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ABSTRACT:

Projective texturing is a commonly used image based rendering technique that enables the synthesis of novel views from the blended
reprojection of nearby views on a coarse geometry proxy approximating the scene. When scene geometry is inexact, aliasing artefacts
occur. This introduces disturbing artefacts in applications such as street-level immersive navigation in mobile mapping imagery, since
a pixel-accurate modelling of the scene geometry and all its details is most of the time out of question. The filtered blending approach
applies the necessary 1D low-pass filtering on the projective texture to trade out the aliasing artefacts at the cost of some radial blurring.
This paper proposes extensions of the filtered blending approach. Firstly, we introduce Integral Radial Images that enable constant time
radial box filtering and show how they can be used to apply box-filtered blending in constant time independently of the amount of depth
uncertainty. Secondly, we show a very efficient application of filtered blending where the scene geometry is only given by a loose depth
interval prior rather than an actual geometry proxy. Thirdly, we propose a silhouette-aware extension of the box-filtered blending that
not only account for uncertain depth along the viewing ray but also for uncertain silhouettes that have to be blurred as well.

1 INTRODUCTION

1.1 Context

Many 3D visualization applications do not really require a pre-
cise and accurate modelling of the scene geometry and radiome-
try. What is really required in the end is the synthesis of a novel
viewpoint with minimal temporal or spatial artefacts and the best
quality possible. By bypassing the modelling step, that is what
image-based rendering techniques are targeting (Brédif, 2013).

1.2 Rendering uncertain geometry

The geometry of the real world is only captured (stereo recon-
struction, lidar sensing...) at a given resolution, up to a certain
level of accuracy and with some amount of noise and outliers.
We are interested in propagating this uncertainty of the geometry
(point cloud, 3D model...) to the rendering to prevent arbitrary
decision and information loss.

Hofsetz (2003) proposed an image based rendering technique that
handles a point cloud with uncertainty. Each point is splat on
the screen using its uncertainty ellipse to get the relevant filter-
ing. This approach gives satisfactory results but scales not so
well with the number of uncertain points.

The filtered-blending approach of Eisemann et al. (2007) is mo-
tivated by the fact that an incorrect geometric approximation of
the scene will yield aliasing artefacts when colored by projecting
multiple textures on it. They proved that only a 1D filtering was
needed to prevent that aliasing. A second approach is to let the
projective parameters of the texture evolve so as to reduce the vis-
ible artefacts. This is the floating texture approach of Eisemann
et al. (2008).

The Ambient Point Cloud method (Goesele et al., 2010) has been
developed in the context of multi view stereo where part of the
scene is densely reconstructed, part of the scene is composed of
a sparse point set and some pixels do not have any depth esti-
mate, each with a different rendering mode in accordance to the
different nature of geometric uncertainty. This paper introduced

a notion similar to Eisemann et al. (2007) that uncertain depth
may be rendered as a linear filtering in the epipolar motion di-
rection. They however preferred a filtering based of sparse and
jittered point samples rather than the low-pass filtering discussed
in Eisemann et al. (2007).

1.3 Contributions

Focusing on box filters, we propose to extend the filtered-blending
approach of Eisemann et al. (2007) in a number of aspects :

• We adapt the concept of constant time box filtering provided
by 2D-integral images to computing box-filtered blending
with a performance which is independent of the blur ex-
tent, by introducing the integral radial images (sections 2
and 3.2).

• Application-wise, we show how this method may be straight-
forwardly adapted to projective-textured scenes where ge-
ometry is given only by a loose depth prior, which yields
satisfactory results in the showcased street-level navigation
context (section 3.1).

• Lastly, our main contribution is an extension of box-filtered
blending that handles uncertain silhouette boundaries (sec-
tion 3.3).

2 CONSTANT-TIME BOX-FILTERED BLENDING

2.1 Epipolar Filtering

The interpolated view to be synthesized by filtered blending and
each projective texture view may be considered as a stereo rig,
as they are both defined by conic projections. Thus, the 3D ray
originating from a pixel location in the interpolated view projects
in the (undistorted) projective texture image plane as a 2D ray
with its origin at the epipole : the projection of the interpolated
viewpoint on the projective texture. We will denote such a ray an
epipolar ray.
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Figure 1: Epipolar filtering geometry

For a given pixel, scene uncertainty translates into an uncertainty
of the 3D location (e.g. [Pmin, Pmax] in figure 1) of the inter-
section of the 3D pixel ray with the scene, and consequently to
an uncertain 2D position on the corresponding epipolar ray (e.g.
[pmin, pmax] in figure 1). The kernel used in filtered blending
is essentially defining, for each projective texture to be blended,
a probability density of this 2D location on the epipolar ray in
ordered to compute its expected value.

As all pixel rays will reproject to epipolar rays, the resulting ex-
pected values will all be integrated over linear supports that meet
at the projective texture epipole. Thus, the filters used in the fil-
tered blending of each projective texture reduce to 1D filters in a
radial setup with a pole fixed at the epipole.

The most simple probability density is a uniform density over the
subset of the 2D epipolar rays that correspond to the projection
of plausible view ray / scene intersections. This uniform density
translates into radial 1D-box filters around the epipole.

2.2 Linear-Time Filtered Blending

With box filtering, filtered blending requires computing average
pixel values over line segments. For segments of small length, the
marching along this line segment may be performed exhaustively
by stepping through and sampling directly the original texture.
However, for longer segments, the linear increase of samples
(texture lookups) becomes a performance bottleneck. A quick
and dirty solution is to limit the number of samples along the
segment to a fixed maximum. This may be approximated and
implemented in a number of ways including (figure 2) :

• No prefiltering. This generates, for long segments, a grainy
look similar to what is achieved in the Ambient Point Cloud
approach (Goesele et al., 2010), which may lead to aliasing
or temporal incoherence due to the unfiltered point sampling
of the input texture.

• Isotropic prefiltering. This approach aims to approximate
the integral over the linear segment as a sum of samples on
a blurred (i.e. band-limited) image. It may be easily imple-
mented using mipmap level biasing in the graphics pipeline.
This however introduces a trade off between the necessary
unaliasing blur along the segment and the unnecessary blur
across the segment.

• Anisotropic prefiltering is available on the graphics pipeline
for anisotropic sampling in arbitrary directions, addressing
the issue of unwanted blurring across the segment direction.
This approach is appealing but has the following downsides:
1) the amount of anisotropy is hardware-limited, yielding

Anisotropic

Isotropic

None

Figure 2: Prefiltering options for subsampling 1D integrals

only a linear reduction on the number of texture samples,
as in the previous two options. 2) The combination of the
hardware-provided anisotropic filter kernels only provide an
approximation of the desired linear integral.

These approaches do not feature the same factor but all have
nonetheless a linear time-complexity relative to the length of the
projected segment. By restricting ourselves to linear box filtering,
we demonstrate how the epipolar nature of the filtering geometry
(section 2.1) may be used to implement box-filtered blending in
constant-time (section 2.3).

2.3 Constant-Time Box-Filtered Blending with Integral Ra-
dial Images

We introduce the integral radial image at a given pole as a pre-
pocessed image that enables the computation of 1D box filters in
constant time, provided that the supporting line of the box filter
passes through the pole of the integral radial image. The compu-
tation of the integral radial image of a image at a given pole is
performed as follows:

1. Resample the image in radial geometry xij with the desired
pole. Details follow in section 2.4.

2. Compute the Integral Radial Image by computing partial
vertical sums of the radial image : Xij =

∑j
k=1 xik

1D radial box filters correspond to 1D vertical box filters in a
radial resampling of the input image. Since the preprocessed in-
tegral radial image stores vertical partial sums, only two texture
lookups on the integral radial image are required:

j1∑
k=j0

xik =

j1∑
k=1

xik −
j0−1∑
k=1

xik = Xi,j1 −Xi,j0−1 (1)

Thus, 1D radial box filters may be performed in constant time on
the integral radial image.

2.4 Implementation details

Integral Radial Images are 1D integral images similar to the well
known 2D integral images or Summed Area Tables. When imple-
menting 1D or 2D integral images, there is a number of technical
points that need attention (Hensley et al., 2005):

Partial sum complexity The sequential computation of run-
ning (i.e. partial) sums is linear in the size of the image (W,H).
Independent computation of each partial sum is however subopti-
mal in a parallel algorithm. In the parallel context of an OpenGL
implementation, they are best implemented as O(logH) frag-
ment shader passes.
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Precision To prevent artefacts, precision loss and type over-
flow issues must be addressed. Integral Radial Image are 1D
rather than 2D-integral images, which reduces the exact compu-
tation requirements are the running sums are over a linear rather
than areal number of image samples. Integer-typed textures must
nonetheless be used with the sufficient number of channels: N +
dlog2(H)e bits for exact handling of N -bit textures.

Radial Resampling Geometry This aspect is specific to Inte-
gral Radial Images and is one of the contributions of this paper.
The parametrization of the radial geometry must be performed
with a number of criteria in mind. It must map to a regular square
grid to simplify both addressing and interpolation code and en-
able hardware support. Furthermore, we would like it to be as
lossless as possible by maintaining the full resolution everywhere
while limiting the extra space due to the mapping of the point lo-
cation of the pole to a linear location in the radial parametriza-
tion. We propose to decompose the radial resampling function in
2, 3 or 4 patches depending on the position of the (possibly infi-
nite) pole (figure 3). More precisely, the projective texture image
domain may be seen as the intersection of 4 half-spaces which
boundary lines support the 4 edges of the image domain. We cre-
ate a triangular patch in texture space for each such half-space
that contains the pole. This patch has a triangular shape with a
vertex at the pole and the opposite segment at one of the 4 image
edges. To prevent undersampling, we distribute as many pixels
along the edge in the patch as in the image edge and as many
pixels vertically as the pixel distance between the pole and the
line supporting the image edge. This simple parametrization is
rather intuitive and easier to handle than a spherical parametriza-
tion. Furthermore it has the advantage of at most doubling the
storage requirements. Furthermore, it is piecewise projective and
thus well supported by the graphics hardware.

2.5 Linear Graph Navigation

The Integral Radial Image preprocessing has to be performed for
each image as soon as the projection of the virtual viewpoint
changes on the projective image. There are however cases where
this change is rare. For instance if the viewpoint is moving on the
straight line joining two projective texture centers, then its pro-
jections in each texture are constant and thus the preprocessing
may only be performed once. By extension, the same argument
applies when navigating in a graph, which vertices are the pro-
jective texture centers and which linear edges encode allowable
paths between the two projective textures that are to be blended.

3 UNCERTAIN GEOMETRY

We introduce the following uncertain scenes of increasing com-
plexity which may be used in a projective texturing context.

3.1 Geometry-less Filtered Blending

In this case, the only piece of 3D information used is the poses
and calibrations of the projective textures and a very rough prior
on the scene geometry. Namely, we assume that we have an ora-
cle function that gives, for each pixel of the interpolated view, the
minimum and maximum scene depths [dnear, dfar]. A simple
scene-agnostic prior might be that there is an unoccupied sphere
of radius r around the virtual viewpoint, such that the uncer-
tain depth interval is [r,+∞]. If r is not too small compared to
the distance between the projective texture center and the virtual
viewpoint center, this will yield an uncertain projected segment
of reasonable extent.
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(a) Original images with a pole inside (left) and outside (right)
the image domain. Up to 4 resampling grids are used to perform
the piecewise-projective radial image resampling : Top, Bottom,
Left and Right.
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(b) Resampled image pairs Top/Bottom and Left/Right (left). The
pole being placed on the left of the image domain, the Left re-
sampling grid is not used and the Right resampling grid occupies
the full image grid. Furthermore, less than half of the Top and
Bottom pixels are sampled from the image domain, resulting in
some memory over-allocation (right).

Figure 3: Resampling Geometry of the Radial Images. Pixel cen-
ters correspond to grid line crossings.

This may be implemented in OpenGL with a screen-aligned quad
coupled with a simple fragment that implements the oracle depth
interval function based on the screen pixel coordinates and the
view geometry. The depth interval is unprojected from the view
geometry to a 3D line segment, which is then reprojected to the
projective textures. If box filtering is to be achieved, then 2
lookups to the Integral Radial Images per screen pixel per pro-
jective texture are sufficient, yielding a very efficient implemen-
tation of filtered blending which performance is independent of
the scene complexity and the virtual viewpoint location.

3.2 Filtered Blending

Among the 3 dimensions of space, 1 dimension of the geomet-
ric uncertainty may easily be tackled. This is the geometric un-
certainty along the rays between the scene points and the virtual
viewpoints. This corresponds to a depth uncertainty perceived
from the virtual viewpoint, with no questioning on the scene sil-
houettes.

This may be achieved by using the regular graphics pipeline to
compute the usual Z-buffer (depth image z(i, j)), which produces
the depth interval [z(i, j) − δ, z(i, j) + δ], where δ is depth un-
certainty parameter. This parameter may be an overall constant
or an interpolated attribute on the geometry. This depth inter-
val may directly be used as the depth oracle of the previous sec-
tion. This corresponds to the original uncertain scene handling of
(Eisemann et al., 2007).

3.3 Silhouette-aware Filtered Blending

As an extension to the previous section, we would like to address
the 3 dimensions of depth uncertainty. Namely we would like to
introduce silhouette uncertainty as well as depth uncertainty.
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Here, we propose a general set-up where the scene surface is
given by two bounding surfaces, the near and far surfaces, which
may be arbitrarily complex, but yet fulfil the following require-
ments :

1. The near, far and scene surfaces are all watertight, oriented
and not self-intersecting. Thus, they properly define a par-
tition of space into interior and exterior volumes. Two such
surfaces have an inclusion relationship if the interior volume
of the former is strictly contained in the interior volume of
the latter.

2. Inclusion. The far surface is included in the scene surface
which is in turn included in the near surface, effectively
bounding the uncertain scene by these two accessory sur-
faces.

In probabilistic terms, these bounding surfaces provide the sup-
port of a stochastically distributed uncertain scene surface. This
provides, for each viewing ray originating outside the far surface
the set of possibly many depth intervals which contain the inter-
section of the ray with the scene. Namely, the scene intersection
is a point between the viewpoint and the first intersection of the
far surface along the viewing ray which is inside the near surface.
Please notice the different roles of the near and far surfaces. The
far surface acts as an opaque surface that blocks the view ray,
while the interior of the near surface acts as a transparent volume
that the viewing ray may enter or exit (figure 4).

Based on this set-up, what is needed to use the method developed
in the previous sections is the probability of the first intersection
of the scene along the viewing ray (assuming an opaque scene
surface). This will enable specifying the synthetic view color as
the expectation of the color of this stochastic intersection point.

In this work, we propose to use the most straightforward proba-
bilization, namely a uniform probability on the projection on the
sampled texture of the multi-interval support defined by the in-
tersection of the viewing ray with the bounding surfaces, leaving
more complex probabilizations for future work.

The computation of the expected color based on this uniform
probability may be carried out very efficiently on the GPU, pro-
vided that Integral Radial Images are available. Let us denote
e the epipole and s 7→ p(s) a parametrization of the projection
of the viewing ray on the projective texture. Then, the segments
[p(si), p(s

′
i)]i=1...N are defined as the colinear segments in tex-

ture coordinates of the projections the line segments resulting
from the intersection of the viewing ray with the uncertain sur-
face. Note that e may be equal to p(s1) (when s1 = 0) if the vir-
tual viewpoint is inside the near surface and that all points p(si)
and p(s′i) are projected intersections of the ray with the near sur-
face except p′N which is the projection of the first intersection
of the ray with the far surface. Denoting c(·) the color-texture
lookup function, the expected color is then given by :

[si, s
′
i]i=1...N 7→

∑
i

∫ s′
i

si
c(p(·))∑

i

∫ s′
i

si
1

(2)

=

∑
i

∫ s′
i

0
c(p(·))− ∫ si

0
c(p(·))∑

i s
′
i − si

(3)

This clearly shows that this value may be computed by accumu-
lating the homogeneous quantities ± (∑i

∫ s

0
c(p(·)), s) to get a

4-channel image
(∑

i

∫ s′
i

si
c(p(·)),∑i s

′
i − si

)
, which may be

+ +−+−+−

Figure 4: The eye ray possibly exits (+) and reenters (-) the inte-
rior of the near surface (light gray) multiple times before hitting
the far surface (dark gray).

P Surf. Face Mode Value
1 Far Front Replace s′N 7→

(
+

∫ s′
N

0 c(p(·)), +s′
N

)
2 Near Front Add si 7→ (−

∫ si
0 c(p(·)), −si )

2 Near Back Add s′i 7→
(

+
∫ s′

i
0 c(p(·)), +s′

i

)
3 Quad Front Replace ( r, g, b, a ) 7→ ( r, g, b )

a

Table 1: Summary of the 3 draw passes P1, P2 and P3 used to
render an uncertain scene bounded by near and far surfaces, un-
der a uniform probability on the projected points on the sampled
texture.

post-processed in a final pass by dividing this quantity by its last
component.

In OpenGL terms, it amounts to drawing first the far surface with
the usual settings (depth test enabled, back face culling, blending
mode set to replace) followed by a subsequent draw call with the
near surface geometry with depth test enabled to get the occlusion
of the far surface but depth write disabled, alpha test disabled to
prevent the filtering negative alpha values and a simple additive
blending mode. The sampled values are looked up using a single
texture sample on the Integral Radial Image and blended (in re-
place, add or subtract modes depending on the surface type and
orientation according to table 1) into a 0-initialized floating point
offscreen color buffer. The last pass is a simple screen-aligned
quad which performs the final division in the fragment shader.

This proposed rendering pipeline enable the visualization of un-
certain silhouettes, extending the uncertain-depth-only filtered blend-
ing. The proposed probabilization is the one that yields the sim-
plest and most efficient implementation. As the subsequent in-
tervals are weighted by their respective lengths, and there is no
transparency support, the rendering is order independent, and
thus there is no need to depth-sort the surfaces.

The rendering however is however limited to occlusions cast by
the far surface. Occlusion is thus not fully supported: it does not
handle self occlusion by the uncertain scene surface and occlu-
sion between the scene surface and the projective texture center.
This would however likely require the adaptation of transparency
handling methods such as depth sorting or depth peeling.

4 RESULTS

4.1 Geometry-less Filtered Blending

Such values may be given for instance by the assumption that the
scene is higher than a flat plane modeling the ground and a ver-
tical circular paraboloid centered around the interpolated view-
point (figure 5). Figure 6 show screenshots of the accompanying
video that showcases the resulting interpolated video from a set
of 12 georeferenced calibrated images taken from a mobile map-
ping system every 3 meters.
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Figure 5: Uncertain scene bounded by a near paraboloid and a far
plane.

Figure 6: Screenshot of the accompanying video sequence.

The scene prior is given by the geometry of the mobile mapping
system : the far plane is defined by slightly lowering (by 10cm -
to get some margin) a guess of the plane of contact of the vehicle
wheels and the circular paraboloid of the near plane is defined by
the viewpoint location, the far plane and a radius of 10 meters at
the level of the interpolated viewpoint.

The virtual viewpoint of figure 6 is generated in between two
consecutive views at two thirds of the line segments joining one
neighboring view to the other. The result of the projective textur-
ing of these two views have been blended, as one is fading in and
the other is fading out.

Of particular interest are the following properties : the pixels cor-
responding to the direction of the motion suffer limited or no blur.
Pixels away from this direction exhibit only a 1D radial blur, sim-
ilar to the Star Trek-like ”hyperspace” effect. Distant and ground
objects feature no aliasing, thanks to the epipolar radial blur of
sufficient extent. The depth of the near surface has however been
underestimated on the right of the scene, resulting in some limited
ghosting of the monument. Decreasing the depth of the near sur-
face enough to make it nearer than the scene at every pixel would
have extended the radial blur of the pedestal in the two textures
up to make their blur extent overlapping, trading out the disturb-
ing double image or popping artefact for an increased amount of
radial blur.

4.2 Filtered Blending

3D city models of ever increasing accuracy are produced and
maintained worldwide. To illustrate our method, we use a coarse
3D city model of metric accuracy (corresponding to CityGML
LOD1), which is the BDTOPO c©, produced nationwide by IGN,
the French National Mapping Agency. The scene is composed of
flat-roof buildings together with a metric accuracy Digital Terrain
Model (Ground Height map). Figure 7 shows results when vary-
ing the constant overall depth uncertainty parameter. A depth un-

Figure 7: Regular filtered blending. (Top) No uncertainty has
been introduced: this is only a linear blend of two 16-meter-
separated textures projected on a LOD1 city model proxy. (Mid-
dle) 1 meter depth uncertainty. (Bottom) 4 meters depth uncer-
tainty.

certainty of 4 meters is admittedly exaggerated but shows clearly
the effect of such a large depth uncertainty. Scene geometry un-
certainty is only considered in the depth direction but not in the
2 others. The shortcomings of this depth-only approach is two-
fold : surfaces seen at grazing angles are affected by a uncertainty
that is almost coplanar with the surface, such that the uncertainty
effect is underestimated. This could be prevented by taking into
account the normal orientation of each pixel to compensate this
underestimation. This would however only emphasize the sec-
ond caveat : silhouettes remain sharp and introduce noticeable
artefacts that are addressed in the following section.

4.3 Silhouette-aware Filtered Blending

Near and far surfaces may be extracted from the metric-accuracy
scene of the last section using the following procedure :

1. Merge all building geometries, the ground mesh and a hol-
low distant cube modelling the sky to get a single unified
triangular mesh, using the union set operator.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-17-2014 21



2. Compute a displacement vector for each vertex of the mesh
based on the normals of its neighboring triangles.

3. Add (resp. subtract) this vertex displacement attribute to
the vertex locations with an overall scaling to yield the near
(resp. far) surface at a given level of uncertainty.

Such a displacement vector may be defined as the average of
the set of unique normal values of the adjacent triangles, tak-
ing the vertical direction for the triangles originating from the
DTM, the roofs and the top of the skybox and the horizontal fa-
cade normal for the building facades and the skybox sides. This
choice provides a 2.5D extension of the 2D mittered polygons
provided by the straight skeleton (Aichholzer et al., 1995) of the
building facades. Please note that step 3 does only produce valid
near/far surfaces (watertight, orientable, not self intersecting with
the inclusion property) for a limited range of scaling of the dis-
placement field. Arbitrary uncertainty scaling may only be per-
formed correctly using more complex computational geometry
algorithms (de Berg et al., 1997) such as a 3D Minkowski sum
and differences or a full-blown 2.5D extension of straight skele-
ton algorithm that would handle topological events, conceptually
performing the straight skeleton on each level set of the 2.5D
mesh.

The input 3D city model used for this study used the 3D Minkowski
sum approach (figure 8). Figure 9 provides a visualization of
this uncertain 3D city model by displaying the normalizing factor∑

i s
′
i − si. The halos around the buildings clearly show the re-

gions of uncertainty and how depth-uncertainty grows at grazing
angles.

Figure 10 shows how the silhouette are made uncertain by the
proposed approach. A primary remark is that whereas integral
radial images were only necessary for large radial blur extents,
the proposed silhouette-aware extension manipulates directly its
partial sums : without a precomputation technique like integral
radial images, partial sums from the would have to be recomputed
from scratch for every pixel over possibly long 2D line segments
even for small resulting uncertainty blur. For instance the framer-
ate drops from 60+ (caped) frame per second to 5 when integral
radial images are disabled on our current implementation on a
NVidia GPU GTX Titan.

The hard edge of the silhouette is however not fully removed.
While the silhouette of the near surface produces a continuous
(but not C1) result, the silhouette of the far surface still produces
a discontinuous edge. Even if it is of smaller magnitude than
the silhouette-unaware discontinuity, it may still be disturbing.
This effect is due to our simple uniform projection density model,
which causes the normalizing factor to be discontinuous as the
viewing ray crosses past a far surface silhouette : this disoccludes
new portions of the viewing ray which are taken into account and
thus changes discontinuously the normalization factor.

5 CONCLUSIONS AND PERSPECTIVES

This paper proposed successful extensions to the filtered blending
approach that provide a continuum of approaches between the
geometry less set-up with a loose scene depth prior to a general
set-up of an uncertain scene confined in the volume bounded by
two arbitrary surfaces.

Integral radial image may prove to be of independent interest in
applications that perform radial box filtering of sufficiently many
pixels with the same pole. Integral radial images allowed the ef-
ficient implementation of a silhouette-aware projective-texturing

Figure 8: GIS view of the uncertain 3D scene obtained by the
minkowski sum (red) and difference (blue) of the original 2.5D
building database (yellow). The near and far ground surfaces
(MNT) are not shown here for clarity.

Figure 9: Aerial view of the uncertain model with differing struc-
turing element sizes. Brightness corresponds to the length of in-
tersection of the viewing ray with the uncertain scene, measured
in pixels in projective texture space. Thus, this is exactly the con-
tent of alpha channel before the final post-processing pass. The
white stripe on the left corresponds to the projective image plane,
where depth uncertainty has maximal effect. The black spot on
the lower left corresponds to the direction of the projective image
center, which is sharp no matter the scene uncertainty.
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Figure 10: Silhouette-aware filtered blending. (Left) presents a failure case where the uncertain volume is underestimated. The
protruding element is not part of the 3D model, which leads to a hard edge in the depth-uncertainty only rendering (top). The proposed
approach (bottom) handles the bluring of the pixels up to silhouette of the near surfaces, resulting in a discontinuity artefact. (Right)
presents a blending of the 3 nearest views with (top) depth-only uncertainty (+-1m) and with (bottom) silhouette-aware uncertainty
(with the cubic structuring element [−1, 1]3). Both views show similar results like the ghosting of mobile objects (pedestrians). The
amount of blur in (bottom) is fully 3D and thus takes the surface normal angle into account, which produces more blur on the surfaces
that are not front facing(e.g. the ground). The main difference is on the handling of occlusion boundaries (edge of the left building)
which trades out the doubling artefact for a blur.

algorithm for uncertain geometry under the specific uniform pro-
jection assumption.

Future work on uncertain scenes will include rendering the lidar
point cloud with its measurement uncertainties and a diffusion of
the depth as an uncertain interval for pixels in-between projected
lidar points.

While the assumptions that led to an order-independent render-
ing method with simple box-filtering enabled high performance
rendering, we would like to explore the handling of the various
types of occlusion and more elaborated probabilization, so that
the resulting image would exactly be the probabilistic expecta-
tion of the image when looking at an uncertain scene described
stochastically.
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