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ABSTRACT: 

 

Recent approaches for the automatic reconstruction of 3D building models from airborne point cloud data integrate prior knowledge 

of roof shapes with the intention to improve the regularization of the resulting models without lessening the flexibility to generate all 

real-world occurring roof shapes. In this paper, we present a method to integrate building knowledge into the data-driven approach 

that uses binary space partitioning (BSP) for modeling the 3D building geometry. A retrospective regularization of polygons that 

emerge from the BSP tree is not without difficulty because it has to deal with the 2D BSP subdivision itself and the plane definitions 

of the resulting partition regions to ensure topological correctness. This is aggravated by the use of hyperplanes during the binary 

subdivision that often splits planar roof regions into several parts that are stored in different subtrees of the BSP tree. We therefore 

introduce the use of hyperpolylines in the generation of the BSP tree to avoid unnecessary spatial subdivisions, so that the spatial 

integrity of planar roof regions is better maintained. The hyperpolylines are shown to result from basic building roof knowledge that 

is extracted based on roof topology graphs. An adjustment of the underlying point segments ensures that the positions of the 

extracted hyperpolylines result in regularized 2D partitions as well as topologically correct 3D building models. The validity and 

limitations of the approach are demonstrated on real-world examples. 

 

 

1. INTRODUCTION 

Over the last two decades, 3D city and landscape models have 

significantly matured and their benefits for analyses, planning, 

and visualization purposes in the urban domain have since then 

been largely recognized. The most important objects of 3D city 

models are by far the buildings. In this paper, we are concerned 

in particular with building models with detailed roof structures 

and planar facades. Although such models can be manually or 

semi-automatically constructed, e.g., based on aerial images and 

3D point clouds, the generation of large areas is only efficiently 

feasible by a fully automatic data interpretation. Even then, the 

reconstruction of buildings for larger cities can take up to many 

days. A still quite current overview on the topic of 3D building 

reconstruction is, e.g., given by Haala and Kada (2010). 

Approaches for 3D building reconstruction are roughly divided 

into data driven and model driven approaches, depending on the 

degree of contextual knowledge they integrate about the general 

shape of buildings. Besides the assumption that almost all roofs 

consist of planar surfaces, pure data driven approaches do not 

integrate any other building knowledge at all. The shapes of the 

resulting 3D models are not limited by any restrictions and they 

resemble very closely the input data. Without regularization, 

however, the building models or parts thereof can easily end up 

distorted and exhibit small irregularities if the constructed 

planar surfaces do not precisely meet in common points or lines. 

Model driven approaches are more restricted towards the shapes 

that they are able to reconstruct. They often use a library of 

parameterized templates that can be combined to generate more 

complex shapes. The inherently strong regularization of shape 

templates is implicitly passed on to the reconstructed building 

models. Because not all buildings in the real world can be 

described by a set of shape templates, some buildings can only 

be crudely approximated by model driven approaches. Lately, 

data driven and model driven approaches have been merged 

towards hybrid reconstruction approaches that try to exploit the 

advantages of both worlds: the shape flexibility of a data driven 

approach with the regularization capabilities of a model driven 

approach. 

The automatic 3D building reconstruction approach presented 

by Sohn et al. (2008) is in its core purely data driven. It uses the 

concept of binary space partitioning (BSP) to decompose the 

horizontal space according to the planar regions resulting from 

3D point cloud segmentation. By assigning each resulting 2D 

region with its respective plane equation, a 3D building model 

is specified; see section 2 for specifics. The approach has been 

extended to also integrate general line regularization rules 

(Sohn et al. 2012) that improve the shape of surface boundaries, 

but maintain the plane information of the BSP regions. In this 

paper, we present a method to integrate explicit building roof 

knowledge in the form of roof shape types (saddleback, hip, 

asymmetric hip, etc.) to improve the generation of regularized 

BSP models and also to adjust the orientation and alignment of 

roof faces and roof elements.  
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2. BUILDING RECONSTRUCTION BASED ON  

BINARY SPACE PARTITIONING 

Binary Space Partitioning (BSP) is a hierarchical partitioning 

that recursively subdivides an n-dimensional space into convex 

subspaces by a set of (n-1)-dimensional hyperplanes. Based on 

an approach first utilized by Schumacker et al. (1969) it was 

originally developed in the context of 3D computer graphics for 

determining the visibility of surfaces during the rendering 

process of static scenes (Fuchs et al., 1980). Since then it has 

been adapted for a variety of applications such as ray-tracing 

(Naylor and Thibault, 1986), shadow generation (Chin and 

Feiner, 1989), solid modeling (Paterson and Yao, 1990), and 

image compression (Radha et al., 1996). 

 

In the context of automatic building reconstruction a BSP based 

approach has been introduced by Sohn et al. (2008). It generates 

a polyhedral building model by applying the following three 

steps: point-wise clustering, building cue extraction, and BSP 

driven rooftop topology construction. The main aspects of each 

step are roughly summarized in the next paragraph. 

 

The first step starts with a height clustering of all previously 

identified building points. It decomposes the initial set of points 

into clusters to reduce the shape complexity. Thereby, each 

cluster has the property that the height discrepancy between a 

point and its neighboring points, as defined by the Delaunay 

triangulation, is less than a predefined threshold. Then a plane 

clustering algorithm is independently applied to each height 

cluster in order to estimate segments. In the second step, 

intersection lines and step lines are extracted. The intersection 

lines are obtained for each height cluster by calculating the 

intersections of all pairs of adjacent segments in a height 

cluster. The extraction of the step lines is based on the 

boundaries of adjacent segments and a Compass Line Filter 

(CLF) (Sohn et al., 2008). For the rooftop topology 

reconstruction in the third step a 2D binary space partitioning is 

performed. Therefore, the extracted step lines and intersection 

lines from the previous step are formulated as hyperlines. Due 

to the recursive nature of the BSP, the resulting space 

partitioning depends on the order in which the hyperlines are 

applied. For this reason a partitioning score, which takes into 

account the plane homogeneity, the geometric regularity, and 

the edge correspondence for each hyperline, is calculated in 

every recursion. Finally, a merging process is performed based 

on the BSP tree that merges all those adjacent partitions whose 

planar equations have similar normal vectors. 

 

This method is able to produce polyhedral building models even 

in complex urban settings where buildings are comprised of a 

number of sub-shapes. Additionally, it handles the presence of 

the missing data problem. However, due to the data-driven 

nature of this approach the quality of such a polyhedral model 

depends mainly on the extraction quality of the intersection and 

step lines. Even the devised geometric regularization of the 

CLF, which quantizes line slopes in a limited number of angular 

ranges, cannot always avoid irregular and sharp corners. 

Therefore, Sohn et al. (2012) introduce a method to rectify 

errors in a polyhedral building model. It considers the resulting 

vectors from a BSP as noisy model boundaries and 

progressively rectifies them based on a Minimum Description 

Length (MDL). The presented method is, on the one hand, able 

to produce building models which consider certain 2D 

regularizations. However, on the other hand, the solidness of 

the models is not guaranteed anymore, which means that a 

xy-coordinate can have more than one z-value due to 

unintentional gaps between adjacent roof planes. Some typical 

examples of this phenomenon are shown in Figure 1. 

 

Top view:                    Perspective view: 
 

                
 

                
 

Figure 1. Two examples of unintentional gaps between roof 

planes after applying the MDL based optimization 

method presented in (Sohn et al., 2012). 

 

 

A further optimization is presented in (Sohn et al., 2013). It 

takes additional hyperlines into account which are extracted 

from a single image. To connect these hyperlines with the 

already extracted hyperlines, different hypotheses based on CLF 

are generated and evaluated. An overview of the whole BSP 

based building reconstruction process is given in Figure 2. 

 

 
 

Figure 2. Overview of the reconstruction process based on 

BSP presented by Sohn et al. (2008, 2012, 2013). 

 

 

3. RECONSTRUCTION PROCESS 

In this section, we first present our motivation and the central 

concept of our reconstruction approach. We explain in 

subsection 3.1 how building knowledge specifically can be used 

for the improvement of the resulting polyhedral model. Next, in 

subsection 3.2, we outline the workflow and the main 

components of our fully automatic reconstruction approach for 

regularized building models. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: U. Stilla, F. Rottensteiner, and S. Hinz 

doi:10.5194/isprsannals-II-3-W5-541-2015

 
542



3.1 Motivation 

The BSP based building reconstruction approach described in 

the previous section is generally suitable for the reconstruction 

of planar building roofs. It handles the missing data problem 

and is not limited to certain roof types. The quality of such a 

polyhedral building model obtained by this approach, without 

applying any optimization method, depends mainly on the 

quality of the hyperlines, the sequence in which the hyperlines 

are applied (partitioning score), and the merging conditions for 

adjacent partitions. We believe that particularly these three 

aspects should be taken into account in a BSP based 

reconstruction process. Therefore, presented in this paper is a 

new fully automatic reconstruction approach which integrates 

building knowledge into binary space partitioning in order to 

 

 improve the geometric accuracy of hyperlines, 

 enhance the partitioning score, 

 reduce the number of merge operations. 

 

In order to achieve these objectives, we extract as much 

building knowledge as possible in a feature-driven process from 

certain parts of the point cloud. This knowledge is then used in 

different ways to support the subsequent data-driven 

reconstruction process. Thereby, the resulting polyhedral 

building model can be obtained directly from the BSP so that 

the construction of several polyhedral building models, which 

have to be optimized in an iterative way, is avoided. In addition, 

by integrating the building knowledge into the BSP we can 

guarantee that our regularized models are always closed. 

Furthermore, the ability to reconstruct the whole building and 

not just parts of it is not limited to the extractable building 

knowledge. 

 

For this purpose, we also introduce in this paper the idea of 

hyperpolylines for the binary partitioning of the space in the 

context of building reconstruction. It reduces the number of 

partitions and supports the nonambiguity during the merging 

process of adjacent partitions. For example, the number of 

partitions for a hip roof without any superstructures can be 

reduced from six to four so that no further merging is needed. 

The reduction of the partition number has a big impact 

especially on buildings with small superstructures such as 

dormers which usually cause a large number of small partitions. 

Also, concave point sets can be directly expressed by the use of 

valid hyperpolylines. This allows a more natural partitioning of 

the space if such a partition can be detected directly from the 

point cloud. 

 

A further advantage of the integration of building knowledge 

into BSP is that our method is able to define hyperlines in 

occluded building parts where otherwise no hyperlines can be 

extracted. Also, the merging criteria for two adjacent partitions 

are not limited anymore to the information of their own points. 

E.g. similar nonadjacent sub-parts of a building with the same 

semantic information can be taken into account. 

 

 

3.2 Workflow 

In this subsection we give an overview of the main parts of our 

reconstruction approach for the construction of regularized 

building models. It is based on a binary space partitioning 

which enables the integration of building knowledge. Thus, our 

reconstruction approach can generate a 3D polyhedral building 

model directly from a partitioned space so that natural 

regularities are considered and the final model is always solid 

and topologically correct. The process is presented in Figure 3 

and consists of the following five main steps: point-wise 

clustering, building knowledge extraction, adjustments, 

building knowledge integration, and model construction. 

 

 
 

Figure 3. Overview of the extended BSP based reconstruction 

approach which integrates building knowledge for 

the construction of regularized models. 

 

 

The workflow starts with a height clustering as described above. 

Based on the partitioning, we detect the 2D boundary for each 

height cluster. In cases where only one point set can be obtained 

the boundary represents the initial building outline. For the 

subsequent segmentation we perform sub-surface segmentation 

as introduced in (Kada and Wichmann, 2012) for each height 

cluster. Compared to common surface growing methods (see 

Vosselman and Klein, 2010), smaller segment patches, which 

are usually disconnected due to superstructures, are implicitly 

merged to larger segments so that the extraction of semantic 

information is improved. 

 

Based on the result of the sub-surface segmentation, a roof 

topology graph (Verma et al., 2006) is constructed, where a 

node represents a segment and an edge between two nodes 

represents the relationship of two adjacent segments (see 

section 4). We use this topology graph to detect in a feature-

driven recognition step certain properties and substructures of 

the building.  

 

In the next step (see section 5), these properties and 

substructures are used for adjustment purposes. Thus, we first 

adjust those segments which are part of the extracted semantic 

information. After this all other segments which are not part of a 

recognized building feature are adjusted according to the 
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properties of the extracted building knowledge. These two 

adjustment steps emphasize the natural structure in the 

geometry of a building so that a regularized space partitioning 

can be performed in the next step.  

 

After the adjustments have been carried out, all relevant 

information is extracted for the construction of the BSP (see 

section 6). We provide point group information and adjusted 

intersection lines, step lines, polylines and plane information. 

Additionally, the original intersection lines, step lines and 

planes derived directly from the segmentation step, are also 

taken into account in not just the partitioning process of the 

space but also the order in which hyperlines and hyperpolylines 

are applied, and the merging process. 

 

In the last step of the reconstruction process a regularized 3D 

polyhedral building model is directly obtained from the BSP. 

 

 

4. BUILDING KNWOLEDGE EXTRACTION 

For the automatic reconstruction of realistic 3D city models 

there currently exist several techniques that try to improve the 

shape of the constructed model with regard to the real world 

object. An effective method is the integration of building 

knowledge. We use the term building knowledge as a general 

term to summarize all information about a building. It includes 

inter alia the geometric, topologic, semantic, structural and 

regularity information of a building. The way it is used for 

reconstruction purposes is manifold. 

 

Generally, building knowledge in data-driven approaches is 

commonly used for the reconstruction of small occluded parts 

or to emphasize the occurrence of symmetrical, parallel and 

orthogonal structures so that the geometric regularity in the 

resulting model can be perceptually enhanced. For these 

purposes, building knowledge is utilized to support repetitive 

structures and to define restrictions which avoid improbable and 

unnatural shapes. The restrictions affect for example the 

orientation of substructures or the slopes of roof planes. An 

example where building knowledge is taken into account for the 

reconstruction of building façades is given by Pu and 

Vosselman (2009). They first define several important building 

features such as walls, doors and windows based on the general 

knowledge of building façades for the recognition of these 

features in a segmented laser point cloud. Later, building 

knowledge is once again used to hypothesize the occluded 

building parts from the directly extracted features. Another 

example for the automatic construction of occluded building 

parts based on building knowledge is given by Becker (2009). 

She introduces a façade grammar which is automatically derived 

from successfully reconstructed parts of the building and 

applied to those parts which are occluded. An example which 

considers building knowledge to emphasize natural regularities 

in a building model is given in (Wichmann and Kada, 2014). In 

their fully automatic 3D building reconstruction approach they 

present several local and global regularization rules defined on 

planar half-spaces that integrate building knowledge to improve 

the shape and the accuracy of an automatic reconstructed 

building model.  

 

In contrast to data-driven methods, the impact of building 

knowledge in purely model-driven approaches is usually 

greater. It is not only limited to the quality of the resulting 

model but also to the ability to reconstruct a building. Only 

building shapes of a predefined knowledge base can be 

reconstructed. Usually the knowledge base consists of several 

templates which represent different types of roofs. Once the best 

fitted template to the input data is detected, only an instance of 

it has to be estimated. These methods usually produce good 

results even for point clouds with low density. However, they 

are always strongly limited to the predefined building 

knowledge. Therefore, as more building knowledge in the form 

of templates is available, more different types of buildings can 

be reconstructed at the expense of computation time. Two 

recent examples for model-driven approaches are given in 

(Henn et al., 2013; Huang et al., 2013).  

 

The building knowledge considered in our approach is also 

defined by several templates. However, in contrast to purely 

model-driven approaches the ability to reconstruct a building in 

our method is not limited to the predefined knowledge base. 

Analogous to data-driven approaches it affects only the quality 

of the resulting model. 

 

For the extraction of building knowledge we adapted the roof 

topology graph presented in (Xiong et al., 2014). For each 

building a directed roof topology graph (dRTG) is created with 

G = (V, E, μV, μE, s, t), where V is the finite set of labeled 

vertices (nodes), E ⊆ {(vi, vj) | vi, vj ∈ V, vi ≠ vj} the finite set of 

labeled edges, μV the finite set of node attributes, μE the finite 

set of edge attributes, and the unary operations s and t with 

s : e → v1 and t : e → v2 for a given e ∈ E. A segment is 

represented in a dRTG as a labeled node, and the relationship 

between two adjacent segments as two directed labeled edges 

connecting the nodes with each other. We define that two 

segments are adjacent to each other if at least one point exists in 

each segment so that the distance between them is less than a 

predefined threshold. Thereby, we differentiate between two- 

and three-dimensional adjacency, ignoring the z-coordinates of 

the points in the two-dimensional distance calculation, to 

distinguish between potential step and intersection lines. This 

information is represented by an attribute of the edge. 

Additionally, we label each edge with a confidence value. For 

the calculation of the confidence value of a potential 

intersection line, we hypothesize between its two adjacent 

segments an intersection line that results from the intersection 

of those two planes which can be directly derived from the 

points of each segment. The confidence value is based on the 

following three criteria: 

 

 the average distance of the segment points to their 

related segment planes,  

 the number of segment points which are close to the 

hypothesized intersection line, 

 the overlap length of the two segments with regard to 

their intersection line. 

 

For the calculation of the overlap length, first all points close to 

the hypothesized intersection line are projected onto the line. 

Then, for each segment the longest line segment is estimated by 

using the outmost points on the intersection line that initially 

belong to the segment. The overlap length of both line segments 

yields the overlap length of the segments. The confidence value 

for potential step lines can be estimated in a similar way. 

 

Based on the dRTG structure, we define a knowledge base with 

several subgraph templates for the recognition of typical 

building features. This includes for example ridge lines, valleys, 

dormers, and also different types of roof ends such as gable, 

hip, Dutch gable, bonnet and mansard. The occurrence of each 
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template of the knowledge base is detected in the dRTG by 

performing an iterative subgraph matching algorithm which 

takes the node and edge labels into account. If an occurrence is 

found, it adds this semantic information as new attributes to the 

nodes and edges of the dRTG so that they can be used in the 

next iterations for the recognition of further building features. 

The recognition of building features stops if no further attribute 

can be added to the graph.  

 

Afterwards, a second iterative recognition step is performed. It 

mainly considers the semantic information gained from the 

previous recognition step to identify simple substructures which 

often occur in a building. Thereby, those parts of the dRTG are 

preferred for the recognition where high confidence values are 

present. The confidence value of a building feature can 

automatically be modified during this recognition step if the 

dRTG gives hints for its correctness. For example, the 

confidence value of a dormer is improved if another dormer on 

the opposite site of an already detected mansard roof has been 

recognized. Additionally, the confidence value of a building 

feature is reduced if the same feature type has already been 

detected in the direct neighborhood. Thereby, a more or less 

balanced distribution of recognized substructures is 

accomplished in the dRTG. The recognition of substructures 

stops if the rate of segments, which are not part of any 

recognized substructure, is less than a predefined threshold or if 

no further substructures can be found in the graph. As 

mentioned before, the number of templates can be limited to 

reduce the computation time due to the fact that for 

reconstruction the whole building does not have to be 

represented by the predefined knowledge base. 

 

 

5. ADJUSTMENTS 

Based on the intrinsic information about a building gained from 

the dRTG in the previous step, the details of the adjustment that 

emphasizes regularities in the resulting model are explained in 

this section. The adjustment step is divided into two separate 

sub-steps. In the first sub-step, only those building parts that are 

represented by the dRTG are adjusted where building 

knowledge could be extracted. Then, in the second sub-step all 

other parts are adjusted according to the results of the first sub-

step. 

 

In analogy to the adjustment methods presented in (Wichmann 

and Kada, 2014), we differentiate between local and global 

adjustments. However, instead of half-spaces we apply our 

adjustment rules to segments and their plane equations. A local 

adjustment is performed on a set of adjacent segments that 

contribute to a roof component and which are therefore 

represented as a connected subgraph in the dRTG. Thus, local 

adjustments are individually applied for every connected 

subgraph and independent from other subgraphs. In the 

subsequent global adjustment special care is taken of the 

relation between the recognized subgraphs, even if they are not 

adjacent to each other. The two-step adjustment ensures that 

those segments which are part of a substructure have a higher 

impact on its segments than the segments of other substructures. 

 

The adjustments in our approach change mainly the slope and 

the orientation of segments in a local and global context. By 

using a divisive clustering method, those segments which 

feature similar slopes or xy-directions are adjusted to their 

average value. Additionally, all segments of a substructure are 

translated within a strict predefined threshold during the global 

adjustment so that building features in the dRTG are merged 

together. In contrast to (Wichmann and Kada, 2014), during the 

local and global adjustment process, we also consider the 

semantic and the topological information of each segment. For 

example, we restrict the adjustment of the segments of a 

subgraph, which is surrounded by a segment of another 

subgraph, to remain in their respective segment. Otherwise the 

BSP tree would need to be altered; a process that can become 

quite complicated (dependent on the structure of the tree and 

the location of the segments within this tree). Therefore, 

dormers always remain on the same roof plane so that a possible 

degeneration of the building model is reduced. Furthermore, we 

ensure that the xy-direction of a subgraph, which represents a 

dormer, is mainly influenced by the main direction of its 

connected substructure. Because the number of roof shape 

templates is limited, the described adjustment process is quite 

efficient. 

 

Subsequently, more divisive clustering algorithms are carried 

out in the second sub-step to adjust also those parts of the 

dRTG where no building knowledge could be extracted. For 

this purpose the global adjustments are repeated but this time 

including all segments and by considering the following three 

conditions: 

 

 If more than one adjusted segment occurs in a cluster, 

the cluster is split again. 

 If exactly one adjusted segment occurs in a cluster, all 

unadjusted segments are adapted to its value. 

 If no adjusted segment occurs in a cluster, all 

segments are adjusted to their average value. 

 

The combination of both adjustment steps exposes the natural 

structure in the geometry of a building so that a regularized 

space partitioning can be generated in the next step. 

 

 

6. BUILDING KNOWLEDGE INTEGRATION 

In this section, we explain how the extracted building 

knowledge is integrated into the BSP to produce regularized 

models. Without considering any building knowledge, the space 

partitioning can be performed based solely on the segmentation 

and boundary detection results, from which intersection and 

step lines are then formulated as hyperlines. The quality of such 

a partitioning is especially low for low density point clouds 

because the real orientations of the hyperlines are difficult to 

determine. Furthermore, this approach usually produces 

numerous small partitions as shown in Figure 4 which leads to 

ambiguities during the merging process. 

 

For this reason, during the building knowledge integration step, 

we first collect all inner intersection and step lines that are part 

of a recognized substructure in the dRTG. Due to the 

adjustments in the previous step these lines are regularized and 

increase the occurrence of symmetrical, parallel and orthogonal 

structures. Afterwards, all building features which connect two 

substructures in the dRTG are used for the estimation of 

additional lines. Furthermore, also those parts of the building 

where no knowledge has been extracted are considered as 

follows: The segments are first categorized into different 

groups. Two groups are merged together if they are part of the 

same substructure or if they belong to two different groups 

which are connected by a building feature. Then, the 

intersection and step lines between two groups are added. 

Finally, the lines of the boundary detection are also added. 
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Figure 4. Left: The result of the segmentation. Right: The 

result of the binary space partitioning without 

considering building knowledge. 

 

 

An example of the line generation can be found on the left side 

of Figure 5 where the input points that belong to the building 

are separated into four height clusters represented by different 

colors. The building knowledge extraction step detects a total of 

three one-sided hip roofs whose inner lines are colored in red. 

Two of them are in the same height cluster and a building 

feature in the dRTG indicates an L-connection relationship 

between them. Due to the different ridge line heights of the two 

connected one-sided hip roofs, the three green intersection lines 

are extracted based on the plane equations of the segments. 

Additional lines between two segments which belong to 

different groups are colored in blue. The black lines are derived 

from the boundary detection. 

 

 
 

Figure 5. Left: Point cloud overlaid with extracted line 

segments originating from substructures (red), 

additional building knowledge (green) and segment 

groups (blue). Right: Point cloud overlaid with 

accumulated polylines colored for each height 

cluster according to their priority. 

 

 

To reduce the number of partitions in the BSP tree, we treat all 

intersection and step lines as line segments and connect them to 

form polylines. The start and end points for line segments that 

are inside a recognized substructure are well defined through 

their shape templates. The two end points for other lines are 

determined as described in section 4. The polylines are 

estimated for each height cluster separately as follows: Choose 

the longest line segment that is not yet part of any polyline and 

repeatedly add the longest line segment (that is also not yet part 

of any polyline) that connects to either end point of the polyline 

to this new polyline until no more line segments can be added. 

Repeat until no more polylines can be generated in this way. 

The result of the polyline estimation is shown on the right side 

of Figure 5. The first extracted polyline of each height cluster in 

this figure is highlighted in red, the second in dark green, the 

third in brown, and so on. As shown, because of the polyline 

formulation as the partitioning element, the binary partitioning 

can now also be realized with concave borders which often 

occur in roof tops. 

 

For the binary partitioning of a height cluster, all polylines are 

used and formulated as hyperpolylines. The order in which they 

are recursively applied has an impact on the result. Thus, we use 

a partitioning score which is calculated for each hyperpolyline 

and updated during every iteration of the partitioning process. It 

prioritizes hyperpolylines that are long, have a large number of 

line segments, and where the ratio of the polyline length and the 

length of the corresponding hyperline is close to 1. As the 

points at the two sides of a partition should preferably be 

homogenous, the score also incorporates a factor that considers 

the number of points with similar planar properties in each 

partition. The result of the binary space partitioning with 

incorporated building knowledge is shown on the left side of 

Figure 6. Compared to the original partitioning in Figure 4, the 

number of partitions is now less than half. 

 

 
 

Figure 6. The result of the binary space partitioning which 

takes building knowledge into account before (left) 

and after (right) the merging process. 

 

 

After space partitioning, adjacent partitions with similar normal 

vectors are merged and the plane equations of the new partitions 

are re-estimated. Due to the adjustment step the resulting plane 

equation of a partition depends not only on the points in it. 

Once all partitions with similar normal vectors are merged 

together, the outline of the regularized building can be extracted 

directly. During the conversion of the BSP tree into a boundary 

representation, the outline will result in façade polygons. 
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7. RESULTS 

We have tested our fully automatic building reconstruction 

approach on several selected buildings of the Vaihingen test 

data set (4 points/m2) provided by the German Society for 

Photogrammetry, Remote Sensing and Geoinformation (DGPF) 

(Cramer, 2010). In general, the approach presented in this paper 

is suitable for the reconstruction of buildings as already shown 

in the Figures of the previous section. It is not limited to the 

number of templates; it handles the missing data problem, and 

always produces closed and regularized building models which 

can be directly obtained from the BSP. For complex buildings 

with many sub- and superstructures in particular, we discovered 

a big improvement in the resulting polyhedral building model 

due to fewer partitions and the more regularized structure of the 

BSP. The quality of the model in our reconstruction approach 

depends mainly on the building knowledge extraction. The 

more knowledge that can be derived from the input data, the 

more regularized the BSP and its resulting model will be. 

 

 
 

Figure 7. Left column: The result of the segmentation using a 

RANSAC plane extraction method and the BSP 

without considering building knowledge before and 

after the merging process. Right column: The result 

of the line extraction based on building knowledge 

and the building knowledge considering BSP before 

and after the merging process. 

 

 

For test purposes, instead of the sub-surface segmentation, we 

also tried the RANSAC plane extraction method which was 

originally used in (Sohn et al., 2008). The result of the 

segmentation is presented in Figure 7. Based on this, we 

constructed the BSP once with (as shown in the right column) 

and once without (as shown in the left column) the integrated 

building knowledge in the BSP. As shown in the second row of 

Figure 7, the number of partitions before applying the merging 

process is now reduced from 23 partitions to only 14 partitions. 

The main difference after the merging process is that the left 

roof plane on which the two dormers are located could not be 

merged together in the first case. This also has an impact on the 

quality of the bottom dormer because the black partition implies 

a longer ridge line than the orange one. Therefore, the resulting 

model of the BSP without considering any building knowledge 

has a gap. In contrast to this, the solidness of the reconstructed 

building model of our approach is shown in Figure 8. 

 

An unsolved issue with our new approach which still occurs in 

the resulting outline is shown in Figure 8 and in its partitions in 

Figure 7. The dormer in the back misses a small part that is 

close to the building outline. It is incorporated in the roof plane 

because the hyperline from the other dormer cuts this part away. 

Similar problems also occur without the integration of building 

knowledge, as can be seen in the dark segment in the bottom 

left image of Figure 7, and is an unavoidable glitch in the 

greedy strategy of the partitioning process. 

 

 
 

Figure 8. The resulting regularized building outline of our 

automatic reconstruction approach which is directly 

extracted from the BSP in top and perspective view. 

 

 

The final result of our BSP based reconstruction approach for 

the two segmented point clouds in Figure 4 and Figure 7 is 

shown in Figure 9 once separately in magnified form, and once 

as part of the reconstructed test area 1 of the Vaihingen data set.  

 

 
 

Figure 9. Resulting building models reconstructed by our 

BSP based reconstruction approach. 
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8. CONCLUSION 

In this paper, we presented a fully automatic building 

reconstruction approach that generates regularized models 

directly from the BSP. In contrast to already existing BSP based 

methods, the resulting solid building models feature a better 

geometric regularization. This is accomplished by extracting 

building knowledge in a feature-driven process and its 

integration into the BSP generation. Thereby, the BSP tree is 

enriched with model knowledge. To support the nonambiguity 

during the merging process of adjacent partitions we reduced 

the number of partitions inter alia by providing further point 

group information and the introduction of hyperpolylines in the 

BSP. The latter one enables the concave partitioning of a space 

so that the occurrence of smaller convex partitions is reduced. 

The presented approach is especially suitable for complex 

buildings with many sub- and superstructures. However, further 

investigations of the partitioning score are necessary so that a 

partitioning sequence can be accomplished that better maintains 

the integrity of the point cloud segments. Furthermore, a BSP 

framework should be developed with a strong focus on the tight 

integration of building knowledge, so that hyperpolylines can 

be directly hypothesized from the BSP itself. 
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