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ABSTRACT: 
 
Terrestrial Laser Scanning data are increasingly used in building survey not only in cultural heritage domain but also for as-built 
modelling of large and medium size civil structures. However, raw point clouds derived from laser scanning generally not directly 
ready for the generation of such models. A time-consuming manual modelling phase has to be taken into account. In addition the 
large presence of occlusion and clutter may turn out in low-quality building models when state-of-the-art automatic modelling 
procedures are applied. This paper presents an automated procedure to convert raw point clouds into semantically-enriched building 
models. The developed method mainly focuses on a geometrical complexity typical of modern buildings with clear prevalence of 
planar features A characteristic of this methodology is the possibility to work with outdoor and indoor building environments. In 
order to operate under severe occlusions and clutter a couple of completion algorithms were designed to generate a plausible and 
reliable model. Finally, some examples of the developed modelling procedure are presented and discussed.  
 
 

1. INTRODUCTION 

In the last years terrestrial laser scanning (TLS) has become a 
major source for the generation of complex digital 3D models of 
building façades. This achievement has been motivated by some 
significant advances in scanning technology, by the increased 
automation of acquisition and registration processes of laser 
scans, along with a reduction of instrumental cost. In addition, 
the improvements in mobile laser scanning (MLS) systems and 
processing techniques allowed rising up the productivity of 
ground-based point-cloud acquisition, despite of a slightly 
lower precision than static scanning.  
At the same time the demand of as-built building models has 
been also fostered by a major attention in energy saving policies 
fixed by national and over-national authorities. Indeed, to 
increase the energy efficiency of existing buildings as-built 
models are necessary both for thermal assessment/simulation 
and for the design of retrofitting interventions. 
To faithfully capture a building model, especially in the case of 
large premises, an extensive acquisition process is often 
required to guarantee a complete coverage of the entire external 
surface. Once preliminary processing of laser point clouds is 
accomplished and laser scans are aligned and edited to remove 
background objects, the process to derive a complete and 
consistent 3D vector model is still a tedious job that may easily 
take several hours or few days, even for an experienced user. 
Significant manual assistance is often required for tasks such as 
data cleaning, hole filling, object classification, and model 
extraction. To improve this process, the topic of increasing 
automation in the building reconstruction pipeline has been 
paid a lot of attention in the literature, see Pu et al. (2011) and 
Haala and Kada (2010). However, the 3D reconstruction is 
generally complicated by some missing parts in the scans. 
Indeed, due to time and accessibility limitations, a complete 
acquisition setup is not always affordable for large buildings 
and often the surface has to be recovered from rather imperfect 
scans, i.e., noisy, incomplete and corrupted with outliers. While 

in static TLS applications occlusions may be reduced by 
carefully planning the acquisition scheme, in MLS datasets 
generally a significant shadowing effect cannot be avoided due 
to pieces of urban furniture, trees, poles and other vehicles on 
the roads. 
In this paper we focus on the automatic generation of building 
models and in particular on the enhancement and consolidation 
of imperfect and missing parts due to the poor quality of input 
data. The applications under consideration belong to Level-of-
Detail (LoD) 4, being such as-built building models requested 
for planned maintenance, thermal retrofitting, preservation and 
documentation, as well as in other engineering applications. In 
such cases the geometric accuracy of the model is of primary 
relevance and objects have to be completed in an accurate and 
reliable way. In particular, since the primary application devised 
for the developed method is thermal analysis of existing 
buildings, we are mainly focusing on premises dated between 
1950 and 1975. Indeed, those constructions were built up in an 
era when little or no consciousness was on taking care of energy 
efficiency performance. Although some differences exist in 
different countries, the most buildings at this epoch feature a 
prevalence of orthogonal intersections between walls. Such kind 
of scenes may be referred to as ‘legoland’ scenes (Foerstner 
2010). 
In particular, the developed solution is flexible and can deal 
both with indoor and outdoor scenes. The availability of a 
single reconstruction method dealing with both building façade 
and indoor rooms gives the chance to exploit redundant 
information, e.g., in the case an element (like a window) is 
occluded from outside, this may be recovered from indoor data 
or vice versa. In addition, the integration between outdoor and 
indoor data is fundamental for generation of building 
information models at LoD 4. On the other hand, indoor and 
outdoor scenes present different architectural peculiarities and 
tailored solutions for modelling have to be designed. In 
particular, two main completion strategies are presented here: 
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(i) Repeated Pattern Detection and Completion (RPDC) and (ii) 
Visibility Analysis Completion (VAC).  
The former (i) has been primarily designed for building 
outdoor. Indeed, façades of urban buildings generally exhibit a 
high degree of self-similarity and redundancy that is due to 
presence of repeated, regular patterns. In the developed 
methodology we explicitly make use of this characteristic of 
urban scenes to enable the recovery of missing geometry. In 
contrast to other methods based on procedural modelling 
(Ullrich et al. 2013), instead of making strong prior assumptions 
about the models and blindly recreating geometry using 
predefined procedural rules, we attempt to extract the maximum 
information from real scans. The challenge lies in the automatic 
determination of which elements repeat in the façade and the 
pattern they form.  
On the other hand, VAC (ii) is primary intended for completion 
of indoor environments. Indeed, in such cases, repetitive 
patterns of walls and windows are more unlucky to be identified 
and ad-hoc algorithms robust to clutter are needed. In the 
developed procedure to understand the nature of occlusions, a 
ray-tracing algorithm (see Alsadik et al. 2014) is used to 
identify regions that are occluded from every viewpoint and to 
distinguish them from openings in the surface (e.g., due to 
doorways or windows). Even if this second completion strategy 
is primarily designed for indoors it can be used also in outdoors 
regions were no repeated patterns can be found, for example in 
MLS data sets. 
 
1.1 Related work 

Several methods have been proposed in the recent literature for 
production of building models generated from TLS data. 
However, they are generally specifically designed for separately 
modelling of building façades (e.g., Pu and Vosselman 2009; 
Ripperda and Brenner 2009) or indoor rooms (Budroni and 
Boehm 2005; Okron et al. 2010; Adan and Huber 2011). No 
reconstruction methods have been developed for simultaneous 
modelling of both kinds of environments. In addition, several 
methodologies operate under the assumption that the surface 
being modelled is relatively unobstructed. To recover missing 
parts a few research works focused on the detection of 
regularity directly on 3D geometry (e.g., Pauly et al. 2008; 
Bokeloh et al. 2009). These state-of-the-art techniques focus on 
detecting repeating elements in 3D models, but do not 
investigate how to use the detected structures for extensive data 
improvement or completion. 
Similarly, also the indoor modelling based on TLS data was 
investigated in different works (Hahnel et al. 2003; Dumitru et 
al. 2013; Khoshelham and Díaz-Vilariño 2014). However, they 
do not considered the occlusion problem because they focused 
on modelling of hallways with no furniture or other potentially 
occluding objects. More attention to this problem is given in 
Díaz-Vilariño et al. (2014), where laser data are integrated to 
images. 
 
 

2. METHOD OVERVIEW 

The presented approach follows the workflow reported in 
Figure 1. The modelling methodology can be applied to 
unstructured point cloud of tens of millions points. This means 
that each point is parameterized by its spatial coordinates and 
may also feature some related attributes (e.g., intensity, colour, 
normal vector), but does not share any topological relationships 
with other points in the neighbourhood. The input point cloud 
can be generated by a single or multiple laser scan station(s). 

Indeed, after scan registration/geo-referencing, scans are 
merged together without needing any reorganization into a 
specific data structure. Once all scans are acquired and 
registered together to output a non-structured point cloud, the 
main architectural elements of the building are identified by 
means of a segmentation process based on a modified RANSAC 
implementation (Previtali et al. 2014). In particular, the 
standard RANSAC approach (Boluaassal et al. 2008) for point 
cloud segmentation is modified by including topology into the 
process to minimize problems connected to under- and over-
segmentation, respectively (Sect. 3).  
Once planar clusters constituting the building object are 
detected, their vectorization is performed. During this phase 
some constraints related to building geometry, like the 
prevalence of straight lines and orthogonal intersections, are 
enforced to obtain a regularization effect (Sect. 4).  
A differentiation in the developed pipeline takes place for the 
completion phase, which mainly relies on RPDC and VAC for 
outdoor and indoor modelling, respectively. To achieve 
completion of these parts, the developed algorithm incorporates 
some architectural priors on indoor scenes, notably the 
prevalence of orthogonal elements which is typical of legoland 
scenes (Sect. 5). Finally, all pieces of information are merged 
together to obtain the complete 3D object model enriched with 
semantics (Sect. 6). 
In Tables 1 and 2 all input parameters needed for 
outdoor/indoor reconstruction pipelines are outlined. 
 
 

 
 
Figure 1. The flowchart of the developed flexible methodology 
for building model generation.  
 

Parameters for outdoor reconstruction 

Point cloud 
segmentation 

RANSAC plane threshold ε 
RANSAC normal threshold α 

Bitmap cell size β 

Vectorization 
RANSAC dominant line threshold ε 

Gap filling length L 

Scan completion 
Voxel cell size β 

Minimum similarity SMmin 

 
Table 1. Parameters for outdoor reconstruction.  
 

Parameters for indoor reconstruction 

Point cloud 
segmentation 

RANSAC plane threshold ε 
RANSAC normal threshold α 

Bitmap cell size β 

Vectorization 
RANSAC dominant line threshold ε 

Gap filling length L 

Scan completion 
Bitmap cell size β 
Occluding distance 

 
Table 2. Parameters for indoor reconstruction.  
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3. POINT CLOUD SEGMENTATION 

A first step towards the segmentation of the building object is to 
detect all its planar features. Detection of façade objects is 
accomplished by using a specifically modified RANSAC-based 
algorithm (Fig. 2). This implementation is aimed at reducing 
spurious results obtained by the standard sequential RANSAC 
segmentation as reported in the literature (Boulaassal et al. 
2009; Awwad et al. 2010). Those bad-segmentation problems 
can be categorized into under- and over-segmentation. Under-
segmentation is generally due to the fact that points resulting in 
the maximum consensus to RANSAC may belong to different 
façade objects. A typical example is represented by windows. 
Indeed, even if they belong to the same geometrical plane, each 
window represents a different architectonical component. Over-
segmentation is generally associated with noise or irregularities 
in the data set. Many façades presents irregularities, like out-of-
plumbs that are not evaluated in the RANSAC estimation of 
inliers. This may result in a wrong subdivision of a single 
façade element into several objects.  
 
 

 
Figure 2. Workflow of the developed segmentation process. 
 
 
To partially overcome the limitations enlisted above, a new 
automatic approach is presented for the segmentation of planar 
surfaces based on the combination of RANSAC and region-
growing techniques. The aim of this strategy is to derive 
‘meaningful’ segments from building point clouds. This means 
that extracted segments would correspond to objects of interest 
(e.g., roofs, walls, doors, etc.) instead of being simply those 
which best fit some mathematical models. This hybrid strategy 
allows combining the robustness of RANSAC with the spatial 
proximity used in region growing methods. Indeed, in contrast 
to standard region growing methods (Tóvári and Pfeifer 2005; 
Rabbani 2006) the segmentation results are not affected by 
selection of ‘seed’ points because the estimation of planar 
segment is performed by using RANSAC. In addition fewer 
parameters (see Table 1) are required with respect to the region-
growing implementation presented in Vosselman et al. (2004) 
where the selection of slightly different values of control 
parameters may result in a large variety of bad-segmentation 
problems. On the other hand the developed segmentation 
procedure is able to solve those critical situations reported in 
Boulaassal et al. (2009). 

In particular, under-segmentation is reduced by introducing 
knowledge about point topology. Indeed, even if points are not 
usually related by any topological relationship in an 
unorganized point cloud, we can assume that points belonging 
to the same object should be sufficiently close to one another 
while groups of points belonging to different objects should be 
separated by a spatial gap. For this reason, point cloud 
proximity is evaluated by using a 2D binary point occupancy 
raster map. First, any points belonging to the same plane are 
projected orthogonally to a raster bitmap. All pixels in the 
bitmap containing at least one projected point are assigned the 
value 1, while others are given value 0. This raster map allows 
finding connected regions of pixels featuring value 1. Then all 
points whose projection belongs to the same connected 
component can be clustered. 
Once all planar elements are detected, the extracted planes are 
clustered together to reduce over-segmentation problems. 
Object clustering is performed by evaluating three parameters: 
(i) similarity of normal vectors; (ii) perpendicular distance 
between planes; and (iii) intersection between clusters. 
An example of the results achieved by using the presented 
method is presented in Figure 3. 
 

  
Figure 3. Building’s façade segmentation results: (a) original 
point cloud; and (b) segmentation results, each detected 
segment is represented using a different colour. 
 
 

4. VECTORIZATION 

The most important aspect for vectorization of elements 
detected in the previous step is the detection of breaklines. In 
TLS domain Boulaassal et al. (2009) presented a contour 
extraction algorithm for building façades. After façade 
segmentation and detection of planar clusters in a façade, the 
extraction of their contour is carried out. The main idea 
exploited in this algorithm is based on the hypothesis 
stipulating that contour points belong to the long sides of 
Delaunay’s triangles for detected clusters. This algorithm 
proved to be able to detect contour points. However, due to 
noise in the data set and the random nature of points acquired 
by TLS systems, the derived contours may feature a very 
irregular and jagged shape. Becker and Haala (2007) presented 
a procedure for extraction of breaklines from point cloud of 
building façades combining two different phases. In a first step 
a cell decomposition of the façade is accomplished by 
identifying contour points using a raster representation. Then, 
façade edges are refined by means of an edge matching 
procedure combining photos and TLS data. However, problems 
may arise when the laser point density is too low with respect to 
resolution of digital images. Pu and Vosselman (2006) 
presented an automatic approach to extract building façade 
features from a terrestrial point cloud. The method first defines 
several important building features. Then the point cloud is 
segmented into planar segments. Finally each segment is 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-119-2014 121



 

compared to building features. However, the procedure presents 
a high number of control parameters that are difficult to select.  
To cope with the previously listed limitation of the state-of-the-
art algorithm a new methodology has been developed (Fig. 4). 
The developed procedure does not require RGB images so that 
the problem of image registration can be avoided. In addition 
the obtained breaklines are enforced to fit some architectural 
priors.  
The first step of vectorization is the identification of contour 
points, which are detected by using the procedure presented in a 
previous paper (Previtali et al. 2014). However, as previously 
discussed, contour points define quite irregular and jagged 
profiles showing a characteristic ‘saw-tooth’ shape due to the 
noise and random measurement errors of laser scanning data. 
However, this is in contrast with the characteristic building 
geometry where straight lines are predominant. For this reason, 
the achieved edges cannot be directly used for building 
modelling. Smoothing is still needed to define a regular shape 
of each object. This process has to consider the different 
typologies of possible edges. In particular, edges can be usually 
split into different basic entities (linear or curved parts). Then 
line and the curve equations are fitted with Least Squares by 
using the dominant point information, while the whole edge can 
be finally reconstructed by merging these entities together. As 
previously noticed, an important aspect of the façades targeted 
in this research is given by the fact that the straight lines are 
predominant. In addition, such straight lines generally intersect 
in orthogonal way. For this reason, once the contour points are 
found, the dominant edge directions are identified by using a 
sequential RANSAC implementation aimed at extracting linear 
features similar to the one presented for the detection of planes 
(see Sect. 3). Once dominant lines are extracted, inlier points 
are removed and replaced with a straight line. The remaining 
contour edges are then evaluated. Indeed, sometimes, small 
occlusions on a façade or segmentation errors may cause 
irregular edges on the generated outline. 
 
 

 
 
Figure 4. Workflow of the developed edge smoothing and 
regularization process. 
 
 
These irregular edges should be removed by observing that they 
form short segments, which result in a gap on the outline. If the 
left long edge (w.r.t. the gap) and the right long edge belong to 
the same line, the gap will be filled by connecting a line 
segment. If both edges are parallel, a line segment which is 
perpendicular to both will be generated, and the edges extended 
to reach the perpendicular segment. Finally, in the case the two 
initial edges are orthogonal, they will be extended or shortened 

until they intersect at a point to fill the gap (Fig. 5). Edge filling 
intersection constraints not only re-establish the topology 
between objects but also increase the accuracy of detected 
breaklines. Indeed, by means of surface intersection constraints, 
breaklines are calculated as the intersection of planes which are 
estimated from a large set of points. 
 

 
 
Figure 5. Filling of boundaries for different edge configurations. 
 
 

5. SCAN COMPLETION 

As previously discussed, TLS devices often produce noisy and 
incomplete data sets due to occlusion, unfavorable surface 
reflectance properties, or geometric restrictions in the scanner 
setup. This problem is even more serious in the case of MLS 
where there is a lower flexibility in the choice of the scanning 
position.  
Model-based approaches are used to cope with occlusions in 
façade modelling (Becker and Haala 2009; Koutsourakiset al. 
2009). In particular, they assume that the occluded region is 
part of a repeated pattern. However, while in recent years many 
techniques have been developed to detect repeated parts in 
models (Mitra et al. 2006; Pauly et al. 2008), most of these 
research works do not investigate how to optimize the use of 
strong regularity in 3D scans, specifically in urban buildings. 
Moreover, most techniques are applied in image space by 
analyzing photometric 2D images sampled over an underlying 
regular domain. Only few attempts have been made towards 
detection of regularity directly on 3D geometry (e.g., Pauly et 
al. 2008; Bokeloh et al. 2009). These state-of-the-art techniques 
focused on detecting repeated elements in 3D models, but do 
not investigate how to use the detected structures for extensive 
data improvement or completion. 
Even though the occlusion problem is more severe in indoor 
scan, few approaches exist to cope with this situation. In Okron 
et al. (2010) and Adan and Huber (2011) a method for dealing 
with occlusions on the basis of a ray-tracing approach is 
presented. However, a quite coarse voxelization of the room 
space and a long voxel labelling is carried out. 
To cope with occlusions both for indoor and outdoor scenes we 
present a novel approach which allows obtaining a complete 
and consistent 3D model representation from such incomplete 
surface scans. As previously anticipated, two main completion 
strategies have been designed: RPDC (Subsect. 5.1) and VAC 
(Subsect. 5.2).  
 
5.1 Repeated Pattern Detection and Completion 

Once façade elements are detected and vectorized the scan 
completion procedure is based on the identification of repeated 
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patterns in the building façade (see Previtali et al. 2013). 
Indeed, façades of buildings are generally built in a modular 
way: a set of few basic elements is organized into a regular 
pattern which generally sets up a regular grid. The recognition 
of these patterns can be used to recover missing elements and 
complete the final building model. However, the identification 
of repeated patterns in a point cloud features at least two main 
problems: (1) to define a measure to identify similarity between 
detected objects in the point cloud; and (2) to set up a procedure 
to identify the regular grid formed by objects, which is robust 
against lacks, outliers and noise. 
These problems are overcome along with two different stages. 
First, similarity is evaluated between pairs of patches derived 
from the previous segmentation and vectorization steps. Once 
two different patches are aligned by means of a standard 
Iterative Closest Point procedure (Besl and McKay, 1992) 
similarity between them is evaluated in a quantized space in 
order to tolerate poor quality input data. In particular, each 
point cloud patch is embedded into a volumetric grid composed 
of voxels whose size is fixed a little bit larger than the mean 
sampling distance of the point cloud. In each resulting voxel the 
number of points contained in it is stored. Then the similarity 
measure (SM) between two patches (Si and Sj) is defined as: 
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and K is the total number of cells in the voxel space. The 
adopted measure defined in Eq. (1) represents a local similarity 
measure of point distributions in the overlapping region 
between the two considered objects. In particular, SM may 
range from -1 (full inverse correlation) to 1 (full direct 
correlation). For this reason we can assume that SM values close 
to 1 indicate high similarity between patches while in the case 
SM is close to zero or negative, these are assumed to be 
different. Once the similarity is measured for each pair of slices, 
the ones having the maximum similarity are automatically 
clustered by using a bottom-up method as far as no more 
clusters can be created. 
Once similar objects are detected in the point cloud, the regular 
grid they form has to be estimated in a robust way. The 
unknown grid position for a lattice structure of M rows and N 
columns are represented by the row coordinates Xgi(i= 1,2,…,M) 
and column coordinates Ygj(j= 1,2,…,N). The input data are the 
centres cij(Xci,Ycj) of the similar object clusters detected in the 
previous step. 
To find the unknown grid positions gij, we applied an 
optimization scheme combining two energy terms. The first one 
takes into account the distance between the grid location gij to 
the closer object cij(Xci, Ycj): 
 

( ) ( )[ ]∑∑ −+−=
i j

jjiiijC YcYgXcXgE 222α  
(3) 

The continuous variable αij is a weight measuring how reliably a 
grid location is mapped to a façade object and vice versa. They 
are included as additional unknowns in the optimization process 
accounting for holes and outliers. Indeed, values of αij close to 

zero indicate a hole or an outlier, while values close to 1 
represent a reliable matching between a façade element and a 
grid location.  
The second energy term is aimed at maximizing the number of 
valid correspondences between grid location and façade 
elements: 

22)1( ijE αα −=  (4) 

 
The final objective function to be minimized is defined as: 
 

αγγ EEE C ⋅−+⋅= )1(  (5) 
 
where γ balances the two energy terms. In order to find repeated 
similarity in the grid structure, the spacing between consecutive 
columns and rows is calculated and clustered. In the case 
repetitive spacing are found some additional constraint 
equations are added in the minimization. 
In Figure 6 results of RPDC algorithm for both façades of 
building in Figure 3 are reported. 
 

a.  b.  
 
Figure 6. Results of RPDC algorithm for both façades of the 
building in Fig. 3: the repeated pattern for the two analysed 
façades superimposed to the point cloud (a-b). Each recognized 
pattern is represented by a different colour. 
 
5.2 Visibility Analysis Completion 

In the case of indoor scans some walls may have not been 
sensed during scanning and may miss in the point cloud. For 
this reason a proper completion procedure is necessary to 
reconstruct in a plausible way these pending walls and derive 
the floor plan. Indeed, in indoor modelling applications a single 
pending small wall may jeopardize the entire reconstruction of 
the floor plan. In the developed strategy, such gaps are filled by 
incorporating additional, unseen ‘pending’ walls (Chauve at al. 
2010). In particular, in indoor environment it is possible to 
observe that generally walls intersect orthogonally. For this 
reason ‘pending’ walls are guessed to be orthogonal to detected 
walls and are derived from the boundary of detected walls 
(Fig.7a-b).  
To obtain a continuous floor plan from ‘detected’ and ‘pending’ 
walls, a procedure based on cell complex labelling is applied. A 
2D arrangement (Edelsbrunner et al. 1986) is set up, which 
generates a partitioning of the original space domain into 
convex polygonal cells (Fig. 7c). Once the cell complex is 
derived, the floor plan reconstruction problem can be 
formulated as an optimal binary labelling of cells in the 
complex. Each cell is labelled as ‘empty’ or ‘occupied,’ and the 
floor plan can be extracted as the union of all facets separating 
an occupied cell to an ‘empty’ one, obtaining this way an 
intersection-free boundary. This labelling problem is handled 
within the framework of minimum s-t cut (Reif 1983) on the 
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cell-adjacency graph G = (V,E) of the partitioning, where the 
vertices V are the cells of the polygonal cell complex and the 
edges E link adjacent cells, i.e., they correspond to the facets of 
the complex. Starting from the available data some cells can be 
directly categorized as ‘occupied’. In particular, all cells 
occupied by points belonging to the ceiling can be directly 
assigned as ‘occupied’. Weights of remaining edges between 
cells are fixed equal to the length of the edge between the cells. 
This means that the s–t cut problem is aimed at minimizing the 
length of guessed walls segments. Once all surfaces of the room 
‘box’ are detected, the presence of openings is investigated. 
Indeed, occlusions and clutter produce significant holes in the 
point cloud which may be erroneously classified as openings. 
To identify these situations the ray-tracing labelling is applied 
and an occupancy map is generated (Adan and Huber 2011). 
The idea behind this method is that if a surface is occluded, this 
means that there is another object closer to the scanner resulting 
in a shadowing effect. For this reason, each wall element 
detected in the previous step is discretized into cells of size β x 
β. Then each cell is tested to verify if it is occupied, occluded or 
represent an opening (e.g., window or door). In order to 
scrutinize between these different situations, the ray tracing 
method is used for every scan position in the room. A first 
occupancy map (denoted as M0) is generated on the basis on 
whether inlier points are detected at each cell location or not. 
Starting from this map for each scan position, a labelling Lk is 
generated by tracing a ray from the scan location to each pixel 
Pi(x,y,z) labelled as ‘empty’ in M0. Having defined the cell 
location in spherical coordinates, the 20-nearest neighbour 
points for Pi can be easily defined. As a measuring distance 
between Pi and other points, vertical or nadir angle α and 
horizontal or azimuth angle θ measured by the scanning 
instrument are used. In the case the 20-nearest neighbour points 
have angular distance (θ, α) far larger than the predefined 
angular scanning resolution, this would mean that no reflected 
signal returned back to the laser scanner due to the presence of 
an opening. In this case, the pixel Pi is labelled as ‘empty.’ 
Conversely, if the angular distance is compatible with the 
predefined scanning resolution, the mean distance of the nearest 
neighbours is evaluated dmean = mean (d1, d2,..., d20). In 
particular, in the case the mean distance is lower than the 
distance from cell Pi, this would mean that Pi is occluded by 
some points in the scan and the cell is consequently labelled. 
On the other hand, if the mean distance is larger than the 
distance from Pi, the cell is labelled as ‘empty.’ After ray-
tracing labelling for any scans, K labels for each pixel are 
obtained (Fig. 7d). Then all labels are combined together in a 
final occupancy map LF adopting the following labelling rule: 
 

a. b. c.  
 
Figure 7. Results of VAC algorithm: some wall portions are 
missing (red circles) due to occlusions (a) and missing walls are 
added (b); induced ‘cell complex’ (c). 

occludediLKjoccludediLandemptyiLIf Fj ==>=∀== )(,...,2,1,)()(0
  

 
In other words, a cell is considered as ‘occluded’ if it is 
occluded in any scans. Having obtained the occupancy map, 

openings can be easily detected by identifying the labels of the 
cells (Fig. 9).  
 
 

a.  b.  
 
Figure 8. Occupancy map for a wall: reflectance image (a) and 
cell labelling results (b).  
 
 

6. SEMANTIC INTERPRETATION 

Once all objects are detected and completed, building’s 
architectural elements need to be further classified according to 
their functionalities (e.g., walls, windows, doors, etc.). This step 
is important to add semantic content to the geometric model. In 
order to perform this task some attributes for each object are 
defined and a set of classification rules are formulated and 
organized in a hierarchical classification tree. For a detailed 
description the reader is addressed to Silla and Freitas (2011).   
In particular for outdoors (Fig. 9a), the classification starts with 
evaluating both area and position of any detected objects. First, 
the ground is detected because it is the horizontal (or pseudo-
horizontal) object at the lower level. Then the main façade 
planes are extracted since they are objects perpendicular to the 
ground and have the largest area with respect to any other 
objects. Indeed, the wall area in a façade is generally much 
larger than the one covered by other objects like windows or 
doors. Then flat-like objects over walls protruding out of the 
façade are classified as roof. For all non-classified objects their 
position with respect to the main façade plane is evaluated. 
Objects in front of the façade are extrusion objects and 
classified in a general way as wall attachments, while others are 
classified as intrusions. These can be further distinguished in 
sidewalls, windows and doors. Sidewalls differ from other 
intrusions because their orientation is perpendicular to the 
frontal face of the walls and for this reason they can be easily 
recognized. In order to distinguish between doors and windows 
it is assumed that doors are only at bottom floor. In addition in 
correspondence of a door the main façade plan has a 
characteristic gap having an inverted ‘U shape’ while in 
correspondence of windows the gap has an ‘O shape.’ Starting 
from these considerations, doors are sought for only at the 
ground floor and in correspondence of inverted ‘U shape’ gaps 
in the main wall face. Other intrusions parallel to the façade 
plane are classified as windows.  
 
 

a.  b.  
 
Figure 9. Hierarchical classification tree for building’s outdoor 
(a) and for indoor rooms (b). 
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For indoor environments five semantics features extracted are 
defined, i.e., wall, window, door, floor and ceiling. In this case 
the ceiling can be designed as the non-vertical plane having the 
lower height while the roof is the one at higher height. Then 
openings are classified as doors when they intersect with ground 
floor, otherwise they are defined as windows. The 
corresponding classification tree is shown in Figure 9b. 
 
 

7. APPLICATIONS 

Two examples are illustrated here to present possible 
applications of the developed modelling procedure. The first 
test concerns an outdoor scene including two façades facing a 
courtyard, while the second an office room. A phase-shift TLS 
FARO-FOCUS 3D (www.faro.com) was adopted.  
In the first experiment, the scanned scene presents a quite high 
number of clutters generating occlusions on the building 
façades and resulting in large missing parts (Fig. 10a). First step 
of the developed methodology is façade segmentation (Fig. 
10b). Adopted input parameter values are reported in Table 3. 
 

 
 ‘Courtyard’ 

‘Office’ 
RANSAC plane threshold ε 1 cm 

RANSAC normal threshold α 20 ° 
Bitmap cell size β 1 cm 

RANSAC dominant line threshold ε 0.7 cm 
Table 3. Parameters used for segmentation of outdoor data set. 
 
 
In Figure 10c the detected repeated patterns are shown. In 
particular, it is possible to observe that the developed algorithm 
can efficiently detect missing objects (like windows) also in the 
case of severe occlusions. Detected regularities are used to 
complete the building model (Fig. 10d). The results achieved by 
the proposed approach were checked in order to quantify the 
geometric accuracy of the obtained vector models. In order to 
do that a manual reconstruction of the same data set was 
performed, which is considered in the literature as the most 
precise method to extract a vector model from a point cloud 
(Nex and Rinaudo, 2009). The ‘manual’ model was compared 
to the automatically generated. In particular, for each edge the 
absolute modelling error is defined as the absolute magnitude 
of the difference between the ground truth and the model 
position. An edge is considered as correctly detected if the 
distance between the manually generated edge and the closest 
automatically generated edge is lower than a predefined 
threshold T. As expected, the numbers of correctly detected 
edges decreases as the tolerance increases. However, this drop 
presents a significant discontinuity in correspondence of T = 3.0 
mm. In particular, up to this tolerance the correspondence 
between automatic and manual derived breaklines is close to 
98%. This means that the accuracy of the detected edge is about 
this order of magnitude. However, an important factor needs to 
be observed. Manual modelling of a point cloud is indeed 
influenced by human interpretation and the definition of 
breaklines with accuracy higher than 2.0 – 3.0 mm is almost 
impossible also for a skilled operator. 
The second example consists in the modelling of an office-room 
characterized by a complex ground plane contour. The 
segmentation parameters adopted in the previous example have 
been used here again (Tab.3). In Figure 11 a summary of the 
main processing step for this data set are shown. Also in this 
case the derived model was compared to the output of ‘manual’ 
modelling. In particular, the accuracy of the wall and opening 

boundaries is similar to the one obtainable with manual 
modelling of the point cloud up to a tolerance (T) of 2 mm, 
confirming the previously discussed results. 
 
 

a. b.  

c.  

d   
 
Figure 10. Outdoor data set: original point cloud (a); 
segmentation results (b); detected repeated patterns (c); and 
final completed model (d). 
 

a.  b.  

c.  d.   
 

Figure 11. Geometric reconstruction of indoor data set: (a) 
segmentation results; (b) induced cell complex; (c) wireframe 
model with overlaid the original point cloud; and (d) final 3D 
model. 
 

8. CONCLUSIONS AND FUTURE WORKS 

This paper presented a novel automated method to derive 3D 
vector model of building indoors and outdoors from massive 
unstructured point clouds affected by occlusions and clutter.  
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In particular a flexible completion strategy was presented in 
order to obtain a final model completed in reliable way. The 
major advantage of this methodology is given by the fact that 
outdoor and indoor reconstruction can be performed in a single 
framework giving this way the chance to generate in an 
automatic way a building model at LoD 4. Up to now indoor 
and outdoor modelling, even if they are performed 
simultaneously, proceed in a quite independent way. However, 
in our future works we are planning to share information 
between the two process in order to exploit in an efficient way 
data redundancy, e.g. in the case an element (like a window) is 
occlude from outside this can be recovered from inside data or 
vice versa. Moreover, the automatic integration of indoor and 
outdoor models needs further investigations in order to provide 
LoD 5 models.  
Finally, the proposed procedure has been successfully validated 
on different buildings but all of them followed a Legoland 
structures. Extension of the methodology to deal with a larger 
number of building geometry is devised. 
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