r i s c o r r e c t e d . v o l u m e b a t i

WHERE S T I n t e r s e c t s (p a t c h : : geometry , v o l u m e b a t i . geom))

2.4 Output

Similarly to Section 2.1, we divide the methods into two categories.

The first family of solutions is that the server writes the points

somewhere (’server writes’). The second family of solution is

when the client reads the data from the server and do something

with it (’client reads’).

Using PostgreSQL drivers/connector (’client reads’) PostgreSQL

can be accessed using many programming languages, thus any

PostgreSQL driver can be used to connect to the server and output

points. This work-flow is very similar to what a classical pro-

cessing program would do, ’open point cloud file, read points, do

processing, write results’ becomes ’connect to server, read points,

do processing, write results on the server or elsewhere’.

The additional capabilities are that the user does not have to read

a whole file (or any files) if the user is interested in only a few

points. Using the point cloud server, the user can directly filter the

point cloud to obtain only the points desired, and even use in-base

processing or LOD to further change the points obtained.

PLY File As a Service (PLYFAS) ’server writes’ Our system

can be used transparently with a file-based workflow. Indeed,

users may already have legacy processing tools that work with

files. Of course, these tools could be easily adapted to read points

from the database and not from files, but users may want to use

their usual tools as-is. For this case, we propose PLYFAS, an easy

means to export points from the database and create a .ply file.

The user can use the small PLYFAS API to request the database

to create a ply file from any set of points. The user may simply

want one of the exact original point cloud files that were loaded

into the point cloud server. However, the user has also access to

much more power and can request a file with filtered points by any

means introduced in Section 2.3, or with the additional processing

results of Section 2.5. For instance, the user can request all the

points in a given area that have been classified as ’building parts’

with a given confidence, and that were sensed during the second

week of March 2014.

Massive parallel export (’client reads’) We also designed a

Python method to perform massive parallel export. Similarly to

Section 2.1, the goal is to reduce the work done on the server and

increase the work done on the clients. In this version, the server

sends raw binary uncompressed patches (groups of points), and

the transformation to points is done by the client.

Asynchronous point cloud streaming to browser (’client reads’)

The last output possibility is to stream points in a web context.

The goal is to display a point cloud into a web browser with back-

ground loading (i.e., the points are displayed as they arrive, the

user keeps browsing and the loading is non-blocking).

For this, we use a Node.js server between the client and the point

cloud server, which enables non-blocking interactions. From a

point cloud server perspective, the task is standard (give points

that are at a given place).

2.5 Processing Point Cloud with the Server

Processing point clouds We think it is important to offer both

points and adapted tools to users. Our system can be used for

processing in two ways. The most classical is out-of-base pro-

cessing. A client obtains the points, does something, and writes

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-531-2015

534

the results in the server. However, our system also offers in-base

processing. Processing methods become very close to the data and

can be reused or combined to create more complex methods. It

is also more practical because the client does not have to install

anything (all methods are on the server).

An advantage of in-base processing is that it is easy to add new

processing methods. These methods can be written for efficiency

(C, Cpp) or using high level languages (Python, R) for very fast

prototyping. The most useful in-base processing functions are fast

and simple. This way, the newly written functions can be used

in other aspects of the point cloud server, such as indexing, or be

combined directly in SQL queries. For instance,

SELECT t r a i n c l a s s i f i e r (e x t r a c t p l a n (p a t c h) , e x t r a c t f e a t u r e 1 (p a t c h) ,

e x t r a c t f e a t u r e 2 (p a t c h) , . . .)

FROM p a t c h e s

WHERE c o m p u t e v e r t i c a l i t y i n d e x (p a t c h)>0.8

3. RESULTS

3.1 General System

We design several experiments to test all parts of our point cloud

server. All experiments have ample room for optimisation, and can

be easily reproduced (open source tools). We use PostgreSQL 9.3,

PostGIS 2.2, PgPointCloud 1.0, Python 2.7, and a recent (2014)

version of Numpy and Scipy.

Result at the system level Overall, we load several billion

points into the point cloud server, perform several processing

in and out of base (s to hour), extensively use simple and com-

plex filtering (ms and s), convert points to images and vectors,

and output points (≥ 100k pts/s). The entire system works as in-

tended and is efficient and powerful enough to be used in research

settings.

Data sets used For this article, we use three data sets (includ-

ing (IQmulus, 2014)). (See Figure 6). They were chosen to be

as different as possible to further evaluate how proposed methods

can generalise on different data (Figure 1). We emphasize that

the Vosges dataset is a massive aerial Lidar point cloud covering

mountains and forests.

Table 1: Point cloud data-sets used, with some figures. AL stands

for aerial lidar, TL for terrestrial lidar and SPC for stereo point

cloud.

D
at

as
et

T
y
p

e

N
b
.

o
f

p
o
in

ts

N
b
.

o
f

o
ri

g
in

al
fi

le
s

S
p

at
ia

l
co

v
er

ag
e

N
b
.

o
f

at
tr

ib
u

te
s

T
y
p

ic
al

sp
ac

in
g

Vosges AL 5.2B ∼1450 1330 km2 9 1 m

Paris TL 2.15B ∼ 750 42 km 21 1 cm

Stereo SPC 70M 16 3 m2 6 0.1 mm

Experiments Hardware We tested all our methods on two set-

tings. The development settings are portable (the point cloud

server is hosted on a virtual box on an external drive), the server

settings is powerful and offers much more storage place (12 cores,

20 Go RAM, SSD for OS, regular disk for storage, Ubuntu 12.04).

We try to provide timing, but these are orders of magnitude be-

cause of influence of caching and configuring.

3.2 Input

Parallel loading (’server reads’) In one night, we aim at load-

ing the data sensed by a Lidar system during one day, which is a

practical Lidar management requirement. The points are stored

Table 2: Loading time for each point cloud data set.

Dataset Loading time Parallelism
Loading speed

kpts/s
Vosges 11h30 8 125

Paris 8h 6 74.5

Stereo 7min20 7 160

in files, over a gigabyte network. We uses a dedicated program

to convert the points file into ASCII values (CSV). We modified

the RPly library5 for the .PLY point cloud, and use Lastool 6 for

.las files. The ASCII values are streamed to a ’psql’ process that

is connected to the database. The ’psql’ executes a ’COPY’ SQL

command that reads the ASCII streams and creates and fills a

table with the values from the ASCII stream. When the file has

been fully streamed, we use an SQL query to create points from

attributes and group them into patches. These patches are inserted

into the final patch table. This pipeline (Figure 2) is executed

several times in parallel, each pipeline working on a different file.

Distributed parallel loading (’client sends’) In this experi-

ment, we use clients to send uncompressed patches to the server.

The clients read point cloud files (.ply in our experiment, using

the plyfile7 Python module). Then, each client groups the points

into patches using a custom Python module. The patches are sent

to the server through Python. The server compresses these patches

and adds them to the final point cloud table. This experiment is a

proof of concept; therefore, we limit the number of clients to one

computer, using seven threads.

Result We load Vosges and Paris data set through ’massive

parallel loading’, and stereo through ’out of database grouping’

(Table 2). For both methods, the bottleneck is not the CPU but

the input/output (I/O). Indeed, the point files are read over the

network, and the point tables are stored on the SSD, but the final

patch table is stored on the regular disk, which also limits how

many threads can write data on it at the same time.

Result We load Vosges and Paris data set through ’massive

parallel loading’, and stereo through ’out of database grouping’

(Table 2). For both methods, the bottleneck is not the CPU but

the input/output (I/O). Indeed, the point files are read over the

network, and the point tables are stored on the SSD, but the final

patch table is stored on the regular disk, which also limits how

many threads can write data on it at the same time.

3.3 Storing Point Cloud in Table

Table 3: Creating and indexing patches for the test data set

compared to non-grouped scenario. Grouping rules are: 50 =
floor(X

50
, Y

50
), 1 = floor(X,Y, Z) and 1

250
= floor(X ×

250, Y × 250).

D
at

as
et

G
ro

u
p

in
g

ru
le

s

P
at

ch
n

b
(k

)

A
v

g
p

ts
/

p
at

ch

(k
p

ts
)

P
at

ch
in

d
ex

si
ze

(M
B

)

E
st

im
at

ed
p

o
in

t

in
d

ex
si

ze
(G

B
)

E
st

im
at

ed
p

o
in

t

in
d

ex
b
u

il
d

ti
m

e
(h

)

Vosges 50 580 8.9 27+15 2600 290

Paris 1 6570 0.325 300+150 1000 120

Stereo 1

250
180 0.4 12+3 35 4

3.4 Storing Point Cloud in Table

Grouping points Points must be categorised into groups that

will make sense for subsequent uses of the point cloud. Groups

5http://w3.impa.br/~diego/software/rply
6 http://lastools.com
7www.github.com/dranjan/python-plyfile

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-531-2015

535

Figure 6: Vosges dataset (aerial Lidar), Paris dataset (terrestrial Lidar), Stereo dataset (Stereovision)

Table 4: Analysing compression ratio.

Dataset
Points
Billion

Disk size
GByte

Server size
GByte

Compression

ratio

Vosges 5.2 170 39 4.36

Paris 2.15 166 58 2.86

Stereo 0.070 1 0.49 2.05

Table 5: Analysing compression and decompression computing

cost.

Dataset
Subset size
Million pts

Compressing

Million pts/s

Decompressing

Million pts/s
Vosges 473.3 4.49 4.67

Paris 105.7 1.11 2.62

Stereo 70 2.44 7.38

of points must be big enough to have a tractable number of rows,

but not too big because getting only one point still necessitates

obtaining the entire group. We designed grouping rules so that the

number of rows is less than a few millions - i.e., fitting in server

memory (Table 3). Moreover, this range of numbers of rows is

classical for GIS software. We can afford to have very large groups

as a result of the PostgreSQL TOAST8 storage system.

Grouping is done at data loading but can be changed at any time.

Index creation is very fast (a few seconds to a few minutes), and

the index size is ≤ 1 % of the point cloud size.

Indexes are built on the patches and not on the points, and thus

are several orders of magnitude smaller and much faster to build.

We estimate the size of indexes if we were to store one point per

row rather than one patch per row (extrapolating index size and

build time observed on 0.01 to 10 million-row tables). See Table 3.

Compressing point clouds Patches are compressed before stor-

age. We compare loaded data-set space occupation on the server

with original binary files on the disk. In our case, patches are

compressed attribute-wise, with either a run-length, common bit

removal, or zip strategy. Compressing efficiency widely varies

depending on the data and the kind of attributes of the points. See

Table 3.4.

Compressing and decompressing data introduces an overhead

on data access. We estimate it by profiling the uncompress and

compress functions. Again, the overhead is dependent on the

type and number of attributes. For instance stereo contains double

attributes that are compressed with the zip strategy, which is slower

in compression. See Table 5.

3.5 Point Clouds and Context

Our point cloud server manages point clouds, as opposed to sets

of points. First, we demonstrate the construction of several two-

dimensional (2D) vectorial visualisations of point clouds. We

8http://www.postgresql.org/docs/current/static/

storage-toast.html

demonstrate the possibility to work on all point clouds at the same

time, transparently for the user. Point clouds can also be used

conjointly with other GIS data (raster and vector). Lastly, we

demonstrate an example of use of the sensor trajectory meta-data.

Figure 7: Successive visualisations of point cloud coverage, see

3.5 for details

Coverage visualisation Creating a coverage visualisation is

easy (about 30 SQL lines) and fast (about 150s, one thread) with

our point cloud server. Indeed, instead of working with billions

of points, we can work with millions of patches (generalising the

points).

We created several visualisations for the Paris dataset, ranging

from 5MByte to 100kByte, each adapted to a different scale. (see

Figure 7)

• 1:25 to 1:1500: Precise, occlusions visible (∼1m).

• 1:1500 to 1:15k: Help to understand road network structure

(∼8m).

• 1:15k to 1:200k: Use the trajectory. If not available, fabricate

a trajectory-ersatz through basic straight skeleton

• ≥1:200k: A simple point with text attributes for details.

Figure 8: Visualisation of to-do hexagonal map. Blue when sens-

ing data, red otherwise

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-531-2015

536

Table 6: Result of filtering.
Total points

106 pts

Result points

106 pts

Filtering

(no raster)

Filtering

raster

Filtering

optim

2150 1.2 ∼30ms ∼ 5s ∼30ms

As a proof of concept, we propose a coverage hexagonal grid

(see Figure 8), conceptually identical to regular grid, with some

benefits (see (Sahr, 2011)). The idea is to visualise both what was

sensed and what remains to be sensed in a given area (here the

whole of Paris), to help plan data-sensing missions. We fabricate

an hexagonal grid over the extent of Paris (about30s), and remove

the hexagons that are in buildings or too far from road (about

60s). Then we colour the hexagon depending on whether the

point clouds cover it or not(about 30s) (Red is not sensed, blue is

sensed). Such visualisation are easy to create (about 30 minutes),

and could be tailored to more specific needs.

Using several point clouds As a proof of concept of integration

of several point clouds, we demonstrate the conjoint use of stereo-

vision point cloud and Lidar point cloud. For this experiment, we

choose to use PostgreSQL inheritance mechanism. The idea is to

create a ’parent’ table. We set the Lidar table and stereo-vision

table to be a ’child’ of the ’parent’ table. Then we can query the

’parent’ table as if it was a super-point cloud comprised of all the

others. Querying the ’parent’ point cloud is as fast as querying

one point cloud, and we correctly attain points from both point

clouds.

Conjoint use with other GIS data We commonly used vector

data with point clouds for various research projects. Here, the

scenario is to provide points for a pedestrian crossing detection al-

gorithm, at a given intersection of the road network (see Figure 5).

To demonstrate the possibilities, we use the following:

• Corrected version of ODParis9 building layer (350 k rows)

• Lidar sensor trajectory (42 k points regrouped in 900 rows)

• Road network data of BDTopo10 (32 k rows)

• Aerial photo of the area in a PostGIS raster table (110k rows,

each 30× 30 pixels), base pixel of 10 cm

We simultaneously filter the massive Paris point cloud to obtain

patches that include the following:

• close to the intersection of street ’Palatine’ and ’Servandoni’

(≤ 10 m+ road width)

• close to Lidar acquisition centre trajectory (≤ 3 m)

• far from buildings (≥ 1 m)

• with high density (≥ 1000 points /m3)

• where the aerial view has a colour compatible with street

markings (240 ≤ mean intensity ≤ 350)

The point cloud server finds all the patches concerned in 60ms
(with index and optimally written query) (see Figure 5 and Table

6).

Point cloud as a raster or vector We construct abstract repre-

sentations of patches that are sufficient for one task, and are much

more efficient than using the points, including the following:

• 2D bounding box (’bbox’) (default)

• oriented bounding box (’obbox’), light

• multi-polygon obtained by successive dilatation and erosion

of points (’closing’), big to store, very accurate

9http://opendata.paris.fr/page/home
10http://professionnels.ign.fr/bdtopo

Table 7: Result of pedestrian crossing detection.
Scenario Recall Precision Diminution

Filtering 0.95 0.5 4.8×
Precision 0.16 1 100×

Table 8: Points output speed.
Dataset point speed k/s estimated limitation

Vosges 1100 write speed

Paris 200 read /uncompress

Stereo 550 read

These generalisations are about 0.5% of the compressed patch size.

We also tested 3D generalisations, either by extracting primitives

or using LOD. Lafarge et al. (2013) showed that the urban point

clouds can be accurately represented by primitives. For instance,

a dozen plans accurately explains (≤ 1cm) 70 % of this scene

(Figure 9). We extensively tested an orthogonal approach, where

instead of making a new object to generalise a group of points, we

represent it by a subset of well chosen points of this group. The

method and its applications (adaptive LOD, density analysis, and

classification using density features) are explained in details in an

article to be published.

Using trajectory with point clouds We imported the Paris tra-

jectory data (successive position of the Lidar sensor every few

ms). In fact, using a constrained data model resulted in discover-

ing errors in the raw trajectory data. Trajectory can be used for

filtering point clouds (for instance, 3.5).

We demonstrate the use of trajectory for processing in the follow-

ing scenario. The goal is to localise all the pedestrian crossings of

the Paris dataset (few minutes). We (conceptually) walk along the

trajectory, and every three metres we retrieve the patches closest

to the trajectory. We use a crude marking-detection function on

these patches (percent of points in given intensity range). Based

on the score of the detection, we can favour recall or precision.

The diminution factor illustrates how much less data we would

need to process with the pedestrian crossing method that would

follow detection (Table 7).

3.6 Point Cloud Filtering

Filtering overview Overall, filtering is very fast on the point

cloud server (about 100ms). Finding the points is almost always

much faster than actually retrieving them.

Because of caching and the influence of how the query is written,

we only provide order of magnitude here. Filtering patches using

indexed function takes about 10ms, even when using many con-

ditions at the same time. This includes filtering with spatial (2D

and 2D+Z), temporal, any attributes, density, volume, etc. This

also includes using vector generalisation. Filtering with other GIS

data (vector) is slower (10s), except when special care is taken to

optimise the query (10ms). This includes using distance to other

vector layers, using other vector layer attributes (height of build-

ing), using time associated with vectors, etc. Lastly, very complex

filtering may take from 10s up to several minutes depending on

the number of patches concerned.

3.7 Output

Using PostgreSQL drivers/connector (’client reads’) We cre-

ate a Python methods that works on a client computer. It reads

uncompressed patches from the server and directly writes them

to disk (saving it as Numpy double array). Using seven parallel

workers, the result is in Table 8.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-531-2015

537

full

L3

L2

L1

L0

LODBBOX OBBOX Closing

patch height sensor trajectory buildingry bry b

Plans

Figure 9: Bounding Box, Oriented BBox, spatial closing. Closing on 3D plan detection. Level Of Details.

PLY File As a Service (PLYFAS) ’server writes’ We create a

service that writes ASCII .ply files at a given network place. The

functions (API) have options to perform all kinds of filtering. We

exported several files from the Paris dataset, with various filtering

options and LOD. The global output time observed is around 15 k
points/s per worker with a scaling of up to seven workers.

Client reads data: Streaming to browser We performed a

test of point cloud streaming to a WebGL application, using a

Node.js server as the ’man in the middle’. The browser is set to

a geographical position, and then requests the points around this

position to the Node.js server. The Node.js server connects to

the point cloud database to request the points. The point cloud

server uses indexes to find patches and extract points that are then

streamed to Node.js server through cursor use. The Node.js server

compresses the point stream and sends it to the web browser. The

web browser parses the stream, puts the points into buffers, sends

the points to the graphic card and display them through shaders.

We observed a reduced throughput (20 k points/s) because data

is inefficiently transmitted as text, and is serialised/deserialised

multiple times.

3.8 Processing

We demonstrate how easy it is to create new in-base processing

methods. As such the methods are only cited to illustrate this.

Some details may be found in Cura (2014).

In-base processing Fast prototyping is vital for wider point

cloud use. We demonstrate the potential of using high level lan-

guages within the database to write simple processing methods.

The experiment is not to create state-of-the-art processing meth-

ods, but to measure what a Python/R beginner can do in two weeks

(designing methods and implementing).

• * clustering points using Minimum Spanning Tree

• * clustering points with DBSCAN (Ester et al., 1996)

• * extracting primitives (plans and cylinder)

• * extracting a verticality index (using Independent Compo-

nent Analysis)

• # detecting façade footprint

• # detecting cornerstones

• # detecting road markings

(*: directly working on patches, can be used out of the box on all

point clouds; #: working on rasterised point clouds, need to use a

point cloud to raster conversion method first)

We also used the server for complex out-of-base processing (clas-

sifications).

4. DISCUSSIONS

Storage in base Currently point cloud types are strongly con-

strained, thus adding or removing attributes is not immediate.

Inheritance between point types would solve this. Our point cloud

server is based on only one computer. To scale over the 10 trillion-

points range, we would need to use supplementary PostgreSQL

sharding and clustering capabilities.

Input Examining (Martinez-Rubi et al. (2014), Table 2) shows

that data loading could be much faster. Most notably, directly

reading the raw sensor data and streaming it to the database using

PostgreSQL binary format would be much more efficient. We

emphasise that a relatively recent initiative, PDAL11 has gained

maturity, and would be the ideal candidate to solve these two

limitations.

The PostgreSQL rule system would be the perfect candidate to use

thousands of point clouds together. Metadata can be stored in our

server, but a standard minimal data model would be necessary to

facilitate exchanges, similar in spirit to the INSPIRE12 European

directive.

Conjointly using vectors, rasters and point clouds offers a new

world of possibilities. We face data fusion issues, like difference in

precision, generalisation, fuzziness, etc. Moreover, vector, raster

and point cloud data may be acquired at different dates.

Filtering point clouds The point cloud server offers a powerful

filtering structure, especially when using other GIS data. It would

be possible to go much further towards complex filtering, by

performing algebra between several rasters, using attributes of

vectors to filter patches, etc.

Our entire strategy relies on filtering patches first, then filtering

points. In cases when the patch filtering condition does not filter

much, the system is much less interesting.

Output The point cloud server can output data in many ways

and thus be easily integrated into any work-flow. We, however,

feel that the current speed (100 k points /s, around 2 MByte /s)
is too low. It could be easily accelerated using binary outputs and

by decompressing patches directly on clients.

Perhaps the true evolution of the point cloud server would be to

stop delivering points, and instead deliver a service that could be

queried through standard mechanisms. For instance, the trans-

actional Web Feature Service (WFS-t) format could be used to

send points out of the box, simply using a geo-server between the

client and the point cloud server. This could be a revolution in

point cloud availability, similar to what happened to geo-raster

data (e.g., google map WFS).

Processing In-base processing offers many opportunities be-

cause it is close to the data and can be written with many program-

ming languages. Yet, it is also intricately limited to one thread and

the amount of memory allowed for PostgreSQL. The execution

is also within one transaction. It may also be hard to control the

execution-flow, during the execution. However, the Python access

11http://www.pdal.io/
12http://inspire.ec.europa.eu/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-531-2015

538

both from within and outside the database shows the possibility

to write more ambitious processing methods with several parts

executing in parallel as well as communicating, dealing properly

with errors, etc.

Perspective for applications Patches and their generalisations

are perfect candidates to perform fast and efficient registration

(cloud-to-cloud, cloud-to-raster, etc.). Indeed, the classical solu-

tion for registering a massive point cloud is to sub-sample it. Using

extracted primitives would be better. Having all the meta-data, the

trajectory (or camera position matrices), and the raw data, it would

be possible to change the trajectory (matrices) and regenerate the

point cloud with updated coordinates, all of this from within the

database. Processing of point clouds would extract landmarks,

which could be matched with a landmark database. It would be

possible to mix PostGIS Topology (2D partition of the space) for

graph queries.

5. CONCLUSION

In this paper, we presented a complete point cloud server system

based on groups of points (patches). Using these patches as gen-

eralisations, we fulfil all point cloud user needs (loading, storing,

filtering, exporting and processing). The system is fully open

source and thus easily extensible and customisable using many

programming languages (C, C++, Python, R, etc.). Our system

opens new possibilities because of intricate synergy with other

geo-spatial data. Lastly, we proved through real-life uses that this

system works with various point cloud types (Lidar, stereo-vision),

not only for storing point clouds, but also for processing. As per-

spective, we could explore in-base re-registration from trajectory

and raw data, in-base cloud-to-cloud registration, in-base classi-

fication, and point streaming, as well as scaling to thousands of

billions of points.

6. ACKNOWLEDGEMENTS

The authors would like to thank reviewers for their suggestions,

and colleagues for ideas and help, in particular G. Le Meur. This

work was supported in part by an ANRT grant (20130042).

References

Chum, O. and Matas, J., 2002. Randomized RANSAC with td,

d test. In: Proc. British Machine Vision Conference, Vol. 2,

pp. 448–457. 3

Cura, R., 2014. A postgres server for point clouds storage

and processing. https://github.com/Remi-C/Postgres_

Day_2014_10_RemiC/tree/master/presentation. 8

Edelsbrunner, H., Kirkpatrick, D. and Seidel, R., 1983. On the

shape of a set of points in the plane. IEEE Trans. Inf. Theory

29(4), pp. 551–559. 3

Ester, M., Kriegel, H.-p., S, J. and Xu, X., 1996. A density-based

algorithm for discovering clusters in large spatial databases

with noise. AAAI Press, pp. 226–231. 8

Hofle, B., 2007. Detection and utilization of the information po-

tential of airborne laser scanning point cloud and intensity data

by developing a management and analysis system. PhD the-

sis, Institute of Photogrammetry and Remote Sensing, Vienna

University of Technology. 1, 3

Hug, C., Krzystek, P. and Fuchs, W., 2004. Advanced lidar data

processing with LasTools. In: The International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sci-

ences, pp. 12–23. 1

IQmulus, 2014. IQmulus & TerraMobilita contest. http://data.

ign.fr/benchmarks/UrbanAnalysis/. 5

Kiruthika, J. and Khaddaj, S., 2014. Performance issues and

query optimization in big multidimensional data. In: 2014

13th International Symposium on Distributed Computing and

Applications to Business, Engineering and Science (DCABES),

pp. 24–28. 3

Lafarge, F., Keriven, R., Brédif, M. and Hoang-Hiep Vu, 2013. A

hybrid multiview stereo algorithm for modeling urban scenes.

IEEE Trans. Pattern Anal. Mach. Intell. 35(1), pp. 5–17. 2, 7

Lewis, P., Mc Elhinney, C. P. and McCarthy, T., 2012. LiDAR

data management pipeline; from spatial database population to

web-application visualization. In: Proceedings of the 3rd In-

ternational Conference on Computing for Geospatial Research

and Applications, p. 16. 1, 3

Martinez-Rubi, O., Kersten, M. L., Goncalves, R. and Ivanova, M.,

2014. A column-store meets the point clouds. FOSS4G-Eur.

Acad. Track. 2, 8

Martinez-Rubi, O., van Oosterom, P., Gonçalves, R., Tijssen, T.,

Ivanova, M., Kersten, M. L. and Alvanaki, F., 2015. Benchmark-

ing and improving point cloud data management in MonetDB.

SIGSPATIAL Spec. 6(2), pp. 11–18. 2

Otepka, J., Ghuffar, S., Waldhauser, C., Hochreiter, R. and Pfeifer,

N., 2013. Georeferenced point clouds: A survey of features and

point cloud management. The International Archives of Pho-

togrammetry, Remote Sensing and Spatial Information Sciences

2(4), pp. 1038–1065. 1

Otepka, J., Mandlburger, G. and Karel, W., 2012. The OPALS

data manager—efficient data management for processing large

airborne laser scanning projects. The International Archives

of Photogrammetry, Remote Sensing and Spatial Information

Sciences 25, pp. 153–159. 1

pgPointCloud, R., 2014. pgPointCloud. https://github.com/

pgpointcloud/pointcloud. 2

PostGIS, d. t., 2014. PostGIS. www.postgis.org/. 2, 3

PostgreSQL, d. t., 2014. PostgreSQL. www.postgresql.org/.

2

Richter, R. and Döllner, J., 2014. Concepts and techniques for in-

tegration, analysis and visualization of massive 3d point clouds.

Comput. Environ. Urban Syst. 45, pp. 114–124. 1

Rieg, L., Wichmann, V., Rutzinger, M., Sailer, R., Geist, T. and

Stötter, J., 2014. Data infrastructure for multitemporal airborne

LiDAR point cloud analysis – examples from physical geogra-

phy in high mountain environments. Computers, Environment

and Urban Systems 45, pp. 137–146. 1

Sahr, K., 2011. Hexagonal discrete global grid systems for geospa-

tial computing. Arch. Photogramm. Cartogr. Remote Sens. 22,

pp. 363–376. 7

van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer,

M., Geringer, D., Ravada, S., Tijssen, T., Kodde, M. and

Gonçalves, R., 2015. Massive point cloud data management:

Design, implementation and execution of a point cloud bench-

mark. Comput. Graph. 49(Special Section on Processing Large

Geospatial Data), pp. 92–125. 2

Wang, F., Aji, A. and Vo, H., 2014. High performance spatial

queries for spatial big data: from medical imaging to GIS.

SIGSPATIAL Spec. 6(3), pp. 11–18. 2

Wu, J., 2011. Improving the writing of research papers: IMRAD

and beyond. In: Landsc. Ecol., Vol. 26number 10, pp. 1345 –

1349. 2

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsannals-II-3-W5-531-2015

539

