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ABSTRACT:

Terrestrial Laser Scanning data are increasingdg us building survey not only in cultural heritagemain but also for as-built
modelling of large and medium size civil structurel®wever, raw point clouds derived from laser siag generally not directly
ready for the generation of such models. A timescoming manual modelling phase has to be takenaotount. In addition the
large presence of occlusion and clutter may turhinuow-quality building models when state-of-theg- automatic modelling
procedures are applied. This paper presents amategd procedure to convert raw point clouds intoasgically-enriched building
models. The developed method mainly focuses onoanggical complexity typical of modern buildingstiiclear prevalence of
planar features A characteristic of this methodplizgthe possibility to work with outdoor and inddouilding environments. In
order to operate under severe occlusions and clattmuple of completion algorithms were designeddnerate a plausible and
reliable model. Finally, some examples of the depetl modelling procedure are presented and distusse

1. INTRODUCTION

In the last yearserrestrial laser scanningTLS) has become a
major source for the generation of complex digdalmodels of
building fagades. This achievement has been metivay some
significant advances in scanning technology, by itteeeased
automation of acquisition and registration processt laser
scans, along with a reduction of instrumental clysiaddition,
the improvements imobile laser scanningVILS) systems and
processing techniques allowed rising up the praditgtof
ground-based point-cloud acquisition, despite oflightly
lower precision than static scanning.

At the same time the demand of as-built buildingdeie has
been also fostered by a major attention in eneaging policies
fixed by national and over-national authoritiesdérd, to
increase the energy efficiency of existing buildings-built
models are necessary both for thermal assessnmemigsion
and for the design of retrofitting interventions.

To faithfully capture a building model, especialtythe case of
large premises, an extensive acquisition processofisn
required to guarantee a complete coverage of tlike external
surface. Once preliminary processing of laser polouds is
accomplished and laser scans are aligned and editezinove
background objects, the process to derive a compdetd
consistent 3D vector model is still a tedious jbattmay easily
take several hours or few days, even for an expeeid user.
Significant manual assistance is often requireddeks such as
data cleaning, hole filling, object classificatioand model
extraction. To improve this process, the topic fréasing
automation in the building reconstruction pipelihas been
paid a lot of attention in the literature, see Pale(2011) and
Haala and Kada (2010). However, the 3D reconstncis
generally complicated by some missing parts in $cans.
Indeed, due to time and accessibility limitatioascomplete
acquisition setup is not always affordable for é&afguildings
and often the surface has to be recovered fronerathperfect
scans, i.e., noisy, incomplete and corrupted wittiiers. While

in static TLS applications occlusions may be reduds
carefully planning the acquisition scheme, in MLS&tasbets
generally a significant shadowing effect cannotabeided due
to pieces of urban furniture, trees, poles androtiedicles on
the roads.

In this paper we focus on the automatic generatifobuilding
models and in particular on the enhancement andotidiation
of imperfect and missing parts due to the pooriguaf input
data. The applications under consideration belongetvel-of-
Detail (LoD) 4, being such as-built building modetéxjuested
for planned maintenance, thermal retrofitting, preation and
documentation, as well as in other engineeringiegipdns. In
such cases the geometric accuracy of the modd simary
relevance and objects have to be completed in emrate and
reliable way. In particular, since the primary apgtion devised
for the developed method is thermal analysis ofstexg
buildings, we are mainly focusing on premises ddietiveen
1950 and 1975. Indeed, those constructions weie lquin an
era when little or no consciousness was on takamg of energy
efficiency performance. Although some differencedstein
different countries, the most buildings at this @pdeature a
prevalence of orthogonal intersections betweenswallich kind
of scenes may be referred to as ‘legoland’ sceResrétner
2010).

In particular, the developed solution is flexibledacan deal
both with indoor and outdoor scenes. The availgbitif a
single reconstruction method dealing with both dind) facade
and indoor rooms gives the chance to exploit redond
information, e.g., in the case an element (like indaw) is
occluded from outside, this may be recovered frodoor data
or vice versa. In addition, the integration betweetdoor and
indoor data is fundamental for generation of buidi
information models at LoD 4. On the other hand,owmdand
outdoor scenes present different architectural Ipeities and
tailored solutions for modelling have to be desijnén
particular, two main completion strategies are @mésd here:
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(i) Repeated Pattern Detection and Completion (RPDE)ign
Visibility Analysis Completion (VAC).

The former (i) has been primarily designed for thinig
outdoor. Indeed, fagades of urban buildings gelyeexhibit a
high degree of self-similarity and redundancy tmatdue to
presence of repeated, regular patterns. In the o
methodology we explicitly make use of this charastie of
urban scenes to enable the recovery of missing ggpmin
contrast to other methods based procedural modelling
(Ullrich et al. 2013), instead of making stronggorassumptions
about the models and blindly recreating geometryngus
predefined procedural rules, we attempt to extrEtmaximum
information from real scans. The challenge liethim automatic
determination of which elements repeat in the facadd the
pattern they form.

On the other hand, VAC (ii) is primary intended &mmpletion
of indoor environments. Indeed, in such cases, titege
patterns of walls and windows are more unluckyeadentified
and ad-hoc algorithms robust to clutter are neededthe
developed procedure to understand the nature dfisions, a
ray-tracing algorithm (see Alsadik et al. 2014) is used
identify regions that are occluded from every viewp and to
distinguish them from openings in the surface (edye to
doorways or windows). Even if this second completitrategy
is primarily designed for indoors it can be usesbah outdoors
regions were no repeated patterns can be founeéxtmple in
MLS data sets.

1.1 Related work

Several methods have been proposed in the reteratlire for
production of building models generated from TLStada
However, they are generally specifically designedskeparately
modelling of building fagades (e.g., Pu and Voss&in2009;

Ripperda and Brenner 2009) or indoor rooms (Budromi an

Boehm 2005; Okron et al. 2010; Adan and Huber 201ib).
reconstruction methods have been developed forltsineous
modelling of both kinds of environments. In additicseveral
methodologies operate under the assumption thasuhiace
being modelled is relatively unobstructed. To resomissing
parts a few research works focused on the detectibn
regularity directly on 3D geometry (e.g., Pauly at 2008;
Bokeloh et al. 2009). These state-of-the-art teamsdfocus on

detecting repeating elements in 3D models, but di n

investigate how to use the detected structuresXtemsive data
improvement or completion.

Similarly, also the indoor modelling based on TL&alwas
investigated in different works (Hahnel et al. 200@imitru et

al. 2013; Khoshelham and Diaz-Vilarifio 2014). Hoemr\they

do not considered the occlusion problem becausefdwised

on modelling of hallways with no furniture or otheotentially

occluding objects. More attention to this problesngiven in

Diaz-Vilarifio et al. (2014), where laser data aregrated to
images.

2. METHOD OVERVIEW

The presented approach follows the workflow rembrig

Figure 1. The modelling methodology can be applied
unstructured point cloud of tens of millions poirthis means
that each point is parameterized by its spatiardioates and
may also feature some related attributes (e.gengity, colour,
normal vector), but does not share any topologationships
with other points in the neighbourhood. The inpainp cloud

can be generated by a single or multiple laser station(s).

Indeed, after scan registration/geo-referencingansc are
merged together without needing any reorganizafito a
specific data structure. Once all scans are aaduimed
registered together to output a non-structured tpdoud, the
main architectural elements of the building arentdied by
means of a segmentation process based on a moR#BIEAC
implementation (Previtali et al. 2014). In partayl the
standard RANSAC approach (Boluaassal et al. 2008pdaort
cloud segmentation is modified by including topglagto the
process to minimize problems connected to unded @rer-
segmentation, respectively (Sect. 3).

Once planar clusters constituting the building objare
detected, theivectorizationis performed. During this phase
some constraints related to building geometry, liltee
prevalence of straight lines and orthogonal intisas, are
enforced to obtain a regularization effect (Sekt. 4

A differentiation in the developed pipeline takdage for the
completion phase, which mainly relies on RPDC and \faiC
outdoor and indoor modelling, respectively. To auhi
completion of these parts, the developed algoriticorporates

tosome architectural priors on indoor scenes, notably the

prevalence of orthogonal elements which is typafdlegoland
scenes (Sect. 5). Finally, all pieces of informatare merged
together to obtain the complete 3D object modeicbed with
semantics (Sect. 6).

In Tables 1 and 2 all input parameters needed for
outdoor/indoor reconstruction pipelines are outline

Flexible methodology for building model generation

Registrationand point
cloud generation

Point cloud segmentation

Vectorlalization of detected
element

N\ | £ indoor

Outdoor scan

]

‘ Visibility Analysls ‘

Completion

(vAC)
Figure 1. The flowchart of the developed flexiblethodology
for building model generation.

Repeated Pattern
Detectionand Completion

(RPDC)

Semantic Interpretation

Completed3D object
model

Parameters for outdoor reconstruction
RANSAC plane threshole
RANSAC normal threshold
Bitmap cell sizey
RANSAC dominant line threshold
Gap filling length L
Voxel cell sizef
Minimum similarity SMyin

Point cloud
segmentation

Vectorization

Scan completion

Table 1. Parameters for outdoor reconstruction.

Parameters for indoor reconstruction
RANSAC plane thresholel
RANSAC normal threshold
Bitmap cell size
RANSAC dominant line threshold
Gap filling length L
Bitmap cell size
Occluding distance

Point cloud
segmentation

Vectorization

Scan completion

Table 2. Parameters for indoor reconstruction.
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3. POINT CLOUD SEGMENTATION

A first step towards the segmentation of the boddbbject is to
detect all its planar features. Detection of facadgects is
accomplished by using a specifically modified RANSB&sed
algorithm (Fig. 2). This implementation is aimed ratlucing
spurious results obtained by the standard sequddAISAC
segmentation as reported in the literature (Bouddass al.
2009; Awwad et al. 2010). Those bad-segmentatiablpms
can be categorized into under- and over-segmentatioder-
segmentation is generally due to the fact thattpaiesulting in
the maximum consensus to RANSAC may belong to diftere
facade objects. A typical example is representedvimgows.
Indeed, even if they belong to the same geometpieale, each
window represents a different architectonical congmd. Over-
segmentation is generally associated with noiseregularities
in the data set. Many facades presents irreguarilike out-of-
plumbs that are not evaluated in the RANSAC estimatib
inliers. This may result in a wrong subdivision afsingle
facade element into several objects.

TLS Point Cloud

RANSAC

Maximum consensus
plane
Connected
componet analysis
Un-connected points
Connected_
component size

Segmented model

Figure 2. Workflow of the developed segmentatioocpss.

A

Connected components

To partially overcome the limitations enlisted abpwa new
automatic approach is presented for the segmentafiplanar
surfaces based on the combination of RANSAC eeglon-

In particular, under-segmentation is reduced byodhicing
knowledge about point topology. Indeed, even ingoiare not
usually related by any topological relationship ian
unorganized point cloud, we can assume that pdielisnging
to the same object should be sufficiently closene another
while groups of points belonging to different oligeshould be
separated by a spatial gap. For this reason, pdioad
proximity is evaluated by using a 2finary point occupancy
raster map First, any points belonging to the same plane are
projected orthogonally to a raster bitmap. All péxén the
bitmap containing at least one projected pointamsigned the
value 1, while others are given value 0. This rastep allows
finding connected regions of pixels featuring valueThen all
points whose projection belongs to the same coedect
component can be clustered.

Once all planar elements are detected, the extrgdemes are
clustered together to reduce over-segmentation lgrah
Object clustering is performed by evaluating thpeeameters:
(i) similarity of normal vectors; (i) perpendiculadistance
between planes; and (iii) intersection betweentelss

An example of the results achieved by using thesqrted
method is presented in Figure 3.

Figure 3. Building’s fagade segmentation result$: qiaginal
point cloud; and (b) segmentation results, eacheatied
segment is represented using a different colour.

4. VECTORIZATION

The most important aspect fovectorization of elements
detected in the previous step is the detectionredldines. In
TLS domain Boulaassal et al. (2009) presented aocont
extraction algorithm for building facades. After ¢céale
segmentation and detection of planar clusters facade, the
extraction of their contour is carried out. The mddea
exploited in this algorithm is based on the hypsithe
stipulating that contour points belong to the losiges of

growing techniques. The aim of this strategy is to deriveDelaunay’s triangles for detected clusters. Thigoathm

‘meaningful’ segments from building point cloudshi¥ means
that extracted segments would correspond to obgearserest
(e.g., roofs, walls, doors, etc.) instead of besmgply those
which best fit some mathematical models. This hd/lstrategy
allows combining the robustness of RANSAC with thatisp
proximity used in region growing methods. Indeedcontrast
to standard region growing methods (Tévari andf@fel005;
Rabbani 2006) the segmentation results are not taffeby
selection of ‘seed’ points because the estimatibrplanar
segment is performed by using RANSAC. In addition €ew
parameters (see Table 1) are required with respebe region-
growing implementation presented in Vosselman e(2004)
where the selection of slightly different values odntrol
parameters may result in a large variety of badrsedation

problems. On the other hand the developed segnmmtat

procedure is able to solve those critical situatioeported in
Boulaassal et al. (2009).

proved to be able to detect contour points. Howedee to
noise in the data set and the random nature oftpaicquired
by TLS systems, the derived contours may featureery
irregular and jagged shape. Becker and Haala (20@#8ented
a procedure for extraction of breaklines from paitdud of
building facades combining two different phasesa Ifirst step
a cell decomposition of the facade is accomplistmd
identifying contour points using @ster representation. Then,
facade edges are refined by means of an edge mgtchi
procedure combining photos and TLS data. Howewehlpms
may arise when the laser point density is too lath wespect to
resolution of digital images. Pu and Vosselman @00
presented an automatic approach to extract buildaggde
features from a terrestrial point cloud. The metficst defines
several important building features. Then the pailoud is
segmented into planar segments. Finally each seghsen

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

doi:10.5194/isprsannals-11-3-119-2014

121



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-3, 2014
ISPRS Technical Commission lll Symposium, 5 — 7 September 2014, Zurich, Switzerland

compared to building features. However, the proceguesents
a high number of control parameters that are difffio select.
To cope with the previously listed limitation ofetlstate-of-the-
art algorithm a new methodology has been develdpad 4).
The developed procedure does not require RGB imapésas
the problem of image registration can be avoidedaddition
the obtained breaklines are enforced to fit sonuhitactural
priors.

The first step of vectorization is the identifieati of contour
points, which are detected by using the procedtesgnted in a
previous paper (Previtali et al. 2014). However pesviously
discussed, contour points define quite irregulad gagged
profiles showing a characteristic ‘saw-tooth’ shape to the
noise and random measurement errors of laser swamlata.
However, this is in contrast with the characteridbuilding
geometry where straight lines are predominant.tkigrreason,
the achieved edges cannot be directly used fordimgil
modelling. Smoothing is still needed to define gutar shape
of each object. This process has to consider tlfereint
typologies of possible edges. In particular, edgesbe usually
split into different basic entities (linear or cedsparts). Then
line and the curve equations are fitted with Ledgtares by
using the dominant point information, while the Whedge can
be finally reconstructed by merging these entit@gether. As
previously noticed, an important aspect of the desatargeted
in this research is given by the fact that theigitalines are
predominant. In addition, such straight lines galigintersect
in orthogonal way. For this reason, once the canpamints are
found, the dominant edge directions are identifigdusing a
sequential RANSAC implementation aimed at extraclingar
features similar to the one presented for the tieteof planes
(see Sect. 3). Once dominant lines are extractdiér ipoints
are removed and replaced with a straight line. fiéreaining
contour edges are then evaluated. Indeed, sometisnesl|
occlusions on a fagcade or segmentation errors naasec
irregular edges on the generated outline.

Contour points

L

\ |
‘ Detection of dominant ‘
\ |

straluht lines

Enior:ement of straight
line constralnt

Detection of short edges

Long set of small

edges Short

l/—<; Edue size =
B-spline fitting |
Gap filling with
architectural priors
| Objectedges |

Figure 4. Workflow of the developed edge smoothard
regularization process.

These irregular edges should be removed by obsgethat they
form short segments, which result in a gap on thiténe. If the
left long edge (w.r.t. the gap) and the right l@tye belong to
the same line, the gap will be filled by connectiagline
segment. If both edges are parallel, a line segmérich is
perpendicular to both will be generated, and thgesdxtended
to reach the perpendicular segment. Finally, inddme the two
initial edges are orthogonal, they will be extendedghortened

until they intersect at a point to fill the gapdF¥b). Edge filling

intersection constraints not only re-establish topology

between objects but also increase the accuracyetdctbd
breaklines. Indeed, by means of surface intersectimstraints,
breaklines are calculated as the intersectionarigd which are
estimated from a large set of points.

Teft and right edge on the same line
000400000480 %000,

Without
filling priors

e e %5 vve

With filling
priors

00000500, 40000400009 g0 009 2,0 0,040

Leftand right edze parallel
00040000040 % o000,
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filling priors Lagd B g il 1 T L

With filling

ith ill Wo'-g.-”’ogio...L
priors Povtetitsterne

Without filling priors

With filling priors

Leftand
right edge
orthogonal

L

000500000 500 % 0 tate Se0e0g 004, 900 % 0000y

Figure 5. Filling of boundaries for different edgenfigurations.

5. SCAN COMPLETION

As previously discussed, TLS devices often prochmisy and
incomplete data sets due to occlusion, unfavorahidace
reflectance properties, or geometric restrictiomghe scanner
setup. This problem is even more serious in the cddVILS

where there is a lower flexibility in the choice thie scanning
position.

Model-based approaches are used to cope with éachkisn

facade modelling (Becker and Haala 2009; Koutsosedlal.

2009). In particular, they assume that the occludegion is

part of a repeated pattern. However, while in regears many
techniques have been developed to detect repeaed in

models (Mitra et al. 2006; Pauly et al. 2008), mokthese
research works do not investigate how to optimiee use of
strong regularity in 3D scans, specifically in urblauildings.

Moreover, most techniques are applied in image espag
analyzing photometric 2D images sampled over areryidg

regular domain. Only few attempts have been madertis

detection of regularity directly on 3D geometryg(e.Pauly et
al. 2008; Bokeloh et al. 2009). These state-of-ttheeghniques
focused on detecting repeated elements in 3D moHbatsdo

not investigate how to use the detected structimresxtensive
data improvement or completion.

Even though the occlusion problem is more severadoor

scan, few approaches exist to cope with this sg@oatn Okron

et al. (2010) and Adan and Huber (2011) a methodiéaling

with occlusions on the basis of my-tracing approach is
presented. However, a quite coargexelizationof the room
space and a long voxel labelling is carried out.

To cope with occlusions both for indoor and outdscenes we
present a novel approach which allows obtainingompiete
and consistent 3D model representation from suchniplete
surface scans. As previously anticipated, two ntaimpletion

strategies have been designed: RPDC (Subsect. iidlyAaC

(Subsect. 5.2).

5.1 Repeated Pattern Detection and Completion

Once facade elements are detected and vectorizedsdhn
completion procedure is based on the identificatbnepeated
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patterns in the building facade (see Previtali ket 2813).

Indeed, facades of buildings are generally builairmodular
way: a set of few basic elements is organized ateegular
pattern which generally sets up a regular grid. fd@gnition

of these patterns can be used to recover missergesits and
complete the final building model. However, thentifécation

of repeated patterns in a point cloud featuregadt/two main
problems: (1) to define a measure to identify snity between
detected objects in the point cloud; and (2) taupea procedure
to identify the regular grid formed by objects, wlhiis robust
against lacks, outliers and noise.

These problems are overcome along with two diffestages.
First, similarity is evaluated between pairs ofcpats derived
from the previous segmentation and vectorizati@pst Once
two different patches are aligned by means of adsta

Iterative Closest Pointprocedure (Besl and McKay,
similarity between them is evaluated in a quantizpdce in
order to tolerate poor quality input data. In parfar, each
point cloud patch is embedded into a volumetrid gomposed
of voxels whose size is fixed a little bit largévabh the mean
sampling distance of the point cloud. In each tésyhoxel the
number of points contained in it is stored. Thea gmilarity

measurgSM) between two patche§ @nds) is defined as:

o vy -]

- 2 —2 1)
o
where:
v @ Vi@ K
v@ v@ | V=
B S e S R oI @
v,(K) v, (K) !

and K is the total number of cells in the voxel agpaThe
adopted measure defined in Eq. (1) representsah sauilarity
measure of point distributions in the overlappinggion
between the two considered objects. In particuily] may
range from -1 (full inverse correlation) to 1 (fudirect
correlation). For this reason we can assumeSMwalues close
to 1 indicate high similarity between patches wiilehe case

SM is close to zero or negative, these are assumebeto

different. Once the similarity is measured for epelr of slices,
the ones having the maximum similarity are autocadlti

clustered by using a bottom-up method as far asmooe

clusters can be created.

Once similar objects are detected in the pointdidhe regular
grid they form has to be estimated in a robust welye

unknown grid position for a lattice structure Mfrows andN

columns are represented by the row coordindgs1,2,... M)

and column coordinate¥y(j=1,2,...N). The input data are the
centresg; (X, Y) of the similar object clusters detected in the

previous step.

To find the unknown grid positiong;, we applied an
optimization scheme combining tvemergy termsThe first one
takes into account the distance between the gdation g; to
the closer objeat; (Xg, Yg):

%= Zzaﬂz l(Xgi - Xo )+ (ng -Yg )ZJ (3)

The continuous variablg; is a weight measuring how reliably a

grid location is mapped to a facade object and varsa. They
are included as additional unknowns in the optitizaprocess
accounting for holes and outliers. Indeed, values;close to

zero indicate a hole or an outlier, while valuessel to 1

represent a reliable matching between a fagadeeeleemd a
grid location.

The second energy term is aimed at maximizing theber of

valid correspondences between grid location andad¢

elements:
E, =(@-ay)’ @)
The final objective function to be minimized is itheld as:
E=ylE. +(1-pLE, ®)

wherey balances the two energy terms. In order to fiqbaged
similarity in the grid structure, the spacing betwesonsecutive

1992) columns and rows is calculated and clustered. k ¢hse

repetitive spacing are found some additional cairgtr
equations are added in the minimization.
In Figure 6 results of RPDC algorithm for both facadd

building in Figure 3 are reported.

Figure 6. Results of RPDC algorithm for both facadeshe
building in Fig. 3: the repeated pattern for theo tanalysed
fagades superimposed to the point cloud (a-b). Eaobgnized
pattern is represented by a different colour.

5.2 Visibility Analysis Completion

In the case of indoor scans some walls may havebeeh
sensed during scanning and may miss in the poaudclFor
this reason a proper completion procedure is necgs®

reconstruct in a plausible way these pending waiid derive
the floor plan. Indeed, in indoor modelling applioas a single
pending small wall may jeopardize the entire retroiction of

the floor plan. In the developed strategy, suctsgap filled by
incorporating additional, unseen ‘pending’ walls &lte at al.
2010). In particular, in indoor environment it i®gsible to
observe that generally walls intersect orthogonafgr this

reason ‘pending’ walls are guessed to be orthogmndétected
walls and are derived from the boundary of detecteds

(Fig.7a-b).

To obtain a continuous floor plan from ‘detectedddpending’

walls, a procedure based oell complex labellindgs applied. A
2D arrangement (Edelsbrunner et al. 1986) is setwipch

generates a partitioning of the original space doniato

convex polygonal cells (Fig. 7c). Once tlell complexis

derived, the floor plan reconstruction problem cée

formulated as an optimal binary labelling of cells the

complex Each cell is labelled as ‘empty’ or ‘occupiedydathe

floor plan can be extracted as the union of alefaseparating
an occupied cell to an ‘empty’ one, obtaining thay an

intersection-free boundary. This labelling probl&nhandled
within the framework of minimuns-t cut (Reif 1983) on the
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cell-adjacency graptG = (V,E) of the partitioning, where the
verticesV are the cells of the polygonaéll complexand the
edgesE link adjacent cells, i.e., they correspond tofteets of

the complex Starting from the available data some cells can b

directly categorized as ‘occupied’. In particulaall cells
occupied by points belonging to the ceiling can diectly
assigned as ‘occupied’. Weights of remaining edgesveen
cells are fixed equal to the length of the edgeavben the cells.
This means that the-t cutproblem is aimed at minimizing the
length of guessed walls segments. Once all surfaiciée room
‘box’ are detected, the presence ajeningsis investigated.
Indeed, occlusions and clutter produce signifidaoles in the
point cloud which may be erroneously classifiedopgenings.
To identify these situations thay-tracing labellingis applied

and anoccupancy maps generated (Adan and Huber 2011).

The idea behind this method is that if a surfaceciduded, this
means that there is another object closer to thersgs resulting
in a shadowing effect. For this reason, each wkdment
detected in the previous step is discretized ielts ©f sizes x
. Then each cell is tested to verify if it is oc®gy occluded or
represent an opening (e.g., window or door). Ineortb
scrutinize between these different situations, tag tracing
method is used for every scan position in the rodnfirst

openings can be easily detected by identifyinglabels of the
cells (Fig. 9).

=S
-

[
L | ‘_;_"
a = b.

Figure 8. Occupancy map for a wall: reflectancegena) and
cell labelling results (b).

O Occupied

® Occluded ® Opening

6. SEMANTIC INTERPRETATION

Once all objects are detected and completed, Ingjlsli
architectural elements need to be further clask#iecording to
their functionalities (e.g., walls, windows, dooes;.). This step
is important to add semantic content to the gedmetodel. In
order to perform this task some attributes for eabject are
defined and a set of classification rules are fdated and

occupancy magdenoted ad) is generated on the basis on organized in ahierarchical classification treeFor a detailed

whether inlier points are detected at each celtioa or not.
Starting from this map for each scan position, keelling Ly is
generated by tracing a ray from the scan locatioeach pixel
Pi(x,y,z) labelled as ‘empty’ inMy. Having defined the cell
location in spherical coordinates, ti#9-nearest neighbour

description the reader is addressed to Silla asidsr(2011).

In particular for outdoors (Fig. 9a), the classifion starts with
evaluating both area and position of any detectegdots. First,
the ground is detected because it is the horizdptapseudo-
horizontal) object at the lower level. Then the mé#&acade

points for P, can be easily defined. As a measuring distancélanes are extracted since they are objects peiqpgadto the

betweenP; and other points, vertical or nadir angteand

horizontal or azimuth anglé measured by the scanning

instrument are used. In the case the 20-nearegtln@ir points
have angular distance),(a) far larger than the predefined
angular scanning resolution, this would mean thateflected
signal returned back to the laser scanner duee@tésence of
an opening. In this case, the piXelis labelled as ‘empty.’
Conversely, if the angular distance is compatiblehwhe
predefined scanning resolution, the mean distahtieemnearest
neighbours is evaluatedyeon = mean @, ..., dg). In
particular, in the case the mean distance is lothan the
distance from celP;, this would mean tha®; is occluded by
some points in the scan and the cell is consequéatiklled.
On the other hand, if the mean distance is larben tthe
distance fromP;, the cell is labelled as ‘empty.’ Aftaiay-
tracing labelling for any scansK labels for each pixel are
obtained (Fig. 7d). Then all labels are combinegetoer in a
final occupancy mapr adopting the following labelling rule:

—>

4’4‘—7

-«
-«

a. b. c.

Figure 7. Results of VAC algorithm: some wall ponscare
missing (red circles) due to occlusions (a) anslsing wallsare
added (b); induced ‘cell complex’ (c).

If L,(i)=empty and L, (i) =occluded(j = 12...,.K => L, (i) = occluded

In other words, a cell is considered as ‘occludédit is
occluded in any scans. Having obtained tloeupancy map

ground and have the largest area with respect jo cdimer
objects. Indeed, the wall area in a facade is gdigemuch
larger than the one covered by other objects likedaws or
doors. Then flat-like objects over walls protrudiagt of the
facade are classified as roof. For all non-clasgdifibjects their
position with respect to the main facade plane visluated.
Objects in front of the fagade are extrusion olsjeand
classified in a general way as wall attachmentslewdthers are
classified as intrusions. These can be furtheindjsished in
sidewalls, windows and doors. Sidewalls differ frasther
intrusions because their orientation is perpendicub the
frontal face of the walls and for this reason tleay be easily
recognized. In order to distinguish between dood windows
it is assumed that doors are only at bottom fltmddition in

correspondence of a door the main facade plan has a

characteristic gap having an inverted ‘U shape’ levhin

correspondence of windows the gap has an ‘O sh&parting
from these considerations, doors are sought foy @mlthe
ground floor and in correspondence of inverted Hadpe' gaps
in the main wall face. Other intrusions parallelthe facade
plane are classified as windows.

Whole
polygons

¥ 3
ot ] [com

v
[Coamvar ]

o ) oo ]

a

Figure 9. Hierarchical classification tree for lolirig’s outdoor
(a) and for indoor rooms (b).
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For indoor environments five semantics featuresaeitd are
defined, i.e., wall, window, door, floor and cedinin this case
the ceiling can be designed as the non-verticalepleaving the
lower height while the roof is the one at higheighe Then
openings are classified as doors when they intevgét ground
floor, otherwise they are defined as windows.
corresponding classification tree is shown in Fégip.

7. APPLICATIONS

Two examples are illustrated here to present plessib
applications of the developed modelling proceddree first
test concerns an outdoor scene including two fagdéagng a
courtyard, while the second an office room. A phsts@ TLS
FARO-FOCUS 3D (www.faro.com) was adopted.

In the first experiment, the scanned scene preseqtste high
number of clutters generating occlusions on thelding
fagcades and resulting in large missing parts (Fg). First step
of the developed methodology is facade segment&(ron.
10b). Adopted input parameter values are reportéichble 3.

‘Courtyard’
‘Office’
RANSAC plane thresholdg 1lcm
RANSAC normal threshold a 20°
Bitmap cell sizep 1lcm
RANSAC dominant line thresholde 0.7cm

Table 3. Parameters used for segmentation of outifia set.

In Figure 10c the detected repeated patterns asevrshin
particular, it is possible to observe that the ttgved algorithm
can efficiently detect missing objects (like windgvalso in the
case of severe occlusions. Detected regularitiesused to
complete the building model (Fig. 10d). The resattieved by
the proposed approach were checked in order totifyine
geometric accuracy of the obtained vector modelorter to
do that a manual reconstruction of the same datawss
performed, which is considered in the literaturettas most
precise method to extract a vector model from atpolioud
(Nex and Rinaudo, 2009). The ‘manual’ model was canexgb
to the automatically generated. In particular, éach edge the
absolute modelling errois defined as the absolute magnitude
of the difference between the ground truth and nhedel
position. An edge is considered as correctly detkdf the
distance between the manually generated edge andlidkest
automatically generated edge is lower than a pieelef
threshold T. As expected, the numbers of correddjected
edges decreases as the tolerance increases. Howesedrop
presents a significant discontinuity in corresporodeof T = 3.0
mm. In particular, up to this tolerance the coresfence
between automatic and manual derived breaklinedose to
98%. This means that the accuracy of the detecigd i about
this order of magnitude. However, an importantdacteeds to
be observed. Manual modelling of a point cloud nisleied
influenced by human interpretation and the defimitiof
breaklines with accuracy higher than 2.0 — 3.0 ranalmost
impossible also for a skilled operator.

The second example consists in the modelling afffice-room
characterized by a complex ground plane contoure Th
segmentation parameters adopted in the previounpmgahave
been used here again (Tab.3). In Figure 11 a suynofathe
main processing step for this data set are shouso i this
case the derived model was compared to the oufpotamual’
modelling. In particular, the accuracy of the wafld opening

The

boundaries is similar to the one obtainable withnoz
modelling of the point cloud up to a tolerance ©F)2 mm,
confirming the previously discussed results.

d

Figure 10. Outdoor data set: original point cloud); (
segmentation results (b); detected repeated patt@n and
final completed model (d).

C.

Figure 11. Geometric reconstruction of indoor dad&t: (a)
segmentation results; (b) inducedll complex (c) wireframe
model with overlaid the original point cloud; and) final 3D
model.

8. CONCLUSIONS AND FUTURE WORKS

This paper presented a novel automated method rieed@D
vector model of building indoors and outdoors fromassive
unstructured point clouds affected by occlusiors @ntter.
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In particular a flexible completion strategy wasganted in
order to obtain a final model completed in reliaklay. The
major advantage of this methodology is given by fie that
outdoor and indoor reconstruction can be perforineal single
framework giving this way the chance to generateam
automatic way a building model at LoD 4. Up to nowloor
and outdoor modelling, even if
simultaneously, proceed in a quite independent \Wawever,
in our future works we are planning to share infation
between the two process in order to exploit in ficient way
data redundancy, e.g. in the case an elementglikendow) is
occlude from outside this can be recovered frordenslata or
vice versa. Moreover, the automatic integratiorinafoor and
outdoor models needs further investigations in otdeprovide
LoD 5 models.

Finally, the proposed procedure has been succhssalidated
on different buildings but all of them followed aedoland
structures. Extension of the methodology to de#h i larger
number of building geometry is devised.
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