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ABSTRACT:

The paper presents an algorithm for reconstruction of 3D circle from its apparition in n images. It supposes that camera poses are
known up to an uncertainty. They will be considered as observations and will be refined during the reconstruction process. First,
circle apparitions will be estimated in every individual image from a set of 2D points using a constrained optimization. Uncertainty of
2D points are propagated in 2D ellipse estimation and leads to covariance matrix of ellipse parameters. In 3D reconstruction process
ellipse and camera pose parameters are considered as observations with known covariances. A minimal parametrization of 3D circle
enables to model the projection of circle in image without any constraint. The reconstruction is performed by minimizing the length of
observation residuals vector in a non linear Gauss-Helmert model. The output consists in parameters of the corresponding circle in 3D
and their covariances. The results are presented on simulated data.

1 INTRODUCTION

Ellipses have been adopted in many computer vision applications.
A 3D elliptical shape is projected as an ellipse under projec-
tive transformation. This property made detection of elliptical
features easier and incited many researches in image-based ob-
ject detection (Kanatani and Ohta, 2004; Martelli et al., 2010;
Shuhua and Yong, 2010). Under projective projection a circle is
deformed to an ellipse whenever the pose is not fronto-parallel.
This property have been used for image rectification purposes (Ip
and Chen, 2005; Hutter and Brewer, 2009). When 3D param-
eters of elliptical features and their projection in image space
are known, the projection parameters can be estimated. Many
researchers adopted this strategy for camera calibration (Tarel
and Gagalowicz, 1995; Heikkila, 2000; Mateos, 2000; Hu and
Ji, 2001).

Many man made objects exhibit circular shapes. Automatic de-
tection of most of these features such as fiducial markers (Berga-
masco et al., 2011), traffic signs (Fu and Huang, 2010; Arlicot
et al., 2009), manholes (S. Ji and Shi, 2012) and roundabouts
(Ravanbakhsh and Fraser, 2009) in optical images have been in-
vestigated. In contrast to 2D estimation, 3D reconstruction of
circle was rarely investigated. The goal of this paper is to pro-
vide a generic approach for reconstructing circular features from
their elliptical apparitions in multi-view images. The observa-
tions of our system would consist in parameters of ellipses in
image space and image poses. Propagation of observations’ un-
certainty through the reconstruction process would provide 3D
circle’s uncertainty.

Quan (1996) proposed a closed-form approach for conic match-
ing and reconstruction from two views. The main drawbacks of
the method consist in complexity of extension to multi-view and
integration of uncertainty in the mathematical model. Moreover
the provided solution is generally a 3D ellipse. Adding the cir-
cularity constraint to the solution doesn’t seems to be straightfor-
ward.

Mai et al. (2010) proposed a multi-view approach to estimate
an ellipse in 3D space from an uncalibrated set of images. The

method is based on reconstructing more than five 3D points (se-
lected on a reference 2D ellipse) by minimizing the distances
from their projections to the measured 2D ellipses on different
images. The main advantages of the proposed method are in the
joint analysis of multiple images (instead of stereo) and in the
simultaneous estimation of pose parameters. Comparing to the
previous approach, the drawback is in using representative points
for 3D estimation instead of using the totality of ellipse form.
Like the previous approach the solution is generally an ellipse.
Lastly, the solution is not symmetric, as it depends on the choice
of a reference image.

Bergamasco et al. (2012) proposed a 3D parametrization of el-
lipses and its back-projection in image space. Then the 3D ellipse
evolve in 3D space and its back-projection in multiple images
are simultaneously updated. A level set function allows to fit the
back-projections of the 3D ellipse to observations and define an
energy. The energy is minimized by a gradient descent method.
Comparing to the previous multi-view method, this approach en-
sure the consistency of the back-projection in all ellipses’ points
in any image.

The former method is the nearest method to ours except in formu-
lation for circle and taking into account the uncertainty. Uncer-
tainty propagation in terms of projective geometries has been de-
veloped by Förstner (2005). We propose to adapt these concepts
of error propagation in our context of 3D circle reconstruction un-
der uncertain views. Uncertainty analysis and propagation may
be carried out using the Gauss-Helmert model (McGlone et al.,
2004), which enables simultaneous estimation of unknowns and
adjustments of observations while providing uncertainty propa-
gation in terms of covariance matrices.

1.1 Proposed approach

To tackle the simultaneous 3D circle reconstruction problem and
multi-view 3D pose correction problem with error propagation,
we propose a stratified approach with 2 steps :

1. 2D ellipse equations and uncertainties are first estimated in-
dependently in each image (section 2).
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2. These estimated 2D ellipses with uncertainties are then taken
as observations to be adjusted in the subsequent 3D recon-
struction step which estimates a 3D circle and adjusts the
poses of all images, carrying out uncertainty propagation on
all these elements (section 3).

Section 4 and 5 provide some results, discussion and conclusion
on the proposed method.

2 2D ELLIPSE ESTIMATION AND ERROR
PROPAGATION

2.1 2D geometry concepts and notations

A conic is a 2D shape that may be described by the following
implicit equation :

ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0 (1)

This may be rewritten in homogeneous coordinates with a 3 × 3
symmetric matrix E (Hartley and Zisserman, 2004) :

[ x
y
1

]T

E
[ x

y
1

]
= 0 with E =

a b d
b c e
d e f

 (2)

Dual to this point based representation, a conic may also be rep-
resented as a curve that is tangent to a set of lines. Using homo-
geneous line coordinates ( a, b, c ), the tangency relationship may

be written as
[

a
b
c

]T

E∗
[

a
b
c

]
= 0, where E∗ is the line conic dual

to the point conicE. IfE is full-rank, then we have the following
relationship, asE andE∗ are symmetric homogeneous quantities
:

E∗ = E−1 =
comatrix(E)T

det(E)
∼= comatrix(E) (3)

This dual representation will not be used to characterize tangent
lines but for the simplicity expressing a projected 3D dual quadric
as a 2D dual conic (cf. section 3.2).

Let us now introduce the encoding of a symmetric matrix M as
the 6-vector vec6(M) = (M11,M12,M22,M13,M23,M33)T .
We further denote vec5(M) = (M11,M12,M22,M13,M23)T ,
dropping the M33 entry, which will be useful for instance when
considering matrices where M33 is constrained to 1.

Finally, ellipses are the subset of conics for which ac−b2 > 0. As
the symmetric matrix E is a homogeneous quantity defined up to
scale, encoding an ellipse may thus be scaled to fulfill ac− b2 =
1.

2.2 Ellipse fitting and error propagation

Estimation of 2D ellipse consists in resolution of the following
constrained equation system :

f(x, l) = ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0

fc(x) = ac− b2 − 1 = 0 (4)
where:
x : (a, b, c, d, e, f)T : unknowns vector

l : (x1, y1, ..., xn, yn)T : observations vector

We applied the Gauss-Helmert model to resolve the system by
minimizing length of observations residual vector. The model
enables to take into account covariance matrix of observations to

weight the equations and provides the covariance matrix of the
parameters (Vanı́ček and Krakiwsky, 1986). As the constraint
function fc is not linear, both equations were linearized to yield :

Aδ +Br +w = 0 (5)
Dδ +wc = 0 (6)

A =
∂f

∂x
, B =

∂f

∂l
D =

∂fc

∂x

w = f(x0, l0), wc = fc(x0)

x0, l0 : Initial values
δ, r : residuals of unknowns and observations

The variation function for finding the least-squares solution is :

Φ = rC−1
r r + 2kT (Aδ +Br +w) + 2kT

c (Dδ +wc)(7)
where:
k,kc: Lagrange coefficients

The unknowns correction vector δ̂ and observations correction
vector r̂ are obtained by minimizing Φ (Förstner, 2005).

[
N DT

D 0

] [
δ̂

k̂c

]
+

[
u
wc

]
=

[
0
0

]
(8)[

δ̂

k̂c

]
= −

[
N DT

D 0

]−1 [
u
wc

]
(9)

r̂ = −CrB
TM(Aδ̂ +w) (10)

where:
u = ATMw

N = ATMA

M = (BCrB
T )−1

Cr : Covariance matrix of observations

The Gauss-Newton iterative method were employed to solve the
problem by applying corrections to the observations r̂ and un-
knowns δ̂ iteratively. We applied the method presented by Fitzgib-
bon et al. (1999) in order to obtain an initial solution x0.

Finlly the covariance matrix of parameters C δ̂ is obtained from
inverted normal equation matrix:[

C δ̂ ST

S T

]
=

[
N DT

D 0

]−1

(11)

2.3 Point Set Normalization

To prevent numerical issues, the point set (Xi) = (xi, yi) is
converted through a linear transform to a normalized point set
(X ′i) = (x′i, y

′
i), prior to the Ellipse fitting and error propagation.

The inverse of this linear transform, denoted by the homogeneous
denormalization matrix Mden verifies Xi = MdenX

′
i and may

be written as :

Mden =

sx 0 mx

0 sy my

0 0 1

 (12)

where (sx, sy) is the normalization scale and (mx,my) the nor-
malization center.

The results of ellipse fitting is the ellipse E′ and covariance ΣE′
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estimated on the normalized point set.

vec6(E′) = ( a, b, c, d, e, f )T with ac− b2 = 1 (13)

2.4 Ellipse Dualization

The estimated dual conicE′∗ is proportional to the inverse ofE′,
and may thus be chosen as the comatrix ofE′ (equation 3). Since
ac− b2 = 1, we get :

E′∗ =

cf − e2 de− bf be− cd
de− bf af − d2 bd− ae
be− cd bd− ae 1

 (14)

vec5(E′∗) = ( cf−e2, de−bf, af−d2, be−cd, bd−ae )T (15)

Uncertainty propagation may thus be carried out with the follow-
ing approximation :

Σvec5(E′∗) = JdualΣvec6(E′)J
T
dual (16)

with Jdual =
∂(vec5(E′∗))
∂(vec6(E′))

(17)

=

 0 0 f 0 −2e c
0 −f 0 e d −b
f 0 0 −2d 0 a
0 e −d −c b 0
−e d 0 b −a 0


(18)

2.5 Dual Ellipse Denormalization

The dual conicE∗ may finally be derived from the dual conicE′∗

of the normalized point set using the following identity, express-
ing a dual conic modification under the point transform Mden :

E∗ = MdenE
′∗MT

den (19)

This amounts to a linear transform on the vector representation
vec5(E∗) of E∗, which may be used to compute an exact uncer-
tainty propagation on its covariance matrix.

vec5(E∗) = Jdenvec5(E′∗) +

 m2
x

mxmy

m2
y

mx
my

 (20)

Σvec5(E∗) = JdenΣvec5(E′∗)J
T
den (21)

with Jden =

 s2
x 0 0 2sxmx 0
0 sxsy 0 sxmy symx

0 0 s2
y 0 2symy

0 0 0 sx 0
0 0 0 0 sy

 (22)

Chaining all these steps together, we have thus proposed a method
that estimates the uncertain dual ellipse quantities (vec5(E∗),
Σvec5(E∗)) from a set of ellipse contour points in the 2D image.

3 PERSPECTIVE PROJECTION OF 3D CIRCLES

3.1 Dual Quadric of a 3D Circle

Projective geometry may also be used to model (point) quadrics
and dual (plane) quadrics (Hartley and Zisserman, 2004). A 3D
circle may not be modeled using a quadric Q, defined by homo-
geneous points X such that XTQX = 0. It may however be
defined using a dual quadricQ∗, defined by homogeneous planes
Π such that ΠTQ∗Π = 0. These planes tangent to a 3D circle are
the planes tangent to its rim, including its supporting plane. By

denoting C the center point of the 3D circle and N a unit vector
normal to its supporting plane scaled by the circle radius ρ (i.e.
ρ2 = N2), the dual quadric Q∗ is singular (rank 3) and may be
written as :

Q∗ =

[
CCT +NNT −N2I3 C

CT 1

]
(23)

=

[
[N ]2× 0

0 0

]
+

[
C
1

] [
C
1

]T

(24)

where [N ]× is the matrix encoding the vector product [N ]×X =
N × X . This proposed 6D parameterization (C,N) is a mini-
mal parametrization of 3D circles that is both unconstrained and
unambiguous except for the sign of N .

Proof By squashing the quadric Qt = diag(1, 1, t,−ρ2) from
the origin-centered sphere of radius ρ at t = 1 to a disc of radius
ρ in the z = 0 plane when t→∞, we get its dual quadric Q∗∞ :

Q∗∞ = lim
t→∞

Q∗t ∼= lim
t→∞

Q−1
t = lim

t→∞
diag(1, 1,

1

t
,− 1

ρ2
)

= diag(1, 1, 0,− 1

ρ2
) ∼= diag(−ρ2,−ρ2, 0, 1) (25)

A 3D circle (C,N) is the image of this canonical circle by a rigid
transform M = [ R C

0 1 ], where R = [ U V W ] is a rotation matrix
with N = ρW . Given the transformation rule of dual quadrics :

Q∗(C,N) = MQ∗∞(ρ)MT

=

[
R C
0 1

]
diag(−ρ2,−ρ2, 0, 1)

[
R C
0 1

]T

=

[−ρ2R+
[
0 0 ρ2W

]
C

0 1

] [
RT 0
CT 1

]
=

[
CCT − ρ2RRT + ρ2WWT C

CT 1

]
=

[
CCT −N2I3 +NNT C

CT 1

]
which yields equation 23.

3.2 Dual Conic of a Projected 3D Circle

A dual quadric Q∗ is imaged as a dual conic E∗ ∼= PQ∗PT by a
projection P . The image projection P is usually decomposed as
KR

[
I3 −S] with S denoting the projection center, R the pro-

jection rotation and K the intrinsic matrix . Using equation 23,
this yields, up to a scale factor and defining M = KR, the dual
conic of a projected 3D circle (C,N) :

E∗ = M
(

(C − S)(C − S)T + [N ]2×
)
MT (26)

By splitting row-wise M = [ M1 M2 M3 ]T , equation 26 may be
rewritten in terms of the elements of E∗ :

E∗i,j = ((C − S) ·Mi)((C − S) ·Mj)

−(N ×Mi) · (N ×Mj) (27)

3.3 Resolution of the equation system

Each image observation of a 2D ellipse introduces a set of equa-
tions translating that the 2D ellipse projected from the 3D circle
E∗ (equation 26) should agree with the 2D ellipse estimated from
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image contours E∗obs (section 2). This induces a set of 5 equa-
tions and no constraints, thanks to the proposed unconstrained
parametrization. Namely, E∗obs must verify, up to a scalar factor,
equation 26, which yields 6 equations (E∗obs being a 3 × 3 sym-
metric matrix) minus one for the unknown homogeneous scale
factor λ. Given that E∗obs,33 = 1, this writes :

F (E∗, E∗obs) = vec5(E∗)− E∗33 vec5(E∗obs) = 0 (28)

E∗obs is considered here as an observation with the uncertainty
ΣE∗

obs
. E∗ may be derived from the observations M,S and the

3D circle unknowns C,N .

Each 2D ellipse observation thus provides a 5-dimensional obser-
vation vector. The pose parameters of the corresponding image
add 6 other observations (3 coordinates of the projection center
and 3 rotations). We suppose that covariances matrix of pose pa-
rameters are known. Intrinsic parameters could be considered as
observation in the same way but in our implementation we con-
sidered them as fix values. The observation vector provided by
each image apparition become:

Li = (vec3(M), vec3(S), vec5(E∗obs)) (29)

The 3D circle to be estimated is encoded in the 6-vector X =
(C,N). In this context, the 5-dimensional equation 28 may be
rewritten in terms of the observations L and the unknowns X :

F (︸ ︷︷ ︸
3D Circle Projection E∗

Unknowns X︷ ︸︸ ︷
C, N ,

Observations L︷ ︸︸ ︷
M, S, E∗obs︸︷︷︸

2D Circle Detection

) = 0 (30)

F (X,L) = vec5(M
(

(C − S)(C − S)T + [N ]2×
)
MT )

− (((C − S) ·M3)2 + (N ×M3)2
)
vec5(E∗obs)

F andE∗ feature the following derivatives, introducing the 3×3
singular matrices Aij = (MiM

T
j + MjM

T
i ) and the canonical

vectors δi which are 0 everywhere but 1 at the ith element :

∂F

∂(vec5(E∗obs))
= −E∗33I5 (31)

∂F

∂(vec6(E∗))
=

[
I5 −vec5(E∗obs)

]
(32)

∂vec6(E∗)
∂Mij

= vec6(δiΓjT + ΓjδiT ) (33)

where Γj = M
(

(C − S)(C − S)T + [N ]2×
)
δj

∂E∗ij
∂C

= −∂E
∗
ij

∂S
= (C − S)TAij (34)

∂E∗ij
∂N

= NT (Aij − (2MT
i Mj)I3) (35)

From these equations, it is straightforward to derive the Jacobian
matrices ∂F

∂X
= [ ∂F

∂C
∂F
∂N ] and ∂F

∂L
. The system is resolved us-

ing unconstrained Gauss-Helmert model who can be obtained by
replacing D = 0 in equation 9. The nonlinear system is again

resolved by Gauss-Newton iterative method. The output of this
step consists in adjusted values of unknowns (Ĉ, N̂) and their
uncertainties (CĈ , CN̂ ) together with adjusted observations l̂.

4 RESULTS AND DISCUSSIONS

4.1 Data simulation

We set up two scenarios of three perspective images of size 1000×
2000 pixels and a focal length of 1400 pixels. A circular disk of
80cm of diameter was placed at a mean distance of 10 meters
from the images (cf. Fig. 1). The first scenario was composed
of images Set1 : (I − III − IV ) and the second one images
Set2 : (II − III − IV ). The approximate distances between
cameras was 4m. The difference between the two sets is that
in the former the camera centers are almost on the same plane
whereas in the latter the camera II was at a distance of 3m from
the horizontal plane containing the two other cameras. The 3D
circular disk was sampled regularly at ten 3D points and projected
in each camera. The observations consisted in :

• 2D noisy coordinates of projected sampled points in the im-
ages.

• 3D noisy projection centers of the cameras.

• Rotation matrices of the cameras.

I

III

II

IV

Figure 1: Configuration of data simulation

4.2 Simulation results

For each scenario we added a Gaussian noise to the projection
centers of cameras. Then we run both steps of ellipse estima-
tion and 3D reconstruction 20 times for each noise level. The
output of each iteration consists in the estimated values of the
parameters and their covariance matrix. Using covariance ma-
trices, 3D error ellipsoids (99%) were computed for the center
and normal vector of the circle. Fig. 2 depicts on of these itera-
tions. Knowing the reference parameters, the difference between
the obtained parameters and the ground trough can be computed.
Ideally the probability that the computed parameters match the
reference parameters could be computed using the estimated co-
variances. However in this paper in order to show at the same
time how the estimated parameters vary as a function of the ap-
plied noise we show in the same diagrams the norm of difference
vector and the length of largest error ellipsoid axis for both center
and normal vector for both scenarios. Fig. 3 shows the results for

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-143-2014 146



(a) Scenario 1

(b) Scenario 2

Figure 2: Ellipsoids of errors (99%) corresponding to the cen-
ter and normal for both scenarios. Noise of projection center =
σpc = 1cm

normal vector and Fig. 4 depicts that for center.

Both diagrams demonstrate that generally the errors are larger in
the first scenario than the second for both center and normal vec-
tor. This is natural since non aligned cameras provide better 3D
intersections. This fact is also confirmed by the estimated error
ellipsoids since that of second scenario is smaller than the sec-
ond one. This is also visible on Fig 2 for one iteration where a
Gaussian error of σ = 1cm were added to the projection center
of cameras. The effective difference between the estimated pa-
rameter and the reference one is always smaller than the largest
axis of error ellipsoid (99%). This means that the estimated pre-
cision of the network is confirmed by the real precision measured
on control points.

On can understand from this experiment that the second image
network is much less sensible to pose errors. It can theoretically
lead to 10cm of error in 3D for a pose error of 4cm whereas the
first image network for the same amount of pose error can lead
to 60cm of error in 3D. By a simple repositioning of cameras on
can improve the precision of the 3D measurement system. On
can also understand that the improvement (of using scenario 2
vs scenario 1) is much more significant for estimation of normal
vector than that center of the circle.

5 CONCLUSIONS AND PERSPECTIVES

We proposed a new approach for reconstructing circular targets
from uncertain multiple-views. Our main contributions are in
estimating the uncertainty of 2D ellipse and in formalizing per-
spective projection of circle with minimum number of parameters
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Figure 3: Error induced by random errors of projection center to
normal vector.
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Figure 4: Error induced by random errors of projection center to
center.
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allowing the propagation of observations’ uncertainty to the pa-
rameters.

It can be applied for reconstruction of any circular feature us-
ing an unlimited number of images with uncertain calibration.
It enables also to estimate the precision and stability of a pho-
togrammetric network for measuring circular features. Therefore
position of the cameras can be optimized (through an analysis-
synthesis schema) in order to improve the 3D precision without
multiplying the number of the cameras.

The method should be evaluated on more simulated scenarios.
Namely by studying its behavior facing more noises on initial
2D points (used for ellipse fitting) and camera rotation matrix
but also with more images in complicated camera configurations.
Then we aim at evaluating its performance on real data in recon-
struction of circular traffic signs (in the same framework devel-
oped for reconstruction of polygonal road signs (Soheilian et al.,
2013)) and also in detection and reconstruction of circular pho-
togrammetric calibration targets.

More theoretically we aim at adapting the method to handle mul-
tiple circular features reconstruction at the same time. In more
long term we will integrate the developed method in a bundle
adjustment chain enabling use of circular features together with
their uncertainties as tie and control points.
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