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ABSTRACT:

This paper presents an automated approach to thactan of building footprints from airborne LiDARata based on energy
minimization. Automated 3D building reconstructian complex urban scenes has been a long-standiraglecbe in

photogrammetry and computer vision. Building footts constitute a fundamental component of a 30dimg model and they are

useful for a variety of applications. Airborne LiRAprovides large-scale elevation representatiorriodiruscene and as such is an

important data source for object reconstructiorspiatial information systems. However, LiDAR poimts building edges often

exhibit a jagged pattern, partially due to eitheclosion from neighbouring objects, such as oveglmntrees, or to the nature of the

data itself, including unavoidable noise and irtagypoint distributions. The explicit 3D reconsttioo may thus result in irregular
or incomplete building polygons. In the presentedkya vertex-driven Douglas-Peucker method is dbpesl to generate polygonal

hypotheses from points forming initial building tiés. The energy function is adopted to examing eveluate each hypothesis

and the optimal polygon is determined through epermimization. The energy minimization also playg&ey role in bridging gaps,
where the building outlines are ambiguous due swofffitient LiDAR points. In formulating the energyriction, hard constraints

such as parallelism and perpendicularity of buddatiges are imposed, and local and global adjussnaee applied. The developed

approach has been extensively tested and evaloatddtasets with varying point cloud density oviffietent terrain types. Results
are presented and analysed. The successful reactistr of building footprints, of varying structlireomplexity, along with a

guantitative assessment employing accurate referéai@, demonstrate the practical potential optbposed approach.

1. INTRODUCTION

Building footprints are important features in splatiormation

systems and they are used for a variety of appitst such as
visual city tourism, urban planning, pollution mdaey and

disaster management. In cadastral datasets, byifdimtprints

are a fundamental component. They not only definegion of

interest (ROI), but also reveal valuable informatalout the
general shape of building roofs. Thus, buildingtfwimts can be
employed as a priori shape estimates in the modetf more

detailed roof structure (Vosselman, 2002).

Remote sensing has been a major data source fodirgyil
footprint determination and there is ongoing reseaand
development in photogrammetry and computer visiomed at
the provision of more automated and efficient foiotp
extraction. The sensors employed are generallyalaeaimeras
or LIDAR. Often cited approaches to building footri
determination can be found in Lafarge et al. (200@)sselman
(1999) and Weidner and Forstner (1995).

The challenge of building footprint extraction frdriDAR data
is partially due to either occlusions from neighbiog high
objects, such as overhanging trees, or to inhelefitiencies in
the LIDAR data itself, such as unavoidable noisd mregular
point distribution. As a result, points on buildiedges usually
exhibit a zigzag pattern. To recover regular shapame
methods determine dominant directions from boungbaipnts.
Alharthy and Bethel (2002) measured two dominaredtions
by determining peaks in the histogram of anglesowZland

Neumann (2008) extended this work by finding migtip

dominant directions from histogram analysis usirggent
directions of boundary points. Other methods fotedrining
building shape are based on Mean-shift clusteriggrighms
(Dorninger and Pfeifer, 2008), minimum boundingtaegles
(Arefi and Reinartz, 2013) or generative models ¢rtpuand
Sester, 2011). These methods employ a rectilingar o
regularize polygonal shape. Such an assumption ds
appropriate in many cases, especially when buitdieghibit
complex structure.

As an alternative strategy, Sester and Neidha@&peelied on
an explicit representation of boundary shape uaifRANSAC
method for line segment extraction. The extractegnsents
provided information on angle transition, which wased to
impose constraints of parallelism or perpendictyanother
strategy, which has also been adopted here, figtoximates
raw building boundaries as preliminary polygons] émen the
outlines are regularized by directional alignméfabolizade et
al. (2010) improved snake mode for the approxinmatibinitial
building boundaries with introducing height and iocegl
similarity. Sampath and Shan (2007) built the pnalary
boundary via a Douglas-Peucker (DP) method (Douglad
Peucker, 1973) and the regularized polygon was essaEz
using a rule-based alignment. As suggested in Neidand
Sester (2008), results from DP approximation can
unsatisfactory because building characteristics aret
necessarily retained. Weidner and Forstner (198%)l@yed a
local minimum description length (MDL) approachdionplify
the DP result and meanwhile imposed soft conssatot
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regularize polygonal shape. A similar approach lwariound in
Jwa et al. (2008) where MDL was extended by addirggobal
directional constraint. Wang et al. (2006) alsddfekd this
general workflow for preliminary boundary extractideading
to a new regularization method where the buildiogtfrint is
determined by maximizing the posterior expectedu@alThe
prior was formulated as the belief in the likelidoof various
hypotheses and the fitting error was employed tcode the
probability of boundary points belonging to a partar
building footprint model.

This paper presents a novel approach, based ongyener

minimization, to simplifying and refining buildinfpotprints

from LIDAR data. A primary focus of the paper is ¢ime

adoption of energy minimization to determine thetiropl

hypothesis of polygons derived from a vertex-driveir

method and to infer the best connection structui@éas where
the building outlines are ambiguous due to insidfit LIDAR

point coverage. A global adjustment is conductecerdorce
geometric building footprint properties, such asafialism and
perpendicularity.

The rest of this paper is structured as followti®a 2 briefly
introduces the principle of energy minimization ariis
application in photogrammetry and computer visiSaction 3
then presents the vertex-driven DP method and tiergyg
minimization is used to select the optimal hypoithds Section
4, hybrid reconstruction in terms of explicit anthplicit
modelling through energy minimization is descriieddetail.
Results are illustrated in Section 5 to demonstizepotential
of the proposed approach. Conclusions are offer&ection 6.

2. ENERGY MINIMIZATION

Energy minimization is an expressive and elegaarhéwork to
alleviate uncertainties in sensor data processeésambiguities
in solution selection (Boykov et al., 1999). Itaails for a clear
expression of problem constraints so that the tisnlution
can be determined by solving a minima problem. dditéon,

energy minimization allows in a natural way the udesoft

constraints, such as spatial coherence. It avbiddramework
being trapped by pre-defined hard constraints (Kglomov and
Zabih, 2002).

The general form of the energy function to be mined can be
expressed as

E(f) = Edata(f) +A1- Eprior 0] 1

The data energy restricts a desired solution telbse to the
observation data. A lower cost in the data ternicates higher
agreement with the data. The prior energy confthesdesired
solution to have a form that is agreeable with pkisowledge.
A lower cost in the prior energy term means thatgblution is
more in accordance with prior knowledge. The endugygtion
is usually a sum of terms corresponding to diffeseit or hard
constraints encoding data and prior knowledge efpttoblem.
It is clear that smaller values of the energy fiorctindicate
better potential solutions. Minimization of the emefunction
can be justified using Bayesian statistics (Gemash @aman,
1984) from optimization approaches, such as mespagsing
(Wang and Daphne, 2013) arexpansion (Boykov and Jolly,
2001).

Energy minimization has been used in computer nisiod
photogrammetry to infer information from observatitata. For
instance, Yang and Forstner (2011) formulated
interpretation as a labelling problem, where lahgllikelihood

is calculated by a randomized decision forest amtepvise
smoothness is taken as a prior, which is encodedpayial
coherence based on Conditional Random Fields. Shiapoga
al. (2010) and Lafarge and Mallet (2012) also s#ili piecewise
smooth priors for scene interpretation within potibuds.
Kolmogorov and Zabih (2002) imposed spatial smoesgnn a
global cost function over a stereo pair of imagesi¢termine
disparity. Instead of using a smooth prior, Zhod &eumann
(2010) combined quadratic error from boundary andase
terms to achieve both 2D boundary geometry and @fface
geometry.

In this presented work, the task of building foatpconsists of
three major steps: polygonal approximation, explici
reconstruction and implicit reconstruction. The rgge is
formulated in a similar way as Eq.1 to alleviateogassing
errors. Since the objective in each step is quitierdnt, the
definitions of the data term and prior term areios and will
be elaborated presented in following sections.

3. POLYGONAL APPROXIMATION
3.1 Pre-processing

Raw point clouds are firstly classified via a mettsaahilar to
that of Lafarge and Mallet (2012) to discriminateee main
features, namely buildings, vegetation and bareurgto This
approach also employs an energy minimization schéme
encodes piecewise smooth energy to alleviate #gsification
ambiguity based on spatial coherence. The methags th
increases accuracy by about 3-5% over other ungispdr
classifiers. The improvement compared with a cotigaal
point-wise classification approach can be obsermedr the
example building edges shown in Figure 1, as dpatizerence
plays a key role in the boundary area.

V;egetation )

Building

Figure 1. Classification result for building detecti result from
point-wise likelihood analysisldft), and result from energy
minimization combining point-wise likelihood and ipaise
spatial coherenceight)

The building points are further processed to create
triangulated irregular network (TIN) graph and tbag edges
are eliminated to cut off connections among diffiédguildings.
Connected-component labelling is then performed ba t
undirected graph to isolate rooftops. While pointéthin
boundaries are reserved to derive polygonal shapiele points
are considered as redundant observations and reimdlie 2D
a-shape algorithm (Bernardini and Bajaj, 1997) is ayed to
delineate the building boundary, where the value isfdefined
as 1.5 times of the average point spacing.
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3.2 Vertex-driven Douglas-Peucker

The obtained raw boundaries usually exhibit a zigpattern
along the derived outlines, as shown in the clgsefuFigure 2.
To provide a meaningful and compact description tioé
boundary, polygon simplification is critical to gerve relevant
edges. Rather than using the original DP algorithnpblygon
approximation (Jwa et al., 2008; Kim and Shan, 20¥&idner
and Forstner, 1995), a Vertex-driven Douglas-Pau¢¥®P)
algorithm is proposed to simplify a polygon frons itaw
boundary. The main difference between the two #lyos is
that VDP focuses on polygonal complexity while thginal
DP considers data deviation. In VDP the numbereyf oints,

residual error of each point towards the hypothgsikygon.
Since a building footprint can be represented asinaple
polygon, the complexity of the polygon can be emptbas a
model constraint. The complexity of a polygon modeh be
estimated from the LIDAR points along the buildingundary.
As the vertices of the polygon are a subset of dbendary
points, a sequence of coordinate (X, Y) values desothe
polygonal complexity. To simplify computation, a 2Dunding
box enclosing the polygon is employed to indicaterdinate
range. In this formulation, the global energy fimet denoted
asGE(D,P), is defined as a combination BfD|P), which
encodes the energy of dabaover the polygorP, and the
energy ofP itself. The global energy functiaf& (D, P) can be

denoted as, is required to generate a polygonal hypothesisexpressed as

and the optimal value ofi is determined through energy
minimization in the sequential optimal polygon sélen
process. This is in contrast to the original DRoEtGm relying
on a pre-defined point-to-edge distance which ficdit to
optimize. Obviously, when the number of the keynp®iis
defined as two, the polygonal approximation wilbapr as a
line segment which mutual links the farthest datanis to
minimize data distortion. Witm increasing, the polygon
expands by iteratively adding the point with thelffast point-
to-edge distance to the current form polygon. FégRrshows
the shapes of various polygonal hypotheses witterdifitn. It
is clear that the lower the degree of simplificatithe lower the
amount of data fitting error, but the higher thenptexity of the

polygon.

Raw boundary
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Figure 2. Polygonal hypotheses with different nuralug
vertices.

3.3 Optimal Polygon Selection

In order to select the optimal polygon among th#edint
hypotheses, the energy function is adopted to giplpaesent
the combination of the cost of overall data and thedel.
According to the general form of the energy functio Eq. 1,
the data energy depends on the capability of deagridataD

GE(D,P) = =2 + 1, (nlog,A)

2ln2 (2)
where(2 is the sum of the squared residualss the number of
polygon vertices (defined in VDP) addis the area of the data
bounding box, which represents the coordinate rahges
introduced to balance data and prior terms. Welset 1
which is applicable in most cases.

The best polygon representing the building footpdan be
found when the overall energy is minimal. In thiappr, we
adopted the brute-force searching (BFS) strategyfirid
minimum energy (Enqvist et al.,, 2011). In other @grthe
optimal value ofn is derived by iteratively calculating and
comparing the energy within the range of3,np], wheren,
is the number of data points. Taking the boundardyigure 2 as
an example, the data energy terB(}|P)), the prior energy
term (E(P)) and the combination energy tetifi (D, P) of each
n is shown in Figure ¥ (D|P) drops swiftly whem increasing
from 4 to 8 and closes to 0 after=9 while E(P) grows
linearly with increasingn. From theGE (D, P), the polygon with
n =28 has the minimum total energy and thus is the
corresponding polygon of the best approximation tbé
building footprint.
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Figure 3. Energies for different vertex numbers
4. HYBRID RECONSTRUCTION
4.1 Explicit Reconstruction

It can be observed that the preliminary boundaryypscally
irregular because key points are the subset of baundary
points. Therefore, a regularization step is oftetessary to
enhance the geometric shape of building footprinich as
parallelism and perpendicularity.

A local adjustment is firstly applied on each edge
approximate the real direction. LEt= {kq,k,,...,k,} be the

using a polygorP. Thus, the data energy is defined as the
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key points of preliminary polygon. The adjustedelip, y, is
determined by a RANSAC line fitting method using thBAR
points betweetk, andk,. An example is shown in Figure 4(a).
Note that angular difference before and after adjast may
represent a dramatic difference for some edgesrefdre,
edges with large direction difference from the ipnéiary
polygon (more than 20°), or with small length (lesan 2m),
are eliminated. Thereafter, this approach expltiesdirection
relationship among line segments. If the anguldferdince
between the potential line and the longest linelase to 0° or
90°, then the regularity relationship is built aargllelism or
perpendicularity.

If direction alignment is directly applied to thengest line, the
quality of the dominant direction is mainly dependepon the
local fitting of the longest line. Therefore, gldlzaljustment is
applied to find the precise dominant direction adlvas the
optimal parameters for each edge. The data figimgr (DFE)
is used to measure the deviation of points fromfitted line
segments, and it is expressed as the accumulafisgquared
Euclidean distance between each point and the spwneling
segment line (Fisher, 2004):
DFE = ZliELijelinjdz(pjrli) 3)
Here,l; is one of long line segmentsandp; is an observation
onl;. dz(p]-, l;) represents the squared distance of a pgitd
its corresponding line, which has an associatedsoreament
uncertainty Weighij (Kanatani, 2008)ij is set to 1 if the

line segment has the direction relationship with fiingest line
segment and to zero otherwise.

In order to minimizeDFE and meanwhile maintain direction
relationships, an error minimization optimizatioppaoach is
employed. As distinct from the energy function defl in
Equation 1, where the energy is an accumulationsaft
constraints from data and from prior knowledge, divection
relations are considered as equal hard constrdihesobjective
error function with equal constraints is defined as
min(DFE), c € Cy 4)
wherec is the direction constraintCy includes parallelism and
perpendicularity constraints. The well-known namebr convex
point approach (Vanderbei and Shanno, 1999) isiexppb
solve the optimization problem. The regularizedulesf the
local fitting of building edges in Figure 4(a) isawvn in Figure
4(b). It can be seen that the line segments inrEig(b) better
represent the shape of the building footprint tthese in Figure
4(a).

(a) (b)
Figure 4. Explicit reconstruction of building fooiipt: (a) local
fitting and (b) regularization of remaining linegseents

4.2 Implicit Reconstruction

As shown in the previous section, short line segmbave been
eliminated in the explicit reconstruction. The dit short line

segments usually contain only a few LIDAR pointgréfore
they are not reliable to represent a building eqgeticularly
when the density of LIDAR points is not high. Theeuan
distribution of points due to an irregular scanngagtern makes
the situation even worse. Short segments usualhk li
neighbouring long segments. They are referred twasectors
in the following and they will again be reconsteattusing
energy minimization. However, since robust featurasnot be
reliably extracted from the limited observatiortse tonnectors
will be reconstructed implicitly and a different foition of
energy will be necessary. Three types of conndggpotheses
are categorized as follows (see also in Figure 5):

a. No additional line: two adjusted line segmentsdirectly
connected by a line extension to bridge the gapufei
5a).

b. One additional line: use one line to intersect fixed
line segments. The additional line is defined bye on
observation point and a floating direction (Figbks.

c. Two additional lines: use two rays to intersect fixed
line segments. The two rays are defined at one
observation point with two floating directions (Eig 5c)

b ng S

(a) (b) (c)
Figure 5. Connector hypotheses: (a) no additianal (b) one
additional line and (c) two additional lines

The optimal connector model is also selected byrggne
minimization. Unlike the global energy for polygeelection, in

Section 3.3, model selection is performed locallyeach gap
and the data observations are the points betweentwio

adjacent lines. The data energy is defined as ésiduals

describing the deviation of boundary points frore thodel. A

low residual implies more agreement with the hypsih

model. To describe the prior energy, both shapeptaxity and

smoothness are encoded. Thus, the model energteisded by
adding two more smoothness constraints: (1) length
additional line (favouring short length), and (2gke transition

(preferring right angle). The total energy can hether

expressed as

LE(D,P) = zi + A,(Nlog,A + S'log,S + X t,glog,N)

in2 (5)
whereA is the area of the bounding box from local obs@oma
data;S the extended length of the two line segmeitshe
number of new added vertice®;the length of the connector
model; t,, the angle penalty, wherg,, =0 if 6=
90°0or 180° and t,g =1 otherwise; andl, the weight
coefficient to trade-off between the data term amatel term.
The result of the connection procedure onto thereized line
segments of Figure 4(b) is shown in Figure 6. iit ba seen that
the gaps are closed, and the obtained polygon sepi® well
the building footprint. At the bottom-right of ttieotprint, both
smoothness prior and data fitness drive the twadtiaddl lines
intersecting at the point which is near to the cemher.
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Figure 6. Watertight building footprint

5. EXPERIMENTSAND DISCUSSION

This section presents the performance evaluation thef
developed algorithms for building footprint extiact using
energy minimization based explicit and implicit @astruction.
The criteria for quantitative assessment of peréoroe are first
introduced. Simulated data with various noise levelas
initially used to illustrate the robustness of tdeveloped
approach when compared to the DP method for pnedingi
polygon selection and explicit reconstruction fouilthing
footprint extraction. Following this, the resultsorih a real
dataset over a large area are presented. The ipearioe was
quantitatively evaluated using manually extractetecise
reference data.

5.1 Criteriafor Quality Assessment

Five evaluation metrics, defined as follows, wesed for the
quantitative evaluation of performance:

— Coverage Error (CE) evaluates how completely the
approach is able to represent the ground-truth gooly
Coverage percentage is expressed as

CE = total area of dif ference
total area of reference polygon

6)

where the difference analysis between two polygsns
based on the Vatti clipping algorithm (Vatti, 1992)
implemented in General Polygon Clipper (GPC) softwar
library (http://www.cs.man.ac.uk/~toby/alan/softwpare

Root Mean Square Error (RMSE) predicts the deviation of

the footprint to the data. Lef, be the number of boundary
points and? be the squared residual accumulated from ¢
boundary points, then the RMSE is defined as

RMSE = /in
np

Direction Difference (DD) measures the difference of the
principal orientation between the extracted polygod the
ground-truth polygon. Given the dominant directafnan
estimated polygonland the corresponding ground-truth
dominant directioni, DD is calculated as

@)

DD = acos(d" - d) (8)
Model Complexity Difference (MCD) aims to reflect the
complexity difference between the derived footprmid
the ground-truth. Let andn, be the number of vertices of
the derived polygon and reference polygon, respelgti
then MCD is expressed as

MCD = (ﬂ)z )

ny

- Vertex Difference (VD) evaluates the likelihood between
the derived footprint and the ground-truth. kebe the
residual distance of a vertex of the derived pofygw the
nearest vertex of the reference polygon, then Viefned
as

1
VD = ’;Z?Tiz

5.2 Performance on Simulated Data

(10)

The simulated data were designed to evaluate thelafmed
VDP approach for polygon simplification and extiaat of
relevant edges from noise influenced boundary poifBaussian
noise with five noise levelso(= 0.05,0.1,0.15,0.2,0.25m)
were added to raw boundary points. Both conventibiaand
VDP algorithms were applied. Furthermore, the penfnce of
explicit reconstruction (Sampath and Shan, 2007)}h wi
conventional DP and the hybrid reconstruction WMIDP
presented in this paper were evaluated.

DP + explicit VDP + hybrid
Initial shape reconstruction reconstruction
Raw
boundary
o =0.05 @
T @
™
o <\«,_/<

Preliminary polygon Footprint polygon

Figure 7. Comparison of performance under variouss&an
noise levels

Figure 7 illustrates the results of DP and VDP patygonal
simplification (blue lines). The results of DP avibP are quite
similar when the noise level is low. However, DRegEnts an
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over-fitting of the preliminary boundary when theise level is
high. This is because DP only relies on the locahtsto-edge
distance to locate the key points. As seen in tlire rBsult

relatively high when rooftops are occluded by tréeg. bll,
b1l6 and bl7). Consequently, the vertex differencethete
buildings is also relatively high. Another factarntributing to

with o = 0.25, noisy vertices were not eliminated in the left the vertex difference is the model complexity diéfece. The

part of the figure. With the preliminary polygonxpéicit
reconstruction generates an irregular footprintesithe rule
based on angle difference does not work well onsynoi
boundaries. On the other hand, VDP considers tbkafjldata
deviation as well as model complexity to contra #ey point
selection. A key point is added to the preliminpotygon only
when the alleviation of data distortion is largear the cost of
introduction of a new vertex. Consequently, the Hibr
reconstruction based on VDP achieves a regulagpalghape.
The metric evaluation in Table 1 indicates that thdrid
method has a low direction difference as the domidaection
is measured by global optimization rather than ioaal
adjustment. MCD for both methods increased at adnitgvel
of noise. Explicit reconstruction exhibits an @&imation
result, while hybrid reconstruction shows a resuf
underestimation. However, the model complexityhs hybrid
method is closer to the ground truth. In additiouch smaller
values of vertex difference achieved fraf®P approximation
and hybrid reconstruction suggest better performahan the
explicit method.

CE RMSE DD | MCD| VD

5=0.05m DP 0.01 0.25 0.04 0.18 0.6p
VDP 0.02 0.24 0.02 [ 0.00 | 0.42

5=0.10m DP 0.03 0.31 0.16 0.18 2.6
VDP 0.04 0.25 0.02 ( 0.00 | 0.23

5=0.15m DP 0.08 0.39 0.12 0.09 1.2p
VDP 0.09 0.38 0.03 [ 0.09 | 0.40

520.20m DP 0.12 0.54 0.21] 0.45 3.0p
VDP 0.11 0.44 0.07 [ 0.18 | 0.52

520.25m DP 0.16 0.59 0.32 0.73 3.2p
VDP 0.14 0.53 0.12 | 0.27 | 0.82

Table 1. Statistical assessment under various @ausmwise
levels.

5.3 Performance on Real Data

Experiments have been conducted over the urban efea

Eltham, Victoria, Australia. This site, with wellegetated
rolling terrain, is located northeast of the MelbwaiCBD. The
LIDAR data was collected by an Optech Gemini scanwiér
an average point spacing of ~0.55m. In additionahanagery
was available for this site and this was employed aa
independent data source in the evaluation.

The developed approach was applied to the wholesdgtand
the results of a portion containing 17 buildingkose reference
data were available, are presented in Figure 8e détected
building regions shown in Figure 8(a) are indicabsdblack

lines overlaid on the hill-shaded DSM image. Thel$ipatches
on dense tree crowns, highlighted by red squamesfadsely

detected building regions. These are subsequesthpved by
an area-based filtering algorithm. All 17 buildiregions were
detected. The results of preliminary extracted gofs and the
final derived footprints, obtained using the pragwspproach,
are represented in blue and orange, respectiveligure 8(b).

The reference footprints were generated by manelaehtion

with the assistance of aerial photography. Theseshown by
the green polygons in Figure 8(c).

Table 2 shows assessment result for the reconistnuzt the 17
buildings. As indicated in the table, the coveragyeor is

MCD is caused by either overestimation (e.g. b5 b8y or
underestimation (e.g. b7 and b12). The reconsulufttetprints
fit the data typically well as the RMSE is small,tire range of
0.18-0.77m. The largest RMSE is from b7 becausenalls
protrusion in the right side is not reconstructedr direction
difference, all reconstruction results show a srdalliation to
the corresponding reference footprints. The sm&hdard
deviations of all evaluation criteria indicate ththe proposed

16

11 15

Figure 8. Building footprint reconstruction: (a)ettdetected
buildings, (b) reconstructed footprints and (c)ugrd truth.
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Building CE RMSE DD MCD VD
bl 0.13 0.21 0.02 0.00 0.29
b2 0.01 0.18 0.01 0.00 0.48
b3 0.14 0.53 0.00 0.00 0.43
b4 0.03 0.53 0.03 0.00 0.38
b5 0.18 0.63 0.02 0.22 1.94
b6 0.10 0.49 0.02 0.00 0.57
b7 0.10 0.77 0.00 0.29 0.77
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b8 0.14 0.48 0.03 0.09 0.54
b9 0.18 0.33 0.03 0.14 3.69
b10 0.04 0.38 0.01 0.27 0.79
b1l 0.24 0.47 0.06 0.00 1.16
b12 0.11 0.21 0.05 0.00 1.13
b13 0.00 0.35 0.07 0.00 0.54
b14 0.05 0.56 0.09 0.22 0.54
b15 0.01 0.30 0.02 0.00 0.31
b16 0.24 0.38 0.03 0.00 0.51
b17 0.22 0.42 0.01 0.29 0.56
Average 0.11 0.42 0.03 0.09 0.86
Std 0.08 0.15 0.02 0.12 0.81
Table 2: Statistical assessment of building foaotpri
reconstruction.

5.4 Discussion

Several factors have an impact on the results dlidihg
footprint reconstruction. The point density withiiDAR point
clouds and the sensor scanning pattern directlpante the
quality of the results. The proposed approach c®epra
number of processing steps and each has an impatheo
subsequent processes, and thus on the final reAitgxample
is given in Figure 9, which highlights the diffecenbetween the
boundary of the detected building area, the recoosd
footprint and the ground-truth of b9 (c.f. Figure 8Bhe error is
caused by misclassification of a low-level buildiogmponent
at the lower left corner as ground and this ernmppgates to
the boundary of the building outlines, resulting icorrect
footprint.

Raw polygon
Derived footprint

Reference footprint

The other challenge is the selection of the propeight
parametersl, in Eq. 5. In the current implementation, the
weights are determined manually, by trial and ecamparing
with the reference data, and then the constast 0.5 is used
for other buildings. However, thel, value is not always
effective and can lead to incorrect generation ldrs line
segments in implicit reconstruction, as shown inab8 b12 of
Figure 8. An adaptivé, is necessary to determine based on th
local environment.

Nonetheless, these errors can be largely avoidesigh an
increase in the point density of the LIDAR data. éxample is
given in Figure 10 where the point spacing is ~h2#d the
point density around 4 times that of the data shwrigure 8.
It is clear that the building footprints are cothgececonstructed,
despite their complex structure and varying sizeerEsmall
structures with extremely short boundary segments

accurately reconstructed and modelled.

€

Figure 10. Footprint reconstruction of complex dings with
high density LIDAR data.

6. CONCLUDING REMARKS

This paper has presented a novel energy minimizat@sed
method for building footprint extraction from ainm@ LiDAR
data. A number of component algorithms have beerldped.
Rather than utilising a pre-defined threshold forlygonal
simplification, the vertex-driven Douglas-Peuckeethod has
been proposed to improve performance. Differenmorof
energy minimization are formulated to determine dmtimal
polygon among various hypotheses, and to bridge bafween
consecutive line segments through optimal connscton
summary, the paper has made three principal catitits:

— A combined global energy function encoding datargyne
and prior energy for determination of the best gohal
simplification, where the model complexity is cariked
by the number of vertices obtained from the vedeaxen
DP algorithm;

— An explicit reconstruction incorporating geometric
knowledge of buildings (parallelism and perpendicity)
in a global optimization to improve robustness and
accuracy; and

— An implicit reconstruction through a connector sture to
ensure completeness and topological correctnestheof
building polygon.

The proposed approach has been experimentallydteste

evaluated with both simulated and real data oveelarban test
areas. Quantitative assessment of the resultinddibgi

footprints against accurate reference data, usamgpws quality
criteria, has shown that the developed approagiayis a high
level of robustness and reliability. The experinseobnducted
have also shown that even better performance caclieved
with LIDAR data of a higher point density.

It is noteworthy that the developed approach assuthet

building footprints consist of sets of piecewiseekr segments.
While this is true for the majority of buildingshdse with

‘special’ structural characteristics, such as doraad curved

structures, are not uncommon. Improvement of theeot

approach or development of new methods is warramted
accommodate these cases.
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