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ABSTRACT:

Fog disturbs the proper image processing in many outdoor observation tools. For instance, fog reduces the visibility of obstacles in
vehicle driving applications. Usually, the estimation of the amount of fog in the scene image allows to greatly improve the image
processing, and thus to better perform the observation task. One possibility is to restore the visibility of the contrasts in the image from
the foggy scene image before applying the usual image processing. Several algorithms were proposed in the recent years for defogging.
Before to apply the defogging, it is necessary to detect the presence of fog, not to emphasis the contrasts due to noise. Surprisingly, few
a reduced number of image processing algorithms were proposed for fog detection and characterization. Most are dedicated to static
cameras and can not be used when the camera is moving. Daytime fog is characterized by its extinction coefficient, which is equivalent
to the visibility distance. A visibility-meter can be used for fog detection and characterization, but this kind of sensor performs an
estimation in a relatively small volume of air, and is thus sensitive to heterogeneous fog, and air turbulence with moving cameras.
In this paper, we propose an original algorithm, based on entropy minimization, to detect fog and estimate its extinction coefficient
by the processing of stereo pairs. This algorithm is fast, provides accurate results using low cost stereo camera sensor and, the more
important, can work when the cameras are moving. The proposed algorithm is evaluated on synthetic and camera images with ground
truth. Results show that the proposed method is accurate, and, combined with a fast stereo reconstruction algorithm, should provide a
solution, close to real time, for fog detection and visibility estimation for moving sensors.

1. INTRODUCTION

Even if fog is rare, it impacts the quality of the results of many
images processing algorithms when applied to outdoor scenes,
see Fig. 1. For example, fog reduces vehicle and obstacle visi-
bility when driving, which leads to death injuries. Solutions have
been investigated to tackle the problem of reduced visibility when
fog is around the vehicle. One possibility is to detect fog, turn on
the fog lights and depending of the importance of the fog which
is measured by the extinction coefficient β, adapt the strength of
the fog lights, as demonstrated in ICADAC project1. An alterna-
tive is to display to the driver an image of the scene ahead of the
vehicle after visibility restoration by image processing, see for
instance (Tarel et al., 2012).

Fog detection and characterization is an important question to
deal with these problems. Several algorithms were proposed for
defogging, in particular in the recent years. A first class is based
on color and contrast enhancement, for instance (Jobson et al.,
1997, Zuiderveld, 1994). A second class is based on Koschmieder’s
law to model the effect of fog, for instance (Tan, 2008, He et al.,
2010, Tarel and Hautière, 2009, Tarel et al., 2010). With a linear
response camera, Koschmieder’s law gives the apparent intensity
I of an object as a function of its intrinsic intensity I0 and of the
fog extinction coefficient β:

I = I0e
−βD + Is(1− e−βD) (1)

where D is the object depth, and Is is the intensity of the sky. The
”meteorological visibility distance” is defined conventionally, as

1ICADAC project (6866C0210) is within the Deufrako program and
was funded by the ANR (French National Research Agency).

2 Thanks to the FUI AWARE project for partial funding.

a function of β, by:

dvisibility = − ln(0.05)

β
(2)

In (Tarel et al., 2012), experiments shows that algorithms based
on Koschmieder’s law generally do better than the ones not based
on this law. If most of the time, the value of β is not necessary
to perform the defogging, one may notice that, when applied to
road images, the value of β is necessary to use the planar road
assumption. The detection of the fog is also necessary, not to
apply defogging methods when it is useless.

Surprisingly only few methods were proposed for detecting fog
with a camera and for estimating the extinction coefficient β.
Most of these methods apply only when the camera is static. The
first approach is to estimate the decrease of contrast of distant
objects, see for instance (Bush and Debes, 1998, Hautière et al.,
2011). In (Kopf et al., 2008), the attenuation model due to fog
is estimated assuming that a 3D model of the scene is known.
This method is interesting since it shows that Koschmieder’s law
is not always valid on long range distances due to heterogeneous
fog. The difficulty with this method is that an accurate 3D model
is required. When the camera is moving, only three approaches
were proposed, the first one is based on the use of lane-markings,
the second on the planar road assumption and the third on the
use of the stereo. In (Pomerleau, 1997), β is obtained by looking
at the contrast attenuation of road markings at various distances.
The disadvantage of this method is that it requires the presence
of road markings in order to proceed. In (Lavenant et al., 2002,
Hautière et al., 2006b), a method is proposed wich is dedicated
to in-vehicle applications. This method assumes that the road is
planar with a homogeneous gray level, and that the camera cali-
bration is known with respect to the road plane. In case of fog, the
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Figure 1: Contrast fading on the same scene due to various values of the extinction coefficient β.

gray level profile on the road, in the vertical direction, is derived
from (1) and it shows an inflection point. The position of this
inflexion point can be used to estimate the value of β. The weak-
ness of this method is that several assumptions are required for
the method to work. Another problem is that the inflexion point
may be hidden by a close object in case of a light fog. In (Hautière
et al., 2006a), a stereovison approach is proposed. It consists in
detecting the most distant object with a contrast above 5%. This
method is simple but it requires the presence of objects with high
contrasts at every distances, and this is not always the case in
practice.

From the drawbacks of the previous fog detection and fog char-
acterization methods when the camera is moving, we see that a
generic method is needed. We thus proposed a generic method
which is based on stereovision. In (Caraffa and Tarel, 2013), a
MRF model for stereo reconstruction and defogging is proposed.
By minimizing this energy, β can be estimated. However, this
approach will lead to a slow iterative algorithm to produce good
results. Inspired by (Caraffa and Tarel, 2013), we here investigate
the estimation of the extinction coefficient β when an approxi-
mate depth map is provided up to a critical distance. We thus
assume that a fast stereo reconstruction is first applied and that
this algorithm provides enough good matches up to the critical
distance. When the depth is known, the main idea is to estimate
β from the attenuation of the contrast w.r.t the distance on ho-
mogeneous areas in the scene. Similarly to the case of shadows
removal (Finlayson et al., 2009, Kwatra et al., 2012), the Shan-
non entropy is used as a criterion and the proposed method for
estimating β consists in the entropy minimization of the restored
image. The advantage of the proposed approach over previous ap-
proaches is that it is generic and we do not need the whole range
of distances in the depth map. The proposed algorithm, combined
with a real time stereo reconstruction algorithm, should provide
a fast algorithm for estimating the extinction coefficient (which
includes the detection of foggy weather using a threshold on the
visibility distance) when the camera is moving. As shown in the
experiments, it also leads to accurate results when the camera is
static.

First, in section 2. the problem of fog detection and extinction
coefficient estimation is explained and our approach is presented.
Then, the algorithm is detailed in section 3. In section 4. the pro-
posed algorithm is evaluated on a synthetic database for a moving
camera and evaluated with a ground truth database for static cam-
era images.

2. PROBLEM STATEMENT

When a region with a uniform albedo is observed in presence
of fog, its image is not of constant intensity. Indeed, its image
becomes whiter with an increasing depth. This is due to the last
additive term in (1), the so-called atmospheric veil which is an
increasing function of the depth D. The Shannon entropy is a
measure of the redundancy of a probability distribution. As a
consequence, the entropy of the intensity distribution of a region

of constant albedo, i.e without fog, is very small. On the contrary,
the entropy of the same region in presence of fog is larger if the
region spans a large range of depth. Our main idea is thus to
estimate the extinction coefficient β as the value which gives the
restored image with the smallest entropy on regions of constant
albedo.

The Fig. 2. illustrates the principle of the proposed method. A
foggy image is shown in the Fig. 2(a). We search for regions of
constant albedo. We thus propose to segment the foggy image in
to regions where the intensity varies slowly, see Fig. 2(b). Some
of the obtained regions, such as the fronto-parallel regions, or
the regions with small depth variations are not adequate for the
estimation of β and thus must be rejected. Relevant segmented
regions are thus selected using a criterion on the region area and
on the region depth variations. In Fig. 2(c), this criterion leads to
the selection of only three regions. In Fig. 2(d), 2(e) and 2(f), the
image after restoration assuming different values of β are shown,
respectively with β = 0.0024, β = 0.0086 and β = 0.0167.
These restorations are simply obtained by inversing (1), i.e by
computing I0, for each pixel, from the foggy image I , from the
value of Is and from the depth map D. The correct value for β
is the second one, and was obtained using a visibility-meter. We
can see that, when β is too small, the restored image is still foggy
and the gradient due to fog on homogeneous regions is percepti-
ble. Conversely, when β is too large, far away parts of the image
become too dark. For the ground-truth value β = 0.0086, the re-
stored image is more homogeneous and thus looks better than the
others. In Fig. 2(g), 2(h) and 2(i), the gray level distributions on
the 3 selected regions are displayed after defogging. We can see,
for the correct value β = 0.0086, that the gray level histogram
of each region is tighter than for the other values of β. There-
fore, the entropy is smaller for this value compared to the two
others. Fig. 2(j) shows the entropy of each selected regions ver-
sus β. It appears that a minimum of the entropy is reached around
the ground-truth value of β for the tree selected regions. Finally,
in Fig. 2(k), the total entropy over the three selected regions is
displayed versus β. The total entropy on the image is also shown.
The previously used values of β are displayed as vertical lines.
It is clear from that figure, that the minimization of the sum of
the entropy over the selected regions allows to better estimate the
value of β by doing an averaging on the three selected regions.
The minimum of the sum of the entropy over the selected regions
is very close to the ground truth value. On the contrary, the en-
tropy over the image does not lead to a good estimate. Indeed,
the entropy over the image intensities is mixing several random
variables and can not be a coherent choice.

3. ALGORITHM

The used sensor is stereo cameras. For every stereo pair, the
stereo reconstruction is performed by one or another method. The
choice of the stereo reconstruction algorithm is studied in the next
section experimentally, where it is shown that the stereo recon-
struction only needs to be correct at a relatively short range of
distances close to the cameras. The input of the proposed fog
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(a) Foggy image (b) Segmentation (c) Selected regions

(d) Restoration with β = 0.0024 (e) Restoration with β = 0.0086 (f) Restoration with β = 0.0167
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(g) Gray level histogram of the restoration with β = 0.0024
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(h) Gray level histogram of the restoration with β = 0.0086
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(i) Gray level histogram of the restoration with β = 0.0167
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(j) Entropy as function of β for the 3 selected regions
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Figure 2: Variation of the entropy with and without segmentation for different values of β. On the first line, 2(a) is the foggy image
where the ground-truth is known: β = 0.0086, 2(b) is the used segmentation and 2(c) are the three selected regions. On the second
line are the restored images for different value of β, when the depth-map D is known. Next, the gray level histograms of the intensity
distribution on the selected regions are shown for three different values of β. Then, 2(j) shows the entropy of the three selected regions
versus β and 2(k) shows the sum over the selected regions of the entropy compared to the image entropy. In the last figure, vertical
lines displays the value of the three β values used previously.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-25-2014 27



detection and characterization algorithm are thus an input cam-
era image I(x) observed with or without atmospheric scattering
and the corresponding depth map D(x) obtained from the stereo
reconstruction.

When I(x) and D(x) are known, in the equation (1), the extinc-
tion coefficient β , the restored image I0 and the intensity of the
sky IS remains unknown. The first step of the algorithm is thus
to estimate IS in an original way. Then, given a value of β, the
restored image I0 can be computed by solving (1). The second
step consists in searching for the value of β which minimizes the
total entropy of the gray level distributions over selected regions
of the restored image.

3.1 Estimation of IS

In defogging methods, the intensity of the sky is usually obtained
using simple methods such as the selection of the maximum in-
tensity in the image, or as the value corresponding to a given
quantile on the intensity histogram, see for instance (Tan, 2008,
Tarel and Hautière, 2009). If this kind of approach gives approx-
imate results in practice, we observed that an accurate IS is im-
portant to estimate correctly the value of β. In particular, the fog
being not necessarily homogeneous on long range distances, it is
necessary to estimate a correct value of IS in the close surround-
ing of the camera.

We thus introduce a first novel and simple method, based on con-
trast detection using the Sobel operator to estimate IS . First, we
compute the Sobel operator on the input image. Second, pixels
with a gradient magnitude larger than an arbitrary threshold are
selected. Third, we choose IS as the highest intensity value in the
vicinity of the pixels selected by the gradient thresholding.

This previous can be applied with static or moving cameras. When
the depth-map of the observed scene is known with enough ac-
curacy, in particular when the scene is static. In such a case,
the value of IS can be estimated more accurately by taking the
maximum intensity at the farthest distance detected by the pixels
selected by the gradient thresholding. This refined method gives
better results as shown in the experiments.

3.2 Region selection

The entropy minimization is meaningful only on a set of regions
with constant albedo and with varying enough depth. The input
image is thus segmented into regions where the intensity varies
slowly with depth. The regions with constant intensity or fronto-
parallel to the image are rejected as well as the tiny regions which
are useless. The used criterion for this selection is to select re-
gions with a depth range higher than 10% of the whole image
depth range and with an area higher than 2% of the number of
image pixels.

This segmentation can also be performed with advantages on a
clear day image when a static sensor is used. The segmentation
can be also performed on both the image and the depth map, when
the depth map is accurate enough.

3.3 Estimation of β and I0

Once IS is estimated, I0 can be obtained for a given β by solving
equation (1). To measure the quality of the restored image I0, we
use the Shannon formulation of the entropy defined for a random
variable y ∈ Y :

H(Y ) = −E[log p(y)] = −
∑
y∈Y

p(y) log p(y) (3)

where E is the expectation function and p(y) is the probability
density function of variable y. The entropy is defined for a sin-
gle random variable, but for several independent variables, the
entropy of the set of these variables is the sum of the individual
entropy.

Actual scene contains of many objects, and thus its image is com-
posed of several regions, and each region has its own random
variable. Let Sc be the set of selected regions in the previously
described steps. The total entropy is thus computed on this set of
selected region as:

TH =
∑

Yi∈Sc

H(Yi) = −
∑

Yi∈Sc

∑
y∈Yi

p(y) log p(y) (4)

The total entropy is computed for a set of possible β values, and
the estimate of β is obtained as the value minimizing the total
entropy (4). This computation is quite fast, since only pixels in
the selected regions with valid depths need to be considered and
restored.

Due to wrong estimates in the depth map, due to heterogeneous
fog, the intensity after restoration can be saturated and becomes
black. This case appears for the ground-truth value of β = 0.0001
in the Fig. 3(e) where remote objects are black on the right side
of the image. This is due to the fact that the fog is lighter in this
area. Not to be perturbed by this saturation, a maximal percent-
age of black pixels is allowed and β values with restorations with
a larger percentage are discarded.

3.4 Summary

In short, the proposed algorithm is the following:

• Detection of the pixels with a gradient magnitude higher
than a threshold on the input intensity image I(x). IS is
set as the highest intensity in the vicinity of these detected
pixels.

• Segmentation of I(x) to regions and selection of the reliable
regions Sc with thresholds on the depth range and on the
area.

• For each β, in a set of possible increasing values:

– Compute the restored image for the pixels in the se-
lected regions Sc, when the depth map D(x) is known,
using:

I0(x) = I(x)eβD(x) − IS(eβD(x) − 1)

– Compute the total entropy TH over the segmented re-
gions of the restored intensity distributions I0 using
(4).

– Count the number of black pixels in the restored im-
age I0, and if this number is higher than a threshold,
the search on higher β values is stopped.

• The solution is given as the value of β which minimizes the
total entropy (4).

In Fig. 3, the total entropy on the three selected regions is shown
versus the value of β. The ground-truth β values are shown as
vertical lines. This figure shows how the ground-truth is close of
the minimum of the total entropy, in various weather conditions.
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(a) β = 0.0001 (b) β = 0.0046 (c) β = 0.0086 (d) β = 0.0244
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Figure 3: Normalized total entropy versus β on the same scene with different weather conditions. The ground-truth β measured with a
visibility-meter are shown (0.0001, 0.0046, 0.0086 and 0.0244) as vertical lines.

3.5 Complexity

Computing the entropy of each intensity is linear according to
the number of pixel. If β has K possible values and the image
N pixels, the complexity of the proposed algorithm is O(KN).
The proposed algorithm can be easily parallelized. Indeed, the
restored image for each β can be computed independently and
the entropy can be computed with a MapReduce approach.

4. EVALUATIONS

To evaluate the proposed algorithm, we need foggy images with
a visibility distance ground-truth. A visibility-meter can be used
for the ground-truth. However and until now, we were not able
to have moving stereo images of foggy scenes with a ground-
truth. Indeed, the measures obtained by a visibility-meter are
very perturbed by air turbulence around the sensor when it is on a
moving vehicle. This is probably due to the fact that a visibility-
meter uses a relatively small volume of air for its measure. As
a consequence, we rely on synthetic images to experiment with
moving scenes. For static scene, we rely on camera images.

4.1 Static sensor

The input of the proposed algorithm being an intensity image and
a depth-map, we evaluated it using the Matilda database intro-
duced in (Hautière et al., 2011). The Matilda database provides
a sequence of more than 300 images from a static low cost cam-
era during three days (night and day) with the visibility distances
from a visibility-meter. An approximate depth map of the scene
is also provided. In this database, the visibility varies from 100m
to 15km, and the accuracy of the used visibility-meter is around
10%. The maximum distance in the depth map is 1300m.

To challenge the proposed algorithm, we also performed tests
where the image is processed in a reduced range of depths. Thus,
the evaluation results are presented in two cases: in the first case,
the whole depth map is used (denoted Dmax(IS)), and in the sec-
ond case, only the pixels with a depth lower than 50m are used

Visibility (m) 0-250 0-500 0-1000 all
number of images 9 19 24 198

Single image segmentation
Dmax(IS) 10.0% 9.1% 11.7% 97.3%

Dmax = 50m 7.1% 7.1% 10.0% 91.5%

Images segmentation
Dmax(IS) 25.4% 17.2% 20.7% 101.7%

Table 1: Mean relative error between the estimated visibility dis-
tance and the ground-truth on the Matilda database for different
distance ranges, with a single image segmentation. The first line
is obtained from the maximum distance Dmax where IS is ob-
served and the second line is for a shorter and fixed distance
Dmax = 50m. On the last line, the segmentation is computed
on every image, to simulate the situation of embedded sensors in
a moving vehicle.

(denoted Dmax = 50m). The camera being static, the segmen-
tation into regions is performed a single time on an image with
clear weather conditions using the algorithm proposed in (Felzen-
szwalb and Huttenlocher, 2004). We thus use the same selected
regions for all images in the sequence. This allows to evaluate
the visibility distance estimation without the extra source of er-
rors due to the segmentation process. The effect of applying the
segmentation on every image is also tested.

Tab. 1 shows the evaluation results in term of mean relative er-
ror on the visibility distance. We can see that the algorithm pro-
duces results with an accuracy similar to the visibility-meter up to
1000 meters. Notice that results are even better when the distance
range is limited to 50 meters. This can be explained by the fact
that fog is not always homogeneous, and a short range allows to
better fit the ground-truth which is measured close to the camera.
In these experiments, the second variant on the IS estimation is
used to achieve better results. Fig. 4 shows the results during two
foggy in the morning days, with an image every 10 minutes, night
images are skipped. These results show that the proposed algo-
rithm is able to clearly discriminate between visibility distance
lower or higher than 500m. The distance were fog is no more
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Figure 4: Comparison between estimated visibility distance and ground-truth during 1600 minutes (one image every 10 minutes, images
during the night are skipped) on the Matilda database. The proposed method is tested with two depth ranges: maximum distance where
IS is obtained (green crosses) and a fixed range [0, 50]m (red crosses), using a single image segmentation and is also shown the case
with a different segmentation at every image (blue crosses). The ground-truth value is shown as a black line. The horizontal blue line
shows the 500m visibility distance which is considered as the distance were fog is no more considered in driving situations.

With ground truth distance
Mean relative error 4.67%

With stereo reconstruction depth map
Mean relative error 16.03%

Table 2: Mean relative error between the estimated visibility dis-
tance and the ground-truth value on 66 synthetic stereo images
from Frida3 database. In the top part, the ground-truth depth-
map is used and in the bottom part, the depth-map comes from
the stereo reconstruction using Libelas algorithm.

considered an issue in driving situations is 500m.

4.2 Moving sensor

In the case of a moving sensor, we evaluate the proposed method
on 66 synthetic stereoscopic images with uniform fog from the
database named Frida3. This database was introduced in (Tarel
et al., 2012) for stereo reconstruction and restoration evaluation
and contains a ground-truth: the images without fog and the as-
sociated depth-maps.

To study the effect, on the estimated β, of bad matches in the
stereo reconstruction, we compared the case where the ground-
truth depth-map is used with the case where the depth-map comes
from a fast stereo reconstruction algorithm. In practice, we use
the Libelas algorithm which is very fast and is dedicated to road
scene images (Geiger et al., 2010). Tab. 2 shows the obtained
results in terms of mean relative error on the estimated visibility
distance in the two cases. Results obtained using the ground-
truth depth-map are very accurate, then the stereo reconstruction

is used, accuracy is lower but still of good quality.

5. CONCLUSION

In this article, we propose an original method for estimating the
extinction coefficient of the fog or equivalently the meteorolog-
ical visibility distance. The proposed method is based on the
entropy minimization of the restored image on pixels where the
depth is known. The depth-map can come from a 3D model of
the scene, or from a stereo reconstruction as well. The results
obtained on a static scene are as accurate that what is usually
obtained with a visibility-meter, when the depth-map is of good
quality. The proposed algorithm can be also used with a mov-
ing sensor and is tested with success on synthetic stereo images.
The proposed algorithm has several advantages. First, a small
depth range can be used to characterize a visibility distance 10
times larger than the maximum depth in the depth-map. This
is important for vehicular applications where obstacles or other
vehicles can hide a large range of distances. Another important
consequence is that the implemented stereo reconstruction algo-
rithm needs to provide good matches only up to a critical distance
which is much lower than the visibility distance. Second, the pro-
posed method is fast enough to consider real-time applications for
vehicular applications. In particular, it can be easily speeded-up
using parallel computations.
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