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ABSTRACT:

This paper presents a method that automatically detects windows of different shapes, in 3D LiDAR point clouds obtained from mobile
terrestrial data acquisition systems in the urban environment. The proposed method first segments out 3D points belonging to the
building fagade from the 3D urban point cloud and then projects them onto a 2D plane parallel to the building facade. After point
inversion within a watertight boundary, windows are segmented out based on geometrical information. The window features/parameters
are then estimated exploiting both symmetrically corresponding windows in the facade as well as temporally corresponding windows in
successive passages, based on analysis of variance measurements. This unique fusion of information not only accommodates for lack
of symmetry but also helps complete missing features due to occlusions. The estimated windows are then used to refine the 3D point
cloud of the building facade. The results, evaluated on real data using different standard evaluation metrics, demonstrate the efficacy as

well as the technical prowess of the method.

1 INTRODUCTION

Analysis of building facades for 3D building reconstruction and
realistic geometrical modeling of the urban environment has lately
received considerable attention. Such realistic models play an
important role in several applications pertaining to different per-
ception tasks such as driving assistance, autonomous navigation
through the urban environment, fly-through rendering, virtual tou-
rism and urban mission planning, etc. Driven by an increasing de-
mand to improve the quality of such applications, some work has
been done lately, focusing on the semantic analysis of building
facades including detecting and modeling geometric structures
like windows and doors.

Usually, such applications rely on data acquired from mobile ter-
restrial data acquisition systems. These ground-based or vehicle-
borne laser scanning techniques help acquire highly accurate geo-
referenced 3D points with sufficient details due to their close-
range data collection. However, this task is made significantly
harder by complex representations in such a highly cluttered urban
environment (cars, poles, trees, vegetation, etc.), variability of ap-
pearances (e.g. open/closed windows and doors, etc.) and mis-
sing data due to physical properties. The problem is further com-
plicated by the fact that some data are missing due to occlusions
caused by different temporarily static objects (like cars, pedes-
trians etc.), self-occlusion of the facade due to an oblique view-
ing angle and variability in data resolution. So, in this paper we
present a method that automatically detects and estimates win-
dows on building facades while successfully addressing all these
challenges.

Several previous works have attempted to tackle this problem of
detecting window structures using 2D images (Mayer and Reznik,
2005, Ali et al., 2007, Lee and Nevatia, 2004). These methods
either use explicit window models (Lee and Nevatia, 2004) along
with horizontal and vertical analysis of images to discover repeti-
tive patterns, or use an implicit window model and a learning
approach to recognize windows (Mayer and Reznik, 2005, Ali et

al., 2007). Compared to detection in 2D images, lesser work has
been done on detecting windows from LiDAR data. In (Pauly
et al., 2008), regularities of substructures are derived from a 3D
model or range scan of a scene. This general approach may be
used for extracting regularities but it is sensitive in the calcula-
tion of curvatures. In (Ali et al., 2008), a method is presented
that converts LiDAR data into distance images, and then employs
image processing techniques like morphological operations and
contour analysis to segment windows. This 3D-to-2D conversion
causes information loss. A Markov Network approach that re-
quires training is used to label points as windows in (Triebel et
al., 2006). In (Zheng et al., 2010), 3D repetitive elements are
manually selected and automatically consolidated. In (Shen et
al., 2011), facades are adaptively partitioned in horizontal and
vertical planes based on the boundary features of the planar re-
gions. However, the method works for data with uniform resolu-
tion, which is not always possible. In (Mesolongitis and Stamos,
2012), the 3D points are first projected onto a 2D binary ortho-
graphic point occupancy map, followed by the extraction and ite-
rative refinement of the 2D window centers using a local lattice
fitting and lattice voting scheme. These 2D centers are then pro-
jected back to 3D. This method, like most of the others, assumes
regular symmetrical window patterns on the facade. However,
these methods are less effective in case of lack of symmetry or
large variations in symmetrical patterns (very common in case of
interface of different facades joined together). Our method does
not make any assumptions about the symmetry of the facade but
in fact it also combines information from multiple successive pas-
sages to not only accommodate for lack of symmetry but also help
to complete missing features due to occlusions. The property of
windows not returning any signal is used and hence these win-
dows are represented by holes on the 3D facade. A hole based
extraction method is also presented in (Pu and Vosselman, 2007).
The method searches edges along Triangular Irregular Network
(TIN) of the facade to identify holes which are then fitted to
rectangles. However, this bottom-up triangular meshing based
method suffers from noisy LiDAR data and as it does not detect
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regular groups it is more prone to occlusions.

The proposed method first segments 3D points belonging to the
building facade from the 3D urban point cloud. These 3D points
are then projected onto a 2D plane parallel to the building fagade.
After point inversion within the watertight boundary, windows
are segmented. The parameters/features of these segmented win-
dows are then estimated exploiting symmetrically corresponding
windows in the facade as well as temporally corresponding win-
dows in successive passages, based on ANOVA (ANalysis Of
VAriance) measurements. According to the best of our know-
ledge no prior work has ever been presented that fuses informa-
tion from both symmetrical and temporal correspondences to de-
tect and estimate windows. The estimated windows are then used
to refine the 3D point cloud of the building facade via a reference
table. An overview of the proposed method is presented in Algo-
rithm 1.

2 SEGMENTATION OF BUILDING FACADES AND
ROAD SURFACE FROM 3D URBAN POINT CLOUDS

In order to segment the building facades for window detection,
we first classify the 3D urban point clouds into basic object types.
Although several methods have been proposed for the classifica-
tion of urban environments, we have used one of the more recent
methods (Aijazi et al., 2013c) for this task. This method presents
a super-voxel based approach in which the 3D urban point cloud
is first segmented into voxels and then clustered into objects. Us-
ing local descriptors and geometrical features, these objects are
then classified into 6 different classes including roads and buil-
dings: {Road, Building, Car, Pole, Tree, Un-classified}. Some
results of this method are shown in Fig. 1.

The occluded regions in each passage due to temporarily static
and dynamic objects in the scene are completed with the help of
similar 3D point clouds obtained from successive passages in the
same place on different days and at different times of the day as
presented in (Aijazi et al., 2013b) and described in Algorithm 1.
In this method, the 3D point clouds in each successive passage
are first registered with the former and the missing regions are
completed using a point-to-point matching technique.

After classification, the 3D points pertaining to the segmented
buildings as well as the road surface are then projected onto a
plane, parallel to the building facade in order to detect and seg-
ment windows in the building fagades as explained in the fol-
lowing section.

3 WINDOW SEGMENTATION

In the 3D LiDAR point clouds of the building fagades, windows
are usually represented by holes due to limited reflectivity (Meso-
longitis and Stamos, 2012). They may, sometimes, also contain
few 3D points with low intensity values due to reflections from
objects inside (Tuttas and Stilla, 2011). Our method is based on
this property. The 3D points pertaining to the building facade and
road surface are first projected onto an arbitrary plane parallel to
the building facade. A watertight boundary of this projected 2D
facade is then determined. Point inversion is done within this
boundary and windows are then segmented. The details of this
method are as follows.

Algorithm 1 Automatic window detection and facade refine-
ment.
Input: 3D urban point clouds P(n,) for passage number 7,
1: Segmentation based classification of P(n,) to obtain buil-
ding facades and road surfaces
2: Register, match and compare point cloud P(n,) with
P(np — 1) to try to complete missing features on the buil-
ding facade due to occlusions
3: Project the 3D points pertaining to building facades and road
surfaces in P(np) onto an arbitrary plane parallel to the
building fagade to obtain Proj(B(n;)) and reference table

Tproj

4: Extract a watertight boundary of the projected building
facade in Proj(B(np))

5: Conduct point inversion within the watertight boun-
dary to segment holes and obtain an inverted projection
Proj(B(ny))inv

6: Cluster 2D points pertaining to holes in Proj(B(np))inv
using a Nearest Neighbor Search (NNS)

7. Classify these segmented clusters as windows based on geo-
metrical features and assign feature space {Height, Width,
Profile, Geometrical center}

8: for all detected windows in the building facade do

9:  Find symmetrically corresponding windows in rows and

columns on the fagade
10:  Find temporally corresponding windows for the same
facade from the previous passages in We(n, — 1)
11:  Estimate window features using these correspondences
12: end for
13: Update the window features along with temporal correspon-
dences in We(nyp)
14: if np = Nreser then
15:  Reset We
16: end if
17: Correct Proj(B(ny)) for estimated windows in We(ny)
18: Refine and update 3D point cloud P(n;) using corrected
Proj(B(np)) and Tpro;
19: Delete Tyro4
20: Delete Proj(B(ny)) and Proj(B(n,))inv
21: Store We(nyp)
22: We(np — 1) «— We(np)
23: Store P(np)
24: P(np — 1) < P(np)
25: return P(np)
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Figure 1: (a) Voxel based segmentation of a particular scene. (b)
Classified 3D points.
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3.1 3D Point Projection

As a mobile street mapper, mentioned in Section 7, is used for
data acquisition, the building class consists of 3D points predomi-
nantly belonging to building facades due to the particular viewing
angle. These 3D points belonging to the building fagade are then
projected onto a known arbitrary plane parallel to the building
facade in every passage n,, as shown in Fig. 2(b). The projection
plane is determined by calculating the best-fit plane through the
3D points of the building facade using planar regression of data
as presented in (Ferndndez, 2005).

Although these 3D points are projected in 2D, a simple reference
table T}ro; is also generated that stores the number of the 3D
points corresponding to the 2D points in the projection. This table
Tproj only helps to correct and update the actual 3D point cloud
once final processing is done (see Section 5 for details). It is
eventually deleted.

3.2 Watertight Boundary Estimation

Now, in order to obtain a watertight boundary of the projected
building facades, we first extract the outline/envelope of the facade
using a sweep scan method presented in (Aijazi et al., 2013a). As
the bottom part of the building outline close to the ground is often
occluded and hence inconsistent due to the presence of different
temporarily static or dynamic objects such as cars or pedestrians
in the scene (Aijazi et al., 2013b), we use the 2D projection of
the road surface to close the watertight boundary from below as
shown in Fig. 2(c).

The 3D road points are projected onto the same arbitrary plane
along with the building fagade points as explained in Section 3.1.
However, no reference table is generated. Now once the water-
tight boundary is extracted/obtained, we then perform a point in-
version inside this boundary.

3.3 Point Inversion and Window Segmentation

As we are more interested in analyzing the holes in the buil-
ding facade, we perform a point inversion within the watertight
boundary. As a result of this point inversion, all holes including
window holes surface out (a part of the segmentation process) as
shown in Fig. 2(d) and we obtain an inverted projection.

The 3D points belonging to each of these holes are then grouped
together by means of a standard agglomerative clustering algo-
rithm using a distance based Nearest Neighbor Search (NNS) to
obtain segmented clusters. This distance d is taken as 2 x D,
where D; is the size of the small regular interval used in the
point inversion stage. These clusters are then classified as win-
dows based on the geometrical sizes. Very small clusters (max
width and height less than 0.5 m x 0.5 m respectively) corres-
ponding to small holes due to acquisition errors and imperfec-
tions are automatically removed. Similarly very large clusters
(max width and height greater than 5 m X 5 m respectively) cor-
responding to holes mainly due to occlusions, are also removed.
The remaining clusters are then considered as windows as shown
in Fig. 3(d). Each detected window is then defined by a feature
space: Wp € {H, W, P,GC}. Here H and W are the maximum
height and width of the cluster respectively while GC'is the geo-
metrical center. P is a set of points that define the outline/profile
of the window. These sets of points are calculated by using the
same sweep scan algorithm (now in 2D) presented in (Aijazi et
al., 2013a) on each window.

This step of point inversion not only reduces significantly the data
size for analysis (few points corresponding to holes rather than

those of the whole facade) but also allows easy segmentation of
windows. Also, in case of any reflected points from within the
window region, represented by small empty spaces between the
window points after point inversion, they are also catered for as
the whole region is merged to form a window cluster.

4 WINDOW FEATURES ESTIMATION

The windows detected in each passage are prone to different er-
rors due to measurement errors, occlusions, etc. Hence, in or-
der to estimate more accurately the detected windows along with
their features/parameters, we then try to exploit both fagade sym-
metry as well as multiple passages. In order to achieve this, we
apply ANOVA method and try to estimate the window features
using both symmetrical windows in the fagade in each passage
as well as the corresponding windows in the same fagade in suc-
cessive passages.

If no symmetrical correspondences (similar windows in symmetri-
cal pattern) are found for a window in the fagade, then it is only
estimated by the corresponding window in successive passages.
This way, we are able to detect and estimate windows and their
features even for non symmetric building fagades.

4.1 Exploiting Facade Symmetry

It is observed that usually building facades exhibit a structured
arrangement consisting of repetitive patterns and self similarities.
However, this is not always true due to rich architectural varia-
tions depending upon the type of buildings, countries and cul-
tures.

In order to exploit the symmetrical properties of the facade (if
possible), in each passage, we try to find symmetric correspon-
dences (similar windows) on the building facade for each detec-
ted window. Symmetrical windows are found by simply analyz-
ing the position of the windows on the facades by comparing the
distance between their centers in both row and column. Win-
dows at equidistant intervals in both row and column are con-
sidered symmetrical correspondences (at least 3 windows) and
are grouped together as shown in Fig. 3. Symmetrical correspon-
dences are determined for each window on the fagade. In case
of more than one type of symmetrical correspondences found for
a particular window on the fagade, the symmetrical correspon-
dences corresponding to the smallest interval distances are con-
sidered.

Although symmetrically situated on the fagade, their degree of
similarity and how much these correspondences should contri-
bute to estimate the features/parameters of a particular window
are only ascertained after the ANOVA analysis.

4.2 Exploiting Multiple Passages

Once symmetrical correspondences for each window in the same
facade are found in each passage, we then find corresponding
windows in successive passages. As a result, we are able to esti-
mate the window features more accurately, specially in case if
we are not able to find any symmetrical correspondence due to
either non symmetry or occlusions. Similarly, the redundant data
obtained via several passages are also used to complete occluded
regions of the facade (including windows) as explained in (Aijazi
et al., 2013b). These passages (in the same place) could be on
different days and at different hours of the day.

As the acquired 3D points are directly geo-referenced and then
further co-registered in successive passages by applying ICP on
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Figure 2: (a) 3D points belonging to building (in blue) and road surfaces (in black). (b) 2D projection of the 3D points on an arbitrary
plane. (c) Watertight boundary. In red building outline closed by road projection (black) from below. (d) After point inversion within

the watertight boundary.

the skylines of the building as presented in (Aijazi et al., 2013b),
there is no problem of finding corresponding windows for the
same fagade, in successive passages. Windows found in the same
position on the facade in successive scans are considered as tem-
poral correspondences and are grouped together. Temporal cor-
respondences are determined for each window on the facade.

Although these temporal correspondences usually represent the
same window, only after the ANOVA analyses we are able to
ascertain how much these correspondences should contribute to
estimate the features/parameters of a particular window.

4.3 ANOVA Based Estimation

In order to determine which correspondences should be used to
estimate features/parameters for any particular detected window,
we conduct a one way ANOVA (ANalysis Of VAriance) analysis
(Tabachnick and Fidell, 2006) after adapting it to our require-
ments.

The statistic used in ANOVA partitions the variance into two
components: 1) the between treatment variability, 2) the within
treatment variability. Adapting them to our requirements, the
within treatment variability SSSW is used for symmetrical corres-
pondences while between treatment variability SSB is used for
temporal correspondences. It may be noted here that symmetrical
correspondences are only considered for the current passage.

If n, is the total number of detected windows (including both
symmetric and temporal correspondences) in the total number of
passages so far, (G is the total number of passages so far, Y;, is
the value of Y™ feature for the i window in passage p, Nuwp
is the number of windows (only symmetrical correspondences)
in passage p, Y, is the mean of the feature values for all the
windows (only symmetrical correspondences) in passage p, s;
is the sample variance of the feature values for all the windows
(only symmetrical correspondences) in passage p, and Y is the
average of the feature values for all the windows (including both
symmetric and temporal correspondences) in the total number of
passages so far, then the total variabilities for the Y feature of

the " window in passage p are given as:
G nwp G
Sy =303 (Vo= 1) = Y (o~ DsF ()
p=1i=1 p=1

Similarly,

G Mwp

>

p=1i=1
G p— J—
anp(yp - Y)2
72 _ (gt it Yip)?
ST

Nw
Further simplification yields:

SSB,

2

G
SSBip = anp?f, —NwY

p=1

(@)

Using (1) and (2), we calculate the average amount of variability
within each passage M ST and the average amount of variability
between successive passages M.SB as:

SSWip SSBip
dfwithin dftotal

where dfwithin and dftorq: are the degrees of freedom given as
(n — @) and (G — 1) respectively.

MSWip, = and MSB;, = 3)

The F-statistic (Tabachnick and Fidell, 2006) is then calculated
by computing the ratio of M SW and M S B to obtain:

MSBi,

Fpp ="
P MSW,

)

These values of F;, and P;, are calculated independently for both
width and height features of each detected window in each pas-
sage. The maximum value of Fj, and P;,, among the values
obtained for both features, are then used for this analysis.

Now using dfwithin and dftotqr for each window, we determine
the critical value F.. from the standard F-tables using o = 0.05.
Now using standard F-statistics, analyzing F}, value of each win-
dow and comparing it with the corresponding F. value helps us
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Figure 3: (a) 3D points of building facade. (b) Potential window candidates after point inversion and window segmentation. (c)
Symmetrical correspondences in both row and column for window 1 and 2 respectively. Same colors (of the bounding box) represent

similar windows.

to infer different weights to be used for the two types of corres-
pondences (ws and w; for symmetrical and temporal correspon-
dences respectively) for window feature estimation. There are 3
possible cases for the choice of these weights: 1)if 1 < F;), < F.
then ws = wy = 1; 2) if Fyp < 1 then wy > wy; 3) if Fiy > F.
then ws > wy.

As the null hypothesis being tested here is that windows in the
symmetrical and temporal correspondences are similar, case 1
validates this hypothesis and hence both Symmetrical & Tem-
poral correspondences are used to estimate the window features.
Case 2 suggests that the symmetrical correspondences do not
contain a lot of similar windows (due to occlusions or lack of
symmetry in fagade). Thus, in such a case, temporal corres-
pondences are given more preference (higher weights) over sym-
metrical correspondences to estimate window features. Case 3
suggests that there are strong inconsistencies in the windows de-
tected in successive passages. As a result, the variability of fea-
tures of the detected window is much higher in successive pas-
sages as compared to the symmetrical correspondences found on
the facade. This could be due to false detections, occlusions in
certain passages or even changes occurring in the building facade
(Aijazi et al., 2013a). Hence in this case, symmetrical correspon-
dences are given more preference (higher weights) over temporal
correspondences to estimate window feature.

Now in order to determine the weights associated with each cor-
respondence for case 2 and case 3, we calculate the effect size
measure w? for ANOVA calculations. This measure, as expressed
in (5) and (6), gives us the contribution of each of the two corres-
pondences in the total variability observed.

L2 _ 98By~ (G-~ 1)MSWi )
Yir = S§SByp + SSWip + MSWiy
‘Uip =1- wi.p (6)

Here wfip and wfip are the contribution of the temporal and sym-
metrical correspondences respectively.

Once the weights for both correspondences are determined, the
window feature value Y;, (i.e. the Y™ feature for the i™ window

in passage p) is estimated as ?}p:
o mawd, (070 Yey) + e, (72, Ys))

Yip = n) @ k) @

Here Y; and Y are the values of the feature of the windows in
temporal and symmetrical correspondences and n; and ns are the
total number of windows considered as temporal and symmetri-
cal correspondences respectively. Now using (7), both width and

height features of each detected window in each passage are es-
timated independently.

Now, in order to estimate the profile P of the window in the fea-
ture space, we first find a set of common profile points for each of
the two correspondences by sampling both height and width di-
mensions at small regular intervals as shown in Fig. 4. It should
be noted that for symmetrical correspondences we first align the
windows by shifting their centers.

Each point in the set of common profile points is then estimated
by using (8) to obtain P, € {pt; ptzpk} such that:

nawd,, (S5t pt, )+ mek,, (52,

(neme) (@2, +@2,)

ip1 *

pto,, )

p tipk =

(®)

where pt, and pt, are the sets of common profile points corres-
ponding to temporal and symmetrical correspondences while k i 1s
the k™ number of point in Pzp, i.e. the estimated profile of the "
window in passage p. Now using (7) and (8), the features of the
window are estimated and then updated for that window along
with the list of temporal correspondences in W ¢ as described in
Algorithm 1.

It must be noted here that in order to avoid initialization issues,
for the first passage only symmetrical correspondences are con-
sidered whereas for all successive passages both symmetrical as
well as temporal correspondences were considered in the equa-
tions for estimation.

5 REFINING/UPDATING THE BUILDING FACADES IN
THE 3D POINT CLOUDS

Once the feature space of the detected windows is estimated and
updated in W, the next step is to correct, refine and update the
3D facade in the actual 3D point cloud. In order to do this, we first
correct the 2D projection by using the estimated profile of all the
windows. These estimated profiles define the window space and
hence all points within these profiles are considered as window
points.

In many cases, the 3D point clouds obtained using LIDARs moun-
ted on mobile terrestrial vehicles offer limited viewing angles and
relatively sparse 3D points for distant windows. As a result, fine
details pertaining to window panes, etc., within the window re-
gions remain missing (see Fig. 4(b)). Hence, we prefer to delete
the within window points to obtain well defined window holes
in the 3D facades. On the other hand, if co-registered camera
images are also available, then a 2D image of the window can
be added to the window region (defined by the estimated pro-
file boundary) to provide a more realistic/detailed view (Becker
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(b)

Figure 4: (a) shows the profile points (connected with straight
lines) of temporal correspondences for window “A” marked on
facade in (b). In (a) red, blue and green color represent the pro-
files obtained in 1%, 2" and 3™ passage respectively. A,, and B,
are the set of common profile points (along the two axis) obtained
for the 3 profiles at n™ regular interval (grid cell space). These
points are then stored in pt,, as these correspond to profiles of
temporal correspondences.

and Haala, 2007). However, for most applications pertaining to
accurate 3D urban modeling, geographical navigators, etc., well
defined window-hole features on the building facade are more
than sufficient.

Once the 2D points within the window region defined by the es-
timated window profile are deleted in the 2D projection, corres-
ponding 3D points in the actual point cloud are also deleted using
the reference table 7},.,; as shown in the results in Section 7.
This processing ensures that the resulting building facade in the
3D urban point clouds contains accurate, well defined window
regions.

6 AUTOMATIC CHECKS AND BALANCES

In case of any false detection, normally no symmetrical corres-
pondences should be found on the building facade. However, in
order to confirm whether this really is a false detection and not
a non symmetric feature of the facade, we also check the tem-
poral correspondences. In case no temporal correspondences are
found, this detection is deleted from the list of windows W c and
is no longer used for refining the building facade. On the other
hand if a certain detected window was found missing in any of the
passages due to temporary occlusion, etc., it is still considered,
as correspondences from other passages are used to estimate the
window parameters and hence it remains in W and is also used
for refining the building facades.

Similarly, we see that although effects of occlusions (both com-
plete or partial) are greatly reduced due to the exploitation of mul-
tiple passages as explained in Section 2, sometimes certain win-
dow features remain partially or fully obscured due to window
shutters or curtains, etc., in some passages, as shown in Fig. 6(a)
(Zone marked in red). This may result in an inaccurate estima-
tion of window parameters. However in our method, the increase
in the variability of any of the correspondences, in such cases,
results in its lower weighting in the parameter estimation of that
window according to (7) and (8). This makes our method more
robust and ensures a more accurate estimation of window para-
meters.

These checks and balances ensure that with the number of pas-
sages, window detection accuracy improves and the final building

facade only contains the exact and accurate window features.

7 RESULTS, EVALUATION AND DISCUSSION

We first evaluated the window detection part of the proposed
method using New York City data set presented and used by the
authors in (Mesolongitis and Stamos, 2012). The data set con-
tains a rich collection of 3D facades from the New York City
area obtained from a single passage. Several building facades
were used to evaluate our method. Some of the results are shown
in Fig. 5. The results obtained (overall precision pr and recall
re of 0.92 and 0.73 respectively) are comparable to the state of
the art method (Mesolongitis and Stamos, 2012) evaluated on the
fagades of the same data set (pr 0.894, re 0.810). Our method re-
ceived lower re scores compared to the state of the art method on
facades with occlusions (as shown in Fig. 5 (a-c)) as the state of
the art method predicted windows in the occluded regions based
on symmetry of the facade compared to our method that exploits
multiple passages (which were not available in this data set) to
manage occlusions. These scores in our method improve consid-
erably with multiple passages and exploiting temporal correspon-
dences as discussed later on for the second data set. Also, con-
trary to our method, the state of the art method generated some
false positives on certain facades with varying symmetry or in
cases of interfacing facades. On the other hand, the relatively
fewer false positives generated by our method are easily correc-
ted exploiting temporal correspondences.

In order to fully evaluate our method, the dynamic data set of the
3D Urban Data Challenge 2011 was used. This data set contains
4 sets of the same dynamic scenes in downtown Lexington, Ken-
tucky, USA obtained on different days and at different times (3D
Urban Data Challenge 2011, 2011).

Figure 6 shows some qualitative results of window detection and
refinement of different building fagades in this data set. The
method successfully detects and estimates windows of different
types and sizes. Figure 6(a-d) illustrate how the method is able to
successfully estimate window parameters in case of heavy occlu-
sions (specially shop windows at ground level), where most other
state of the art methods would probably fail as shown in (Lee
and Nevatia, 2004). Figure 6(f) demonstrates that the proposed
method successfully detects and estimates windows parameters
pertaining to building facades with different non symmetric win-
dow patterns. As the method is non parametric (no assumption on
window shapes) and does not rely solely on fagade symmetry, it
is able to estimate window parameters more accurately than con-
ventional methods relying on regular patterns/facade symmetry
only (Previtali et al., 2013).

For quantitative analysis, we evaluated the accuracy of the win-
dow detection. A reset function was used to to avoid unnecessary
memory storage issues, once the desired results are obtained. The
Nreset Value was fixed at 4 as the maximum available number of
passages in the dataset was 4. However, where this reset can be
done by human intervention, or manually set (as in our case) it
could also be done automatically as presented in (Aijazi et al.,
2013a). The window detection method was evaluated using dif-
ferent standard evaluation metrics as described in (Vihinen, 2012)
(see Table 1). Ground truth was obtained by visual inspection of
both raw 3D point clouds as well as the available 2D camera ima-
ges of the building facades. The results clearly demonstrate the
efficacy of the proposed method.

It is also observed that the PPV is generally found higher than
NPV, which suggests that the method is more conservative and is
more likely to detect and estimate windows once highly certain,
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Figure 5: Window detection results are shown for some facades. In (a), (b) & (c) we can see a number of false negatives due to
occlusions. In (c¢) & (d) we also find some false negatives due to closed windows because of window shutters or curtains.
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Figure 6: (a) & (c) show raw 3D points (color coded intensity) of different building facades from the data set containing windows of
different types and sizes while (b) & (d) are the corresponding 3D point clouds after window detection and refinement. (b) and (d)
clearly demonstrate the efficacy of the method in case of heavy occlusions specially at ground level shop windows. (e) shows the raw
3D points of a building facade with different non symmetric window patterns. In (f) the same facade after successful window detection
and refinement can be seen.
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Table 1: Window Detection Evaluation.

ACC  Accuracy 0.917
PPV  Positive Predictive Value  0.971
NPV  Negative Predictive Value  0.908
FDR False Discovery Rate 0.029
Fy F' measure 0.912

otherwise it does not. Hence, false positives usually occur less
often than false negatives (also evident in Fig. 5).

Although the method successfully detects windows of different
shapes and sizes, and estimates their parameters even in difficult
circumstances such as temporary occlusions and non symmetrical
facade structures, it has some limitations in case of permanent oc-
clusions resulting in permanently missing 3D points, for example
part of the building facade (zone marked in red) in Fig. 6(f). This
permanently occluded region, due to the limited viewing angle of
the data acquisition vehicle, results in large, deformed and inter-
connected window segments after point inversion and hence are
not considered as a window nor estimated. Sometimes smaller
permanent occlusions could also result in false positives. In such
conditions, contrary to our algorithm, a classical symmetry based
window detection algorithm can assume/predict (which may be
wrong) windows in the region based on the overall symmetry of
the facade.

8 CONCLUSION

In this paper a method has been presented that automatically de-
tects windows and estimates their parameters in 3D LiDAR point
clouds obtained from mobile terrestrial data acquisition systems
in the urban environment. The main feature of this method is
that it fuses information from both symmetrical and temporal cor-
respondences using ANOVA measurements. This unique fusion
of information not only accommodates for lack of symmetry but
also helps complete missing features due to occlusions. These es-
timated windows are then used to refine 3D building facades for
different applications pertaining to accurate 3D urban modeling
or geographical navigators that frequently update their database.

The results evaluated on real data sets using different standard
evaluation metrics clearly demonstrate the technical prowess of
the method.
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