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ABSTRACT:

The faithful 3D reconstruction of urban environments is an important prerequisite for tasks such as city modeling, scene interpretation or
urban accessibility analysis. Typically, a dense and accurate 3D reconstruction is acquired with terrestrial laser scanning (TLS) systems
by capturing several scans from different locations, and the respective point clouds have to be aligned correctly in a common coordinate
frame. In this paper, we present an accurate and robust method for a keypoint-based registration of unordered point clouds via projective
scan matching. Thereby, we involve a consistency check which removes unreliable feature correspondences and thus increases the ratio
of inlier correspondences which, in turn, leads to a faster convergence of the RANSAC algorithm towards a suitable solution. This
consistency check is fully generic and it not only favors geometrically smooth object surfaces, but also those object surfaces with a
reasonable incidence angle. We demonstrate the performance of the proposed methodology on a standard TLS benchmark dataset and
show that a highly accurate and robust registration may be achieved in a fully automatic manner without using artificial markers.

1 INTRODUCTION

The faithful 3D reconstruction of urban environments represents
a topic of great interest in photogrammetry, remote sensing and
computer vision, as it provides an important prerequisite for ap-
plications such as city modeling, scene interpretation or urban ac-
cessibility analysis. While a variety of devices allows for acquir-
ing an appropriate representation of object surfaces in the form
of 3D point cloud data, terrestrial laser scanning (TLS) systems
provide dense and accurate point cloud data for the local environ-
ment and they may also reliably measure distances of several tens
of meters. However, a TLS system is a line-of-sight instrument
and hence occlusions resulting from objects in the scene may be
expected as well as a significant variation in point density be-
tween close and distant object surfaces. Consequently, multiple
point clouds have to be acquired from different locations in order
to obtain complete objects and full scene coverage. As the spa-
tial 3D coordinates of each of these point clouds are only deter-
mined w.r.t. the local coordinate frame of the sensor, all captured
point cloud data have to be transferred into a common coordi-
nate frame. This process is commonly referred to as point cloud
registration, point set registration or 3D scan matching.

In this paper, we focus on keypoint-based point cloud registra-
tion which has proven to be among the most efficient strategies
for aligning pairs of overlapping scans. Generally, such keypoint-
based point cloud registration approaches rely on (i) forward-
projected 2D keypoints detected in either intensity or range im-
ages, or (ii) 3D keypoints extracted from either the original point
cloud data or a voxel-based subsampling in order to obtain an
approximately homogeneous point density. For reasons of ef-
ficiency and robustness, we exploit forward-projected 2D key-
points and thereby take into account that not all of the detected
correspondences between different scans are guaranteed to con-
tain reliable 3D information. We explicitly address the latter is-
sue by presenting a new measure for point quality assessment.
This measure is fully generic and it not only favors geometrically
smooth object surfaces, but also those object surfaces with a rea-
sonable incidence angle which, in turn, efficiently handles unre-
liable range measurements arising from large incidence angles.

In summary, we (i) present a new measure for assessing the qual-
ity of scanned 3D points in a fully generic manner, (ii) explain
the pros and cons of this measure in comparison to other alterna-
tives, (iii) define a consistency check based on the new measure
for filtering unreliable feature correspondences and (iv) demon-
strate the significance of the consistency check for an efficient
and robust registration of TLS point clouds.

After reflecting related work on point quality assessment, feature
extraction and point cloud registration in Section 2, we explain
our methodology in Section 3. Subsequently, in Section 4, we
provide a theoretical consideration of the new measure for point
quality assessment and briefly discuss the consequences for reli-
able range measurements in this context. This is followed by a
presentation of experimental results in Section 5 and a discussion
of these results in Section 6. Finally, in Section 7, we provide
concluding remarks and suggestions for future work.

2 RELATED WORK

In the following, we reflect the related work and thereby focus on
how to quantify the quality of each range measurement (Section
2.1), how to extract suitable features (Section 2.2) and how to
efficiently register TLS point clouds (Section 2.3).

2.1 Point Quality Assessment

Generally, the accuracy of a range measurement depends on the
design of the measurement system in terms of angular accuracy,
range accuracy and resolution and, additionally, on the charac-
teristics of the observed scene in terms of scanning geometry
(i.e. the distance and orientation of scanned surfaces), object
edges, surface reflectivity and environmental conditions (Hebert
and Krotkov, 1992; Boehler et al., 2003; Soudarissanane et al.,
2011). While a systematic error modeling may account for a va-
riety of potential error sources contributing to the uncertainty of
range measurements (Lichti et al., 2005; Lichti and Licht, 2006;
Barber et al., 2008; Boström et al., 2008), scene-specific issues
cannot be generalized and therefore have to be treated differently.
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For this reason, we purely focus on filtering raw point cloud data
by exploiting the captured information. On the one hand, a sim-
ple approach for filtering may be based on the measured intensity
information (Barnea and Filin, 2007), since very low intensity
values are likely to correspond to unreliable range measurements.
On the other hand, it seems advisable to filter points at depth dis-
continuities as these exhibit the largest distance error. A respec-
tive filtering may for instance be achieved by involving the scan
line approximation technique (Fuchs and May, 2008), by apply-
ing the Laplacian operator on the range image (Barnea and Filin,
2008) or by considering the standard deviation of range values
within a local patch of the range image (Weinmann and Jutzi,
2011). Accounting for both intensity and range information, the
combination of removing points with low values in the intensity
image as well as points at edges in the range image has been
proposed in order to obtain an adequate 3D representation of a
scene (Swadzba et al., 2007). Furthermore, it seems to be advis-
able to take into account that the scanning geometry w.r.t. the
incidence angle (i.e. the angle between incoming laser beam and
surface normal) may have a significant influence on the accuracy
of a range measurement which becomes visible by an increase in
measurement noise with increasing incidence angles (Soudaris-
sanane et al., 2011). Accordingly, it seems to be desirable to
have a common and generic measure which considers reliability
in terms of both object edges and incidence angle.

2.2 Feature Extraction

Nowadays, the most accurate alignment of TLS data is still ob-
tained via manipulating the observed scene by placing artificial
markers which represent clearly demarcated corresponding points
in different scans. Thus, such markers may easily be extracted
either manually or automatically (Akca, 2003; Franaszek et al.,
2009). Even though a good quality of the registration process is
ensured, this procedure may however be rather time-consuming –
particularly for a large number of scans – and it hence often tends
to be intractable. Consequently, a fully automated registration of
scans without using artificial markers is desirable.

Generally, an automated procedure for point cloud registration
may be based on the full point clouds and applying standard tech-
niques such as the Iterative Closest Point (ICP) algorithm (Besl
and McKay, 1992) or Least Squares 3D Surface Matching (Gruen
and Akca, 2005) which exploit the spatial 3D information in or-
der to minimize either the difference between point clouds or the
distance between matched surfaces. Since these standard tech-
niques typically result in a higher computational burden, it seems
advisable to extract relevant information in the form of specific
features from the point clouds in order to alleviate point cloud
registration. Such relevant information may for instance be de-
rived from the distribution of the points within each point cloud
by using the normal distributions transform (NDT) either on 2D
scan slices (Brenner et al., 2008) or in 3D (Magnusson et al.,
2007). Furthermore, the detection of corresponding features may
be based on specific 3D structures in the scene which can be
characterized by geometric primitives such as planar structures
(Brenner et al., 2008; Pathak et al., 2010; Theiler et al., 2012)
and/or even more complex primitives such as spheres, cylinders
and tori (Rabbani et al., 2007). Additionally, lines resulting from
the intersection of neighboring planar structures or the boundary
of a planar structure could be involved for the registration process
(Stamos and Leordeanu, 2003). However, all these feature types
representing specific geometric primitives encounter significant
challenges in case of scene symmetry and they are not suited in
scenes without regular surfaces.

Facing general scenes where we may not assume the presence of
specific 3D shape primitives, the least assumptions are possible

when focusing on point-like features. Such features may for in-
stance be based on geometric curvature or normal vectors of the
local surface (Bae and Lichti, 2008), or on the application of in-
terest point detectors in 3D space, e.g. via a 3D Harris corner de-
tector or a 3D Difference-of-Gaussians (DoG) detector (Theiler
et al., 2013; Theiler et al., 2014). However, in order to increase
computational efficiency and furthermore account for the fact that
– due to the use of a line-of-sight instrument with a specific an-
gular resolution – a significant variation of the point density may
be expected, most of the proposed 3D interest point detectors are
based on a voxelization of the scene and thus strongly depend on
the selected voxel size.

Taking into account that the range information is acquired for
points on a regular scan grid, we may easily derive an image rep-
resentation in the form of range images and then extract interest
points from these range images, e.g. by applying a min-max algo-
rithm (Barnea and Filin, 2008), the Harris corner detector (Steder
et al., 2009), the Laplacian-of-Gaussian (LoG) detector (Steder
et al., 2010) or the Normal Aligned Radial Feature (NARF) de-
tector (Steder et al., 2011). While the design of an interest point
detector may principally also account for finding keypoints on
geometrically smooth 3D surfaces, such approaches generally re-
quire characteristic 3D structures in the scene which may not al-
ways be that well-distributed in larger distances to the sensor.

Since modern scanning devices also allow to acquire intensity
information on the discrete scan grid and thus intensity images
which typically provide complementary information with a higher
level of distinctiveness than range images (Seo et al., 2005), some
approaches for point cloud registration involve features in the
form of keypoints extracted from intensity images derived from
reflectance data (Boehm and Becker, 2007; Wang and Brenner,
2008; Kang et al., 2009; Alba et al., 2011; Weinmann et al., 2011)
or co-registered camera images (Al-Manasir and Fraser, 2006;
Barnea and Filin, 2007; Wendt, 2007). The respective forward-
projection of such 2D keypoints w.r.t. the corresponding range
information allows to derive sparse point clouds of (almost) iden-
tical 3D points and thus significantly alleviates point cloud regis-
tration while improving computational efficiency.

2.3 Point Cloud Registration

Nowadays, most of the approaches for aligning pairs of over-
lapping scans exploit a keypoint-based point cloud registration
which has proven to be among the most efficient strategies. While
it has recently been proposed to exploit the spatial arrangement
of 3D keypoints for a geometrical constraint matching (Theiler
et al., 2013; Theiler et al., 2014), still most investigations in-
volve forward-projected 2D keypoints detected in image repre-
sentations of the captured intensity or range information. This
may be motivated by the fact that feature correspondences may
easily and efficiently be derived by comparing keypoint descrip-
tors. The forward-projection of corresponding 2D keypoints to
3D space, in turn, results in sparse point clouds which may for
instance be aligned by estimating a standard rigid transforma-
tion (Arun et al., 1987; Horn et al., 1988; Eggert et al., 1997).
Since some feature correspondences might represent outliers, a
robust estimation by involving the RANSAC algorithm (Fischler
and Bolles, 1981) is typically exploited (Seo et al., 2005; Boehm
and Becker, 2007; Barnea and Filin, 2007).

A different strategy for point cloud registration consists of pro-
jecting scans with the associated intensity information onto the
image planes of virtual cameras and minimizing discrepancies
in color, range and silhouette between pairs of images (Pulli et
al., 2005). While this is rather impractical for large point clouds
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and thus for the registration of TLS scans, a more efficient ap-
proach has recently been proposed with keypoint-based projec-
tive scan matching (Weinmann et al., 2011; Weinmann and Jutzi,
2011), where forward-projected 2D keypoints are back-projected
onto the image plane of a virtual camera in order to derive 3D/2D
correspondences which, in turn, serve as input for a registration
scheme involving the Efficient-Perspective-n-Point (EPnP) algo-
rithm (Moreno-Noguer et al., 2007) and the RANSAC algorithm
(Fischler and Bolles, 1981), and this scheme delivers highly ac-
curate registration results for coarse registration. Such a strategy
not only involves 3D cues based on the point clouds, but also 2D
cues based on imagery and hence the results for coarse and fine
registration may partially be in the same range.

Finally, it may be desirable to derive a measure describing the
similarity of different scans which may efficiently be exploited in
order to automatically organize a given set of unorganized scans
for a successive pairwise registration. This is particularly impor-
tant for approaches relying on the use of range and intensity im-
ages, since a higher overlap of considered scans results in a higher
similarity and thus more feature correspondences which, in turn,
increases the robustness of respective registration approaches. In
this regard, it has been proposed to derive a topological graph,
where the nodes represent the single scans and the edges describe
their similarity, e.g. based on the number of matched lines deter-
mined from the range information (Stamos and Leordeanu, 2003)
or the number of point correspondences between respective inten-
sity images (Weinmann and Jutzi, 2011). The smaller the weight
of an edge, the smaller the overlap between the scans correspond-
ing to the nodes connected by this edge. Thus, an appropriate
scan order for a reliable successive pairwise registration may be
derived via a minimum spanning tree (Huber and Hebert, 2003).

3 METHODOLOGY

Our proposed methodology for a pairwise registration of TLS
scans consists of three components which are represented by point
quality assessment (Section 3.1), feature extraction (Section 3.2)
and point cloud registration (Section 3.3).

3.1 Point Quality Assessment

Generally, a filtering of raw point cloud data in terms of removing
3D points corresponding to unreliable range measurements may
be based on intensity information (Barnea and Filin, 2007), since
low intensity values typically indicate unreliable range measure-
ments. However, such considerations do not account for edge
effects where noisy range measurements are likely to occur al-
though the respective intensity values might be reasonable. Hence,
we focus on two strategies which are based on the geometric mea-
sures of (i) range reliability and (ii) planarity for quantifying the
quality of a range measurement.

3.1.1 Range Reliability: The first measure of range reliabil-
ity (Weinmann and Jutzi, 2011) is motivated by the fact that a
laser beam has certain physical dimensions. Thus, the projection
of a laser beam on the target area results in a laser footprint, i.e. a
spot with finite dimension, that may vary depending on the slope
of the local surface and material characteristics (Vosselman and
Maas, 2010). Consequently, if a measured 3D point corresponds
to a footprint on a geometrically smooth surface, the captured
range information is rather reliable when assuming Lambertian
surfaces and reasonable incidence angles. However, at edges of
objects, a footprint may cover surfaces at different distances to
the sensor, and thus the captured range information is rather unre-
liable. Even more critical are range measurements corresponding
to the sky, since these mainly arise from atmospheric effects.

In order to remove unreliable range measurements – which typ-
ically appear as noisy behavior in a point cloud – it has been
proposed to quantify range reliability by considering a local im-
age patch for each point on the regular 2D grid and assigning the
standard deviation σr,3×3 of all range values within a (3×3) im-
age neighborhood to the respective center point. Deriving σr,3×3

for all pixels of the 2D representation yields a confidence map,
and a simple thresholding is sufficient to distinguish reliable mea-
surements from unreliable ones. More specifically, low values
σr,3×3 indicate a 3D point on a smooth surface and are there-
fore assumed to be reliable, whereas high values σr,3×3 indicate
noisy and unreliable range measurements. For the separation be-
tween reliable and unreliable range measurements, a predefined
threshold tσ = 0.03 . . . 0.10m has been proposed (Weinmann
and Jutzi, 2011). An example demonstrating the effect of such a
point cloud filtering is given in Figure 1 for a part of a terrestrial
laser scan which corresponds to 2304× 1135 scanned 3D points
and has been acquired with a Leica HDS6000 on the KIT campus
in Karlsruhe, Germany. The suitability of such an approach has
been demonstrated for data captured with a laser scanner (Wein-
mann and Jutzi, 2011) and for data captured with a range camera
(Weinmann et al., 2013), but the manual selection of a threshold
based on prior knowledge on the scene represents a limitation.

3.1.2 Planarity: The second measure – which we propose in
this paper – is motivated by the fact that reliable range informa-
tion typically corresponds to almost planar structures in the scene.
Consequently, we aim to quantify planarity for each pixel of the
2D representation by considering local image patches. In anal-
ogy to the measure of range reliability, we consider (3×3) image
neighborhoods as local image patches in order to assign a mea-
sure of planarity to the respective center point. From the spatial
XY Z-coordinates of all 3D points corresponding to the pixels in
the (3 × 3) image neighborhood, we derive the 3D covariance
matrix known as 3D structure tensor S ∈ R3×3 whose eigenval-
ues λ1, λ2, λ3 ∈ R with λ1 ≥ λ2 ≥ λ3 ≥ 0 are further exploited
in order to define the dimensionality features of linearity Lλ, pla-
narity Pλ and scattering Sλ (West et al., 2004):

Lλ =
λ1 − λ2

λ1
Pλ =

λ2 − λ3

λ1
Sλ =

λ3

λ1
(1)

These dimensionality features are normalized by λ1, so that they
sum up to 1 and the largest value among the dimensionality fea-
tures indicates the characteristic behavior assigned to the respec-
tive pixel. Accordingly, a pixel represents a planar 3D structure
and thus rather reliable range information if the constraint

Pλ,3×3 := Pλ ≥ max {Lλ, Sλ} (2)

is satisfied. Note that – in contrast to the measure of range reli-
ability – this definition for reliability is fully generic without in-
volving any manually specified thresholds and thus prior knowl-
edge on the scene. Some results when applying the proposed
measure for point cloud filtering are illustrated in Figure 2.

3.1.3 A Comparison of Different Measures: In order to pro-
vide an impression on the performance of the different measures
for quantifying the quality of range measurements, the derived
binary confidence maps for (i) intensity values above a thresh-
old of tI = 10 (w.r.t. a gray-valued image of type uint8),
(ii) the measure of range reliability when applying a threshold of
tσ = 0.03m, and (iii) the proposed generic measure of planarity
are depicted in Figure 3 and the corresponding effect in 3D space
is visualized in Figure 4. These figures clearly reveal that the
use of intensity information alone is not sufficient to adequately
filter point cloud data and thereby completely remove the noisy
behavior. In contrast, the strategies based on the two geometric
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0 15 0 255 0.01 40.00 log(0.01) log(40.00) unreliable reliable 

Figure 1. Range image, intensity image, visualization of range
reliability, logarithmic representation of range reliability and the
binary confidence map derived by thresholding based on a man-
ually selected threshold of tσ = 0.03m (from left to right).

measures retain adequate representations of local object surfaces.
Whereas the strategy based on the measure of range reliability
provides almost planar object surfaces for significantly varying
incidence angles, the strategy based on the measure of planarity
only provides almost perpendicular object surfaces with almost
planar behavior and thus favors lower incidence angles which
tend to yield more accurate range measurements (Figure 3).

3.2 Feature Extraction

Once we are able to quantify the quality of a range measure-
ment, the next step consists of deriving correspondences between
the respective scans. For this purpose, we consider the derived
2D image representations. As intensity images typically provide
a higher level of distinctiveness than range images (Seo et al.,
2005) and thus also contain information about the local environ-
ment which is not represented in range images, it is advisable to
involve these intensity images for finding corresponding informa-
tion between different scans. Among a variety of visual features
(Weinmann, 2013), local features seem to be favorable as they
may be localized accurately with efficient feature detectors and
as they remain stable for reasonable changes in viewpoint (Tuyte-
laars and Mikolajczyk, 2008). Characterizing such a local feature
by deriving a feature descriptor from the local image neighbor-
hood even allows an individual identification of local features
across different images. Thus, using local features has become
very popular for a wide range of applications.

As one of the most powerful approaches for extracting local fea-
tures, we apply the Scale Invariant Feature Transform (SIFT)
(Lowe, 2004) on the intensity images. This yields distinctive key-
points at 2D image locations x ∈ R2 as well as the respective
local descriptors which are invariant to image scaling and image
rotation, and robust w.r.t. image noise, changes in illumination
and reasonable changes in viewpoint. In order to reject ambigu-
ous matches, the descriptors extracted for keypoints in different
images Ii and Ij are not simply compared via their Euclidean
distance, but via the ratio of the Euclidean distances of a descrip-
tor belonging to a keypoint in Ii to the nearest neighbor and the
second nearest neighbor in Ij . A low value of this ratio indicates
a high similarity to only one of the derived descriptors belong-
ing to Ij , whereas a high value indicates that the nearest and
second nearest neighbor are quite similar. Consequently, the ra-
tio describes the distinctiveness of the matched features, and it is
selected to be below a certain threshold tSIFT which is typically
chosen within the interval [0.6, 0.8] for obtaining reliable feature
correspondences xi ↔ xj between images Ii and Ij .

3.3 Point Cloud Registration

Generally, the forward-projection of the extracted 2D keypoints
w.r.t. the corresponding range information yields sparse point

0 1 0 1 0 1 1D 2D unreliable reliable 3D 

Figure 2. Visualization for linearity Lλ, planarity Pλ, scattering
Sλ, the classification of each pixel according to its local behavior
(linear: red; planar: green; scattered: blue) and the derived binary
confidence map (from left to right).

0 15 0 255 unreliable reliable unreliable reliable unreliable reliable 

Figure 3. Range image, intensity image and the derived binary
confidence maps based on intensity, range reliability and pla-
narity (from left to right).

clouds, where typically a high percentage of the detected fea-
ture correspondences indicates physically (almost) identical 3D
points. As SIFT features are localized with subpixel accuracy,
the respective spatial information has to be interpolated from the
information available for the regular and discrete 2D grid, e.g.
by applying a bilinear interpolation. Instead of involving only
3D cues as for instance done when estimating a standard rigid
transformation, we involve both 3D and 2D cues for keypoint-
based point cloud registration in analogy to recent investigations
on projective scan matching (Weinmann et al., 2011; Weinmann
and Jutzi, 2011) as such a strategy provides both computational
efficiency and robustness to outlier correspondences.

Without loss of generality, we may assume that – when consid-
ering a scan pair Pi = {Si,Sj} – the position and orientation
of scan Si is known w.r.t. the world coordinate frame. Con-
sequently, for scan Si, the respective forward-projection of 2D
keypoints xi ∈ R2 results in 3D coordinates Xi ∈ R3 which
are also known w.r.t. the world coordinate frame, whereas the
forward-projection of 2D keypoints xj ∈ R2 results in 3D coor-
dinates Xj ∈ R3 which are only known w.r.t. the local coordinate
frame of the sensor for scan Sj . The basic idea of projective scan
matching consists of introducing 2D cues by back-projecting the
3D points Xj onto a virtual image plane for which the projection
model of a pinhole camera is exploited (Weinmann et al., 2011):

x∗
j = K [R|t] Xj (3)

In this equation, the calibration matrix of the virtual camera is de-
noted with K and arbitrary parameters may be selected for spec-
ifying focal lengths and principal point (Weinmann et al., 2011;
Weinmann and Jutzi, 2011). Furthermore, the rotation matrix R
and the translation vector t describe the relative orientation of
the virtual camera w.r.t. the local coordinate frame of the laser
scanner, and they are specified in a way that the virtual camera
looks into the horizontal direction and that the position of the vir-
tual camera coincides with the location of the laser scanner, i.e.
t = 0. The points x∗

j ∈ R2, in turn, allow to transform n feature
correspondences xi,k ↔ xj,k with k = 1, . . . , n to 3D/2D corre-
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Figure 4. Raw point cloud data (top left), point cloud data filtered via intensity information (top right), point cloud data filtered via the
measure of range reliability (bottom left) and point cloud data filtered via the measure of planarity (bottom right).

spondences Xi,k ↔ x∗
j,k and thus to relate the task of point cloud

registration to the task of solving the well-known Perspective-n-
Point (PnP) problem, where the aim is to estimate the exterior
orientation or pose of a camera from a set of n correspondences
between 3D points Xi,k of a scene and their 2D projections x∗

j,k

in the image plane of a camera (Fischler and Bolles, 1981).

A robust approach for solving the PnP problem has been pro-
posed with the Efficient Perspective-n-Point (EPnP) algorithm
(Moreno-Noguer et al., 2007) which represents a non-iterative
method and provides an accurate solution to the PnP problem
with only linear complexity. Compared to other approaches for
solving the PnP problem, this algorithm is not only fast and accu-
rate, but also designed to work with a large number of correspon-
dences and it does not require an initial estimate. The EPnP al-
gorithm is based on the idea of expressing the n known 3D scene
points Xi as a weighted sum of four virtual and non-coplanar
control points Cj ∈ R3 for general configurations. Denoting the
involved weights as αij and introducing a superscript c which in-
dicates coordinates in the camera coordinate frame, each 3D/2D
correspondence provides a relation of the form

wi

[
xi
1

]
= KXc

i = K

4∑
j=1

αijC
c
j (4)

where K describes the calibration matrix, in our case the one of
the virtual camera. Considering the respective three equations,
the scalar projective parameters wi can be determined according
to the third equation and substituted into the other two equations.
Concatenating the two modified equations for i = 1, . . . , n yields
a linear equation system My = 0, where y contains the 3D co-
ordinates of the four control points Cj . For more details on the
efficient solution of this equation system, we refer to the original
paper (Moreno-Noguer et al., 2007). Once both world and cam-
era coordinates of the 3D points are known, the transformation
parameters aligning both coordinate frames can be retrieved via
standard methods involving a closed-form solution in the least-
squares sense (Horn et al., 1988; Arun et al., 1987).

For a robust estimation in case of existing outlier correspondences,
the RANSAC algorithm (Fischler and Bolles, 1981) represents
the method of choice as it eliminates the influence of outlier cor-
respondences which are not in accordance with the largest con-
sensus set supporting the given transformation model. Follow-
ing the original implementation (Moreno-Noguer et al., 2007),
the RANSAC-based EPnP scheme relies on selecting small, but
not minimal subsets of seven correspondences for estimating the
model parameters and checking the whole set of correspondences
for consistent samples. In comparison to minimal subsets, this
further reduces the sensitivity to noise. In order to avoid test-
ing all possible subsets, which would be very time-consuming,

we exploit an efficient variant, where the number of iterations
– which equals the number of randomly chosen subsets – is se-
lected high enough, so that a subset including only inlier corre-
spondences is selected with a certain probability p (Fischler and
Bolles, 1981; Hartley and Zisserman, 2008).

Finally, we conduct a geometric outlier removal based on 3D dis-
tances and an ICP-based fine registration (Weinmann et al., 2011;
Wang and Brenner, 2008).

4 PLANARITY VS. RANGE RELIABILITY

In this section, we carry out theoretical considerations for the pro-
posed measure of planarity and thereby point out consequences
concerning what we may expect when applying this measure on
range images. This is of utmost importance since we may thus
easily explain the significant differences between the binary con-
fidence maps depicted in Figure 1 and Figure 2.

In order to verify the suitability of the proposed measure of pla-
narity, we consider fundamentals of projective geometry as for
instance described in (Hartley and Zisserman, 2008). Generally,
the 3D coordinates of a point X ∈ R3 on a ray in 3D space
satisfy the constraint X = A + bv, where A ∈ R3 denotes
a known point on the ray, b ∈ R represents a scalar factor and
v ∈ R3 indicates the direction of the ray. Without loss of gen-
erality, we may transfer this equation to camera coordinates as
indicated by a superscript c, i.e. Xc = Ac + bvc. Since – when
assuming the model of a pinhole camera – the considered rays
intersect each other at the projective center 0c, we may use the
point Ac = 0c = [0, 0, 0]T as known point on all rays. Fur-
thermore, we may exploit the definition of the camera coordinate
frame (where Xc points to the right, Y c to the bottom and Zc in
depth). Looking along the Zc-axis and assuming an angular reso-
lution α of the camera, the directions vc of the 8 neighboring rays
which are exploited to obtain a local (3×3) image neighborhood
can easily be derived by intersection with the (Zc = 1)-plane.
Thus, we evaluate the geometric behavior of range measurements
in a field-of-view given by (2α× 2α).

For our example, we assume that the 9 defined rays characterizing
a local (3× 3) image neighborhood intersect a plane π which is
parameterized in the camera coordinate frame by a point Xc

π and
a normal vector ncπ . Thereby, we define the point Xc

π as the point
which results from the intersection of π with the Zc-axis, and
we further assume that the distance between Xc

π and 0c is given
by d, i.e. Xc

π = [0, 0, d]T . Initially, we consider the case of a
normal vector ncπ which coincides with the Zc-axis, and thus the
plane π is parallel to the XcY c-plane. Subsequently, we rotate
the plane π by an angle β around the axis defined by the point
Xc

π = [0, 0, d]T and the direction [0, 1, 0]T .
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Figure 5. Behavior of the dimensionality features of linearity Lλ
(red), planarity Pλ (green) and scattering Sλ (blue) for increasing
incidence angles β. Note that the synthetic data is not corrupted
with noise.

From the 9 points of intersection, we exploit the 3D coordinates
in order to derive the 3D structure tensor S and its eigenvalues λ1,
λ2 and λ3 as well as the dimensionality features of linearity Lλ,
planarity Pλ and scattering Sλ (cf. Section 3.1.2). For an exam-
ple which is close to the scenario when using a 3D range camera,
we select the angular resolution to α = 0.2◦ and the distance
between projective center and Xc

π to d = 5m. The respective
values of the dimensionality features for angles β ∈ [0◦, 90◦] are
depicted in Figure 5, and they reveal that the locally planar 3D
structure provides a planar behavior in the interval [0◦, 45◦] and
a linear behavior beyond this interval. As a consequence, range
measurements are assumed to be reliable if the local (3× 3) im-
age neighborhood represents a locally planar 3D structure with an
incidence angle in [0◦, 45◦]. Note that, due to the narrow field-
of-view of (2α×2α) for a local (3×3) image patch, noisy range
measurements e.g. corresponding to the sky will not be indicated
by a scattered behavior, but by a linear behavior since only a sig-
nificant variation in ray direction will be present.

For a comparison to the measure σr,3×3 of range reliability (cf.
Section 3.1.1), we provide the respective behavior of σr,3×3 for
the same example in Figure 6. The considered range values are
represented by the distance between the projection center 0c and
those points resulting from the intersection of the defined rays
with the plane π, and σr,3×3 is derived as the respective standard
deviation of these range values. Applying the proposed threshold
of tσ = 0.03m, range measurements are assumed to be reliable
for incidence angles of less than about 63.3◦. A threshold of
tσ = 0.10m even results in reliable range measurements up to
incidence angles of about 81.4◦. Consequently, the binary con-
fidence map shown in Figure 1 indicates more planar surfaces
which are assumed to provide reliable range measurements than
the binary confidence map depicted in Figure 2, where only pla-
nar surfaces with incidence angles up to about 45◦ are assumed
to provide reliable range measurements.

5 EXPERIMENTAL RESULTS

For demonstrating the performance of our methodology, we in-
volve a standard TLS benchmark dataset (Section 5.1) and de-
scribe the conducted experiments as well as the respective results
(Section 5.2).

5.1 Dataset

In order to allow a comparison of other approaches to our re-
sults, we demonstrate the performance of our methodology on
the Holzmarkt dataset which represents a publicly available TLS
benchmark dataset1. This dataset has been acquired in an urban
environment with a Riegl LMS-Z360i laser scanner, and it con-
sists of 12 upright and 8 tilted scans with given reference val-
ues for the relative orientation. For our experiments, we use the

1The Holzmarkt dataset is available at http://www.ikg.uni-
hannover.de/index.php?id=413&L=de (accessed: 30 March 2015)
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Figure 6. Behavior of the measure σr,3×3 of range reliability for
increasing incidence angles β. The applied threshold of 0.03m
is indicated with a red line. Note that the synthetic data is not
corrupted with noise.

upright scans, where each scan covers 360◦ in the horizontal di-
rection and 90◦ in the vertical direction with a single shot mea-
surement accuracy of 12mm and an angular resolution of 0.12◦

up to a range of approximately 200m (Wang and Brenner, 2008).
Thus, each scan is represented by 2.25 million 3D points at a
regular scan grid of 3000× 750 points. Since both range and in-
tensity information are available for each point on the scan grid,
2D representations in the form of panoramic range and intensity
images may easily be derived.

5.2 Experiments

First, we sort the scans w.r.t. their similarity in order to provide
the basis for a successive pairwise registration. For this purpose,
we exploit a minimum spanning tree based on the number of
feature correspondences between the different intensity images
(Weinmann and Jutzi, 2011). As a result, we obtain ordered scans
Si. The whole procedure takes approximately 607.04s for the
given set of 12 scans on a standard desktop computer (Intel Core2
Quad Q9550, 2.83GHz, 8GB RAM, Matlab implementation).

Subsequently, we successively conduct pairwise registration via
the RANSAC-based EPnP scheme and thereby involve the differ-
ent methods for point quality assessment for removing unreliable
feature correspondences (tI = 10, tσ = 0.1m, tSIFT = 0.66).
Since the random sampling may lead to slightly different esti-
mates, we average all position and angle estimates over 20 runs.
For the different scan pairs Pi = {Si,Si+1} with i = 1, . . . , 11,
the remaining errors after coarse and fine registration are shown
in Figure 7 as well as the achieved improvement. These results re-
veal that already the step of coarse registration provides accurate
position estimates, where the position error indicating the abso-
lute deviation of the estimated scan position from the reference
data is less than 5cm for almost all cases. After fine registra-
tion, the remaining position error is in the range between 0.47cm
and 4.10cm. The respective angle errors are in the interval be-
tween 0.0001◦ and 0.2845◦ after coarse registration, and they
are reduced to the interval between 0.0002◦ and 0.0919◦ after
fine registration.

In order to obtain an impression on the computational effort for
pairwise registration, the mean processing times required for the
different subtasks are listed in Table 1. Since those processing
times for coarse registration vary significantly when involving
different methods for point quality assessment, a respective vi-
sualization is provided in Figure 8. Based on these numbers, in
total, a processing time of 191.35s may be expected in the worst
case for a pairwise registration of the considered scans.

6 DISCUSSION

When having a closer look on the results after coarse registration
(Figure 7, top), we can observe a relatively good position esti-
mate except for the last scan pair P11. This however results from
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Figure 7. Mean position error after coarse registration (top), af-
ter fine registration (center) and the respective improvement (bot-
tom) for the scan pairs Pi = {Si,Si+1} when applying no re-
liability check (gray) and when applying reliability checks w.r.t.
intensity (magenta), range reliability (cyan) or planarity (yellow).

Task Number of executions Processing time [in s]
Point quality assessment 2

-Intensity < 0.01
-Range Reliability 1.32
-Planarity 78.39

Feature extraction 2 8.77
Forward projection 2 0.17
Feature matching 1 0.21
Coarse registration 1 0.10 . . . 16.37
Outlier removal 1 < 0.04
Fine registration 1 < 0.07

Table 1. Required processing times for different subtasks of a
pairwise registration.

the fact that the distance between the respective scans is about
4 . . . 6m for scan pairs P1, . . . ,P10, whereas it is almost 12m
for scan pair P11. Due to the significantly larger distance, the
similarity between the respective intensity images becomes less
and, consequently, the number of feature correspondences decays
quickly compared to the other scan pairs. After fine registration,
however, the remaining error for scan pair P11 is reduced to the
same range as for the other scan pairs, and this behavior also
holds for the respective angle errors.

Concerning the involved methods for point quality assessment,
the new measure of planarity does not always lead to an im-
provement after fine registration (Figure 7, center). However,
this may be due to the fact the accuracy after fine registration is
quite close to the expected measurement accuracy of the scan-
ning device (12mm). In this regard, it may be taken into ac-
count that the RANSAC-based EPnP scheme involves both 3D
and 2D cues, and thus already ensures a relatively reliable coarse
registration compared to approaches only focusing on spatial 3D
geometry, where the new measure may show a more significant
improvement of the registration results. The main effect of the
new method for point quality assessment thus consists of a sig-
nificant speed-up in coarse registration (Figure 8), while causing
additional costs in point quality assessment compared to the other
methods (Table 1). The speed-up in coarse registration, in turn,
is important since a fast solution corresponds to a reliable esti-
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Figure 8. Mean processing times required for the coarse regis-
tration of scan pairs Pi = {Si,Si+1} when applying no reliabil-
ity check (gray) and reliability checks w.r.t. intensity (magenta),
range reliability (cyan) or planarity (yellow).

mate of the relative orientation between two scans. More specif-
ically, a filtering of feature correspondences based on the pro-
posed measure of planarity represents a consistency check that
– like specific modifications of RANSAC (Sattler et al., 2009) –
results in a reduced set of feature correspondences, where the in-
lier ratio is significantly increased which, in turn, leads to a faster
convergence of the RANSAC algorithm towards a suitable solu-
tion. Thereby, the generic consideration of incidence angles up to
about 45◦ (Section 4) imposes more restrictions than other recent
investigations addressing an optimized selection of scan positions
(Soudarissanane and Lindenbergh, 2011), where incidence angles
up to 70◦ are assumed to result in reliable range measurements.

7 CONCLUSIONS

In this paper, we have presented an accurate and robust method
for a keypoint-based registration of unordered point clouds via
projective scan matching. Thereby, robustness is preserved by
involving a fully generic consistency check which removes unre-
liable feature correspondences based on a common measure tak-
ing into account the geometric smoothness of object surfaces and
the respective incidence angle. As a consequence, the ratio of in-
lier correspondences is increased which, in turn, leads to a faster
convergence of the RANSAC algorithm towards a suitable solu-
tion. The results clearly reveal that a highly accurate and robust
registration may be achieved in a fully automatic manner with-
out using artificial markers. For future work, it would be desir-
able to compare different approaches for point cloud registration
on a benchmark dataset and to point out pros and cons of these
approaches in order to allow end-users to select an appropriate
method according to their requirements. Furthermore, it might
be advisable to introduce a weighting of feature correspondences
which may principally be based on different constraints (Wein-
mann et al., 2013; Khoshelham et al., 2013).
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