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ABSTRACT: 
 
This paper presents an automated approach to the extraction of building footprints from airborne LiDAR data based on energy 
minimization. Automated 3D building reconstruction in complex urban scenes has been a long-standing challenge in 
photogrammetry and computer vision. Building footprints constitute a fundamental component of a 3D building model and they are 
useful for a variety of applications. Airborne LiDAR provides large-scale elevation representation of urban scene and as such is an 
important data source for object reconstruction in spatial information systems. However, LiDAR points on building edges often 
exhibit a jagged pattern, partially due to either occlusion from neighbouring objects, such as overhanging trees, or to the nature of the 
data itself, including unavoidable noise and irregular point distributions. The explicit 3D reconstruction may thus result in irregular 
or incomplete building polygons. In the presented work, a vertex-driven Douglas-Peucker method is developed to generate polygonal 
hypotheses from points forming initial building outlines. The energy function is adopted to examine and evaluate each hypothesis 
and the optimal polygon is determined through energy minimization. The energy minimization also plays a key role in bridging gaps, 
where the building outlines are ambiguous due to insufficient LiDAR points. In formulating the energy function, hard constraints 
such as parallelism and perpendicularity of building edges are imposed, and local and global adjustments are applied. The developed 
approach has been extensively tested and evaluated on datasets with varying point cloud density over different terrain types. Results 
are presented and analysed. The successful reconstruction of building footprints, of varying structural complexity, along with a 
quantitative assessment employing accurate reference data, demonstrate the practical potential of the proposed approach. 
 
 

1. INTRODUCTION 

Building footprints are important features in spatial information 
systems and they are used for a variety of applications, such as 
visual city tourism, urban planning, pollution modelling and 
disaster management. In cadastral datasets, building footprints 
are a fundamental component. They not only define a region of 
interest (ROI), but also reveal valuable information about the 
general shape of building roofs. Thus, building footprints can be 
employed as a priori shape estimates in the modelling of more 
detailed roof structure (Vosselman, 2002).  
 
Remote sensing has been a major data source for building 
footprint determination and there is ongoing research and 
development in photogrammetry and computer vision aimed at 
the provision of more automated and efficient footprint 
extraction. The sensors employed are generally aerial cameras 
or LiDAR. Often cited approaches to building footprint 
determination can be found in Lafarge et al. (2008), Vosselman 
(1999) and Weidner and Förstner (1995).  
 
The challenge of building footprint extraction from LiDAR data 
is partially due to either occlusions from neighbouring high 
objects, such as overhanging trees, or to inherent deficiencies in 
the LiDAR data itself, such as unavoidable noise and irregular 
point distribution. As a result, points on building edges usually 
exhibit a zigzag pattern. To recover regular shape, some 
methods determine dominant directions from boundary points. 
Alharthy and Bethel (2002) measured two dominant directions 
by determining peaks in the histogram of angles. Zhou and 

Neumann (2008) extended this work by finding multiple 
dominant directions from histogram analysis using tangent 
directions of boundary points. Other methods for determining 
building shape are based on Mean-shift clustering algorithms 
(Dorninger and Pfeifer, 2008), minimum bounding rectangles 
(Arefi and Reinartz, 2013) or generative models (Huang and 
Sester, 2011). These methods employ a rectilinear prior to 
regularize polygonal shape. Such an assumption is not 
appropriate in many cases, especially when buildings exhibit 
complex structure.  
 
As an alternative strategy, Sester and Neidhart (2008) relied on 
an explicit representation of boundary shape using a RANSAC 
method for line segment extraction. The extracted segments 
provided information on angle transition, which was used to 
impose constraints of parallelism or perpendicularity. Another 
strategy, which has also been adopted here, first approximates 
raw building boundaries as preliminary polygons, and then the 
outlines are regularized by directional alignment. Kabolizade et 
al. (2010) improved snake mode for the approximation of initial 
building boundaries with introducing height and regional 
similarity. Sampath and Shan (2007) built the preliminary 
boundary via a Douglas-Peucker (DP) method (Douglas and 
Peucker, 1973) and the regularized polygon was processed 
using a rule-based alignment. As suggested in Neidhart and 
Sester (2008), results from DP approximation can be 
unsatisfactory because building characteristics are not 
necessarily retained. Weidner and Förstner (1995) employed a 
local minimum description length (MDL) approach to simplify 
the DP result and meanwhile imposed soft constraints to 
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regularize polygonal shape. A similar approach can be found in 
Jwa et al. (2008) where MDL was extended by adding a global 
directional constraint. Wang et al. (2006) also followed this 
general workflow for preliminary boundary extraction, leading 
to a new regularization method where the building footprint is 
determined by maximizing the posterior expected value. The 
prior was formulated as the belief in the likelihood of various 
hypotheses and the fitting error was employed to encode the 
probability of boundary points belonging to a particular 
building footprint model. 
 
This paper presents a novel approach, based on energy 
minimization, to simplifying and refining building footprints 
from LiDAR data. A primary focus of the paper is on the 
adoption of energy minimization to determine the optimal 
hypothesis of polygons derived from a vertex-driven DP 
method and to infer the best connection structure in areas where 
the building outlines are ambiguous due to insufficient LiDAR 
point coverage. A global adjustment is conducted to enforce 
geometric building footprint properties, such as parallelism and 
perpendicularity.   
 
The rest of this paper is structured as follows: Section 2 briefly 
introduces the principle of energy minimization and its 
application in photogrammetry and computer vision. Section 3 
then presents the vertex-driven DP method and the energy 
minimization is used to select the optimal hypothesis. In Section 
4, hybrid reconstruction in terms of explicit and implicit 
modelling through energy minimization is described in detail. 
Results are illustrated in Section 5 to demonstrate the potential 
of the proposed approach. Conclusions are offered in Section 6. 
 

2. ENERGY MINIMIZATION 

Energy minimization is an expressive and elegant framework to 
alleviate uncertainties in sensor data processes and ambiguities 
in solution selection (Boykov et al., 1999). It allows for a clear 
expression of problem constraints so that the optimal solution 
can be determined by solving a minima problem. In addition, 
energy minimization allows in a natural way the use of soft 
constraints, such as spatial coherence. It avoids the framework 
being trapped by pre-defined hard constraints (Kolmogorov and 
Zabih, 2002).  
 
The general form of the energy function to be minimized can be 
expressed as 
 

���� � �������� 	 
 ⋅ ��
��
���                                              (1) 
 

The data energy restricts a desired solution to be close to the 
observation data. A lower cost in the data term indicates higher 
agreement with the data. The prior energy confines the desired 
solution to have a form that is agreeable with prior knowledge. 
A lower cost in the prior energy term means that the solution is 
more in accordance with prior knowledge. The energy function 
is usually a sum of terms corresponding to different soft or hard 
constraints encoding data and prior knowledge of the problem. 
It is clear that smaller values of the energy function indicate 
better potential solutions. Minimization of the energy function 
can be justified using Bayesian statistics (Geman and Geman, 
1984) from optimization approaches, such as message passing  
(Wang and Daphne, 2013) or α-expansion (Boykov and Jolly, 
2001).  
 
Energy minimization has been used in computer vision and 
photogrammetry to infer information from observation data. For 
instance, Yang and Förstner (2011) formulated image 
interpretation as a labelling problem, where labelling likelihood 

is calculated by a randomized decision forest and piecewise 
smoothness is taken as a prior, which is encoded by spatial 
coherence based on Conditional Random Fields. Shapovalov et 
al. (2010) and Lafarge and Mallet (2012) also utilised piecewise 
smooth priors for scene interpretation within point clouds. 
Kolmogorov and Zabih (2002) imposed spatial smoothness in a 
global cost function over a stereo pair of images to determine 
disparity. Instead of using a smooth prior, Zhou and Neumann 
(2010) combined quadratic error from boundary and surface 
terms to achieve both 2D boundary geometry and 3D surface 
geometry.  
 
In this presented work, the task of building footprint consists of 
three major steps: polygonal approximation, explicit 
reconstruction and implicit reconstruction. The energy is 
formulated in a similar way as Eq.1 to alleviate processing 
errors. Since the objective in each step is quite different, the 
definitions of the data term and prior term are various and will 
be elaborated presented in following sections. 

 
3. POLYGONAL APPROXIMATION 

3.1 Pre-processing 

Raw point clouds are firstly classified via a method similar to 
that of Lafarge and Mallet (2012) to discriminate three main 
features, namely buildings, vegetation and bare ground. This 
approach also employs an energy minimization scheme that 
encodes piecewise smooth energy to alleviate the classification 
ambiguity based on spatial coherence. The method thus 
increases accuracy by about 3-5% over other unsupervised 
classifiers. The improvement compared with a conventional 
point-wise classification approach can be observed near the 
example building edges shown in Figure 1, as spatial coherence 
plays a key role in the boundary area. 
 

 
Figure 1. Classification result for building detection: result from 
point-wise likelihood analysis (left), and result from energy 
minimization combining point-wise likelihood and pair-wise 
spatial coherence (right) 
 
The building points are further processed to create a 
triangulated irregular network (TIN) graph and the long edges 
are eliminated to cut off connections among different buildings. 
Connected-component labelling is then performed on the 
undirected graph to isolate rooftops. While points within 
boundaries are reserved to derive polygonal shape, inside points 
are considered as redundant observations and removed. The 2D 
α-shape algorithm (Bernardini and Bajaj, 1997) is employed to 
delineate the building boundary, where the value of α is defined 
as 1.5 times of the average point spacing. 
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3.2 Vertex-driven Douglas-Peucker 

The obtained raw boundaries usually exhibit a zigzag pattern 
along the derived outlines, as shown in the close-up of Figure 2. 
To provide a meaningful and compact description of the 
boundary, polygon simplification is critical to preserve relevant 
edges. Rather than using the original DP algorithm for polygon 
approximation (Jwa et al., 2008; Kim and Shan, 2011; Weidner 
and Förstner, 1995), a Vertex-driven Douglas-Peucker (VDP) 
algorithm is proposed to simplify a polygon from its raw 
boundary. The main difference between the two algorithms is 
that VDP focuses on polygonal complexity while the original 
DP considers data deviation. In VDP the number of key points, 
denoted as	�, is required to generate a polygonal hypothesis, 
and the optimal value of n is determined through energy 
minimization in the sequential optimal polygon selection 
process. This is in contrast to the original DP algorithm relying 
on a pre-defined point-to-edge distance which is difficult to 
optimize. Obviously, when the number of the key points is 
defined as two, the polygonal approximation will appear as a 
line segment which mutual links the farthest data points to 
minimize data distortion. With �  increasing, the polygon 
expands by iteratively adding the point with the farthest point-
to-edge distance to the current form polygon. Figure 2 shows 
the shapes of various polygonal hypotheses with different	�. It 
is clear that the lower the degree of simplification, the lower the 
amount of data fitting error, but the higher the complexity of the 
polygon. 
 

 
Figure 2. Polygonal hypotheses with different numbers of 
vertices.  
 
3.3 Optimal Polygon Selection 

In order to select the optimal polygon among the different 
hypotheses, the energy function is adopted to globally present 
the combination of the cost of overall data and the model. 
According to the general form of the energy function in Eq. 1, 
the data energy depends on the capability of describing data � 
using a polygon	� . Thus, the data energy is defined as the 

residual error of each point towards the hypothesis polygon. 
Since a building footprint can be represented as a simple 
polygon, the complexity of the polygon can be employed as a 
model constraint. The complexity of a polygon model can be 
estimated from the LiDAR points along the building boundary. 
As the vertices of the polygon are a subset of the boundary 
points, a sequence of coordinate (X, Y) values encodes the 
polygonal complexity. To simplify computation, a 2D bounding 
box enclosing the polygon is employed to indicate coordinate 
range. In this formulation, the global energy function, denoted 
as ����, ��, is defined as a combination of ���|�� , which 
encodes the energy of data �  over the polygon � , and the 
energy of � itself. The global energy function ����, �� can be 
expressed as 
 

����, �� � �

����
	 
���������                    (2) 

 
where   is the sum of the squared residuals, � is the number of 
polygon vertices (defined in VDP) and � is the area of the data 
bounding box, which represents the coordinate range. 
�  is 
introduced to balance data and prior terms. We set 
� � 1 
which is applicable in most cases. 
 
The best polygon representing the building footprint can be 
found when the overall energy is minimal. In this paper, we 
adopted the brute-force searching (BFS) strategy to find 
minimum energy (Enqvist et al., 2011). In other words, the 
optimal value of n is derived by iteratively calculating and 
comparing the energy with	� in the range of	"3, �$%, where �$ 
is the number of data points. Taking the boundary in Figure 2 as 
an example, the data energy term (���|��), the prior energy 
term (����) and the combination energy term ����, �� of each 
� is shown in Figure 3. ���|�� drops swiftly when � increasing 
from 4 to 8 and closes to 0 after � � 9  while ����  grows 
linearly with increasing n. From the ����, ��, the polygon with 
� � 8	 has the minimum total energy and thus is the 
corresponding polygon of the best approximation of the 
building footprint. 
 

 
Figure 3. Energies for different vertex numbers 
 

4. HYBRID RECONSTRUCTION 

4.1 Explicit Reconstruction 

It can be observed that the preliminary boundary is typically 
irregular because key points are the subset of raw boundary 
points. Therefore, a regularization step is often necessary to 
enhance the geometric shape of building footprint, such as 
parallelism and perpendicularity. 
 
A local adjustment is firstly applied on each edge to 
approximate the real direction. Let ( � )*�, *�, … , *�, be the 
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key points of preliminary polygon. The adjusted line �-.,-/  is 
determined by a RANSAC line fitting method using the LiDAR 
points between *� and *�. An example is shown in Figure 4(a). 
Note that angular difference before and after adjustment may 
represent a dramatic difference for some edges. Therefore, 
edges with large direction difference from the preliminary 
polygon (more than 20°), or with small length (less than 2m), 
are eliminated. Thereafter, this approach explores the direction 
relationship among line segments. If the angular difference 
between the potential line and the longest line is close to 0° or 
90°, then the regularity relationship is built as parallelism or 
perpendicularity.  
 
If direction alignment is directly applied to the longest line, the 
quality of the dominant direction is mainly dependent upon the 
local fitting of the longest line. Therefore, global adjustment is 
applied to find the precise dominant direction as well as the 
optimal parameters for each edge. The data fitting error ��0�� 
is used to measure the deviation of points from the fitted line 
segments, and it is expressed as the accumulation of squared 
Euclidean distance between each point and the corresponding 
segment line (Fisher, 2004): 
 
�0� � 	∑ ∑ 2�34

�567 , ��8�3∈�:�:∈; 	 	 	 		(3)	
	
Here, �� is one of long line segments < and 67	is an observation 
on	��. 4�(67 , ��) represents the squared distance of a point 67 to 
its corresponding line, which has an associated measurement 
uncertainty weight 2�3  (Kanatani, 2008). 2�3  is set to 1 if the 
line segment has the direction relationship with the longest line 
segment and to zero otherwise. 
 
In order to minimize �0�  and meanwhile maintain direction 
relationships, an error minimization optimization approach is 
employed. As distinct from the energy function defined in 
Equation 1, where the energy is an accumulation of soft 
constraints from data and from prior knowledge, the direction 
relations are considered as equal hard constraints. The objective 
error function with equal constraints is defined as 
 
=>�(�0�),			? ∈ @A	      (4)    
                                                                                      
where ? is the direction constraint.  @A	 includes parallelism and 
perpendicularity constraints. The well-known non-linear convex 
point approach (Vanderbei and Shanno, 1999) is applied to 
solve the optimization problem. The regularized result of the 
local fitting of building edges in Figure 4(a) is shown in Figure 
4(b). It can be seen that the line segments in Figure 4(b) better 
represent the shape of the building footprint than those in Figure 
4(a). 
 

 
Figure 4. Explicit reconstruction of building footprint: (a) local 
fitting and (b) regularization of remaining line segments 
 
4.2 Implicit Reconstruction 

As shown in the previous section, short line segments have been 
eliminated in the explicit reconstruction. The fitted short line 

segments usually contain only a few LiDAR points, therefore 
they are not reliable to represent a building edge, particularly 
when the density of LiDAR points is not high. The uneven 
distribution of points due to an irregular scanning pattern makes 
the situation even worse. Short segments usually link 
neighbouring long segments. They are referred to as connectors 
in the following and they will again be reconstructed using 
energy minimization. However, since robust features cannot be 
reliably extracted from the limited observations, the connectors 
will be reconstructed implicitly and a different definition of 
energy will be necessary. Three types of connector hypotheses 
are categorized as follows (see also in Figure 5):  
 

a. No additional line: two adjusted line segments are directly 
connected by a line extension to bridge the gap (Figure 
5a). 

b. One additional line: use one line to intersect two fixed 
line segments. The additional line is defined by one 
observation point and a floating direction (Figure 5b). 

c. Two additional lines: use two rays to intersect two fixed 
line segments. The two rays are defined at one 
observation point with two floating directions (Figure 5c) 
 

 
Figure 5. Connector hypotheses: (a) no additional line; (b) one 
additional line and (c) two additional lines 
 
The optimal connector model is also selected by energy 
minimization. Unlike the global energy for polygon selection, in 
Section 3.3, model selection is performed locally on each gap 
and the data observations are the points between the two 
adjacent lines. The data energy is defined as the residuals 
describing the deviation of boundary points from the model. A 
low residual implies more agreement with the hypothesis 
model. To describe the prior energy, both shape complexity and 
smoothness are encoded. Thus, the model energy is extended by 
adding two more smoothness constraints: (1) length of 
additional line (favouring short length), and (2) angle transition 
(preferring right angle). The total energy can be further 
expressed as  
 

<�(�, �) � �
���� 	 
�(B����� 	 CD����C 	 ∑ E∠A����B)    (5) 

 
where � is the area of the bounding box from local observation 
data; C  the extended length of the two line segments; B  the 
number of new added vertices; CD the length of the connector 
model; E∠A  the angle penalty, where E∠A � 0  if H �
90°	�J	180°  and E∠A � 1  otherwise; and 
�  the weight 
coefficient to trade-off between the data term and model term. 
The result of the connection procedure onto the discretized line 
segments of Figure 4(b) is shown in Figure 6. It can be seen that 
the gaps are closed, and the obtained polygon represents well 
the building footprint. At the bottom-right of the footprint, both 
smoothness prior and data fitness drive the two additional lines 
intersecting at the point which is near to the real corner. 
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Figure 6. Watertight building footprint 
 

5. EXPERIMENTS AND DISCUSSION 

This section presents the performance evaluation of the 
developed algorithms for building footprint extraction using 
energy minimization based explicit and implicit reconstruction. 
The criteria for quantitative assessment of performance are first 
introduced. Simulated data with various noise levels was 
initially used to illustrate the robustness of the developed 
approach when compared to the DP method for preliminary 
polygon selection and explicit reconstruction for building 
footprint extraction. Following this, the results from a real 
dataset over a large area are presented. The performance was 
quantitatively evaluated using manually extracted precise 
reference data. 
 
5.1 Criteria for Quality Assessment 

Five evaluation metrics, defined as follows, were used for the 
quantitative evaluation of performance: 
 

− Coverage Error (CE) evaluates how completely the 
approach is able to represent the ground-truth polygon. 
Coverage percentage is expressed as 
 

@� � �����	�
K�	�L	��LLK
K�MK
�����	�
K�	�L	
KLK
K�MK	���NO��     (6) 

 
where the difference analysis between two polygons is 
based on the Vatti clipping algorithm (Vatti, 1992), 
implemented in General Polygon Clipper (GPC) software 
library (http://www.cs.man.ac.uk/~toby/alan/software) 
 

− Root Mean Square Error (RMSE) predicts the deviation of 
the footprint to the data. Let �$ be the number of boundary 
points and   be the squared residual accumulated from all 
boundary points, then the RMSE is defined as 
 

PQC� � R �
�S        (7) 

 
− Direction Difference (DD) measures the difference of the 

principal orientation between the extracted polygon and the 
ground-truth polygon. Given the dominant direction of an 
estimated polygon 4T and the corresponding ground-truth 
dominant direction 4, DD is calculated as 
 
�� � U?�V	(4TW ⋅ 4)       (8) 
 

− Model Complexity Difference (MCD) aims to reflect the 
complexity difference between the derived footprint and 
the ground-truth. Let � and �
 be the number of vertices of 
the derived polygon and reference polygon, respectively, 
then MCD is expressed as 
 

Q@� � RX�Y�Z�Z [
�
       (9) 

 
− Vertex Difference (VD) evaluates the likelihood between 

the derived footprint and the ground-truth. Let J  be the 
residual distance of a vertex of the derived polygon to the 
nearest vertex of the reference polygon, then VD is defined 
as 
 

\� � R��∑ J����                     (10) 

 
5.2 Performance on Simulated Data 

The simulated data were designed to evaluate the developed 
VDP approach for polygon simplification and extraction of 
relevant edges from noise influenced boundary points. Gaussian 
noise with five noise levels (σ � 0.05, 0.1, 0.15, 0.2, 0.25m) 
were added to raw boundary points. Both conventional DP and 
VDP algorithms were applied. Furthermore, the performance of 
explicit reconstruction (Sampath and Shan, 2007) with 
conventional DP and the hybrid reconstruction with VDP 
presented in this paper were evaluated. 
 

 
Figure 7. Comparison of performance under various Gaussian 
noise levels 
 
Figure 7 illustrates the results of DP and VDP for polygonal 
simplification (blue lines). The results of DP and VDP are quite 
similar when the noise level is low. However, DP presents an 
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over-fitting of the preliminary boundary when the noise level is 
high. This is because DP only relies on the local point-to-edge 
distance to locate the key points. As seen in the DP result 
with 	σ � 0.25, noisy vertices were not eliminated in the left 
part of the figure. With the preliminary polygon, explicit 
reconstruction generates an irregular footprint since the rule 
based on angle difference does not work well on noisy 
boundaries. On the other hand, VDP considers the global data 
deviation as well as model complexity to control the key point 
selection. A key point is added to the preliminary polygon only 
when the alleviation of data distortion is larger than the cost of 
introduction of a new vertex. Consequently, the hybrid 
reconstruction based on VDP achieves a regular polygon shape.  
The metric evaluation in Table 1 indicates that the hybrid 
method has a low direction difference as the dominant direction 
is measured by global optimization rather than via local 
adjustment. MCD for both methods increased at a higher level 
of noise.  Explicit reconstruction exhibits an overestimation 
result, while hybrid reconstruction shows a result of 
underestimation. However, the model complexity of the hybrid 
method is closer to the ground truth. In addition, much smaller 
values of vertex difference achieved from VDP approximation 
and hybrid reconstruction suggest better performance than the 
explicit method. 
 

    
CE RMSE DD MCD VD 

    

σ=0.05m 
DP 0.01 0.25 0.04 0.18 0.65 

VDP 0.02 0.24 0.02 0.00 0.42 

σ=0.10m 
DP 0.03 0.31 0.16 0.18 2.67 

VDP 0.04 0.25 0.02 0.00 0.23 

σ=0.15m 
DP 0.08 0.39 0.12 0.09 1.20 

VDP 0.09 0.38 0.03 0.09 0.40 

σ=0.20m 
DP 0.12 0.54 0.21 0.45 3.06 

VDP 0.11 0.44 0.07 0.18 0.52 

σ=0.25m 
DP 0.16 0.59 0.32 0.73 3.26 

VDP 0.14 0.53 0.12 0.27 0.82 
Table 1: Statistical assessment under various Gaussian noise 
levels. 
 
5.3 Performance on Real Data 

Experiments have been conducted over the urban area of 
Eltham, Victoria, Australia. This site, with well vegetated 
rolling terrain, is located northeast of the Melbourne CBD. The 
LiDAR data was collected by an Optech Gemini scanner with 
an average point spacing of ~0.55m. In addition, aerial imagery 
was available for this site and this was employed as an 
independent data source in the evaluation. 
 
The developed approach was applied to the whole dataset, and 
the results of a portion containing 17 buildings, whose reference 
data were available, are presented in Figure 8.  The detected 
building regions shown in Figure 8(a) are indicated by black 
lines overlaid on the hill-shaded DSM image. The small patches 
on dense tree crowns, highlighted by red squares, are falsely 
detected building regions. These are subsequently removed by 
an area-based filtering algorithm. All 17 building regions were 
detected. The results of preliminary extracted polygons and the 
final derived footprints, obtained using the proposed approach, 
are represented in blue and orange, respectively, in Figure 8(b). 
The reference footprints were generated by manual delineation 
with the assistance of aerial photography. These are shown by 
the green polygons in Figure 8(c). 
 
Table 2 shows assessment result for the reconstruction of the 17 
buildings. As indicated in the table, the coverage error is 

relatively high when rooftops are occluded by trees (e.g. b11, 
b16 and b17). Consequently, the vertex difference of these 
buildings is also relatively high. Another factor contributing to 
the vertex difference is the model complexity difference. The 
MCD is caused by either overestimation (e.g. b5 and b9) or 
underestimation (e.g. b7 and b12). The reconstructed footprints 
fit the data typically well as the RMSE is small, in the range of 
0.18-0.77m. The largest RMSE is from b7 because a small 
protrusion in the right side is not reconstructed. For direction 
difference, all reconstruction results show a small deviation to 
the corresponding reference footprints. The small standard 
deviations of all evaluation criteria indicate that the proposed 
method has a reliable and consistent performance. 

 
Figure 8. Building footprint reconstruction: (a) the detected 
buildings, (b) reconstructed footprints and (c) ground truth. 
 

Building CE RMSE DD MCD VD 

b1 0.13 0.21 0.02 0.00 0.29 

b2 0.01 0.18 0.01 0.00 0.48 

b3 0.14 0.53 0.00 0.00 0.43 

b4 0.03 0.53 0.03 0.00 0.38 

b5 0.18 0.63 0.02 0.22 1.94 

b6 0.10 0.49 0.02 0.00 0.57 

b7 0.10 0.77 0.00 0.29 0.77 
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b8 0.14 0.48 0.03 0.09 0.54 

b9 0.18 0.33 0.03 0.14 3.69 

b10 0.04 0.38 0.01 0.27 0.79 

b11 0.24 0.47 0.06 0.00 1.16 

b12 0.11 0.21 0.05 0.00 1.13 

b13 0.00 0.35 0.07 0.00 0.54 

b14 0.05 0.56 0.09 0.22 0.54 

b15 0.01 0.30 0.02 0.00 0.31 

b16 0.24 0.38 0.03 0.00 0.51 

b17 0.22 0.42 0.01 0.29 0.56 

Average 0.11 0.42 0.03 0.09 0.86 

Std 0.08 0.15 0.02 0.12 0.81 

Table 2: Statistical assessment of building footprint 
reconstruction. 
 
5.4 Discussion 

Several factors have an impact on the results of building 
footprint reconstruction. The point density within LiDAR point 
clouds and the sensor scanning pattern directly influence the 
quality of the results. The proposed approach comprises a 
number of processing steps and each has an impact on the 
subsequent processes, and thus on the final results.  An example 
is given in Figure 9, which highlights the difference between the 
boundary of the detected building area, the reconstructed 
footprint and the ground-truth of b9 (c.f. Figure 8). The error is 
caused by misclassification of a low-level building component 
at the lower left corner as ground and this error propagates to 
the boundary of the building outlines, resulting in incorrect 
footprint. 
 

 
Figure 9. Difference between raw boundary and ground truth. 
 
The other challenge is the selection of the proper weight 
parameters 
�  in Eq. 5. In the current implementation, the 
weights are determined manually, by trial and error comparing 
with the reference data, and then the constant 
� � 0.5 is used 
for other buildings. However, the  
�   value is not always 
effective and can lead to incorrect generation of short line 
segments in implicit reconstruction, as shown in b5 and b12 of 
Figure 8. An adaptive 
� is necessary to determine based on the 
local environment. 
 
Nonetheless, these errors can be largely avoided through an 
increase in the point density of the LiDAR data. An example is 
given in Figure 10 where the point spacing is ~0.23m and the 
point density around 4 times that of the data shown in Figure 8. 
It is clear that the building footprints are correctly reconstructed, 
despite their complex structure and varying size. Even small 
structures with extremely short boundary segments are 
accurately reconstructed and modelled.  

 
Figure 10. Footprint reconstruction of complex buildings with 
high density LiDAR data. 
 

6. CONCLUDING REMARKS 

This paper has presented a novel energy minimization based 
method for building footprint extraction from airborne LiDAR 
data. A number of component algorithms have been developed. 
Rather than utilising a pre-defined threshold for polygonal 
simplification, the vertex-driven Douglas-Peucker method has 
been proposed to improve performance. Different forms of 
energy minimization are formulated to determine the optimal 
polygon among various hypotheses, and to bridge gaps between 
consecutive line segments through optimal connectors. In 
summary, the paper has made three principal contributions:  
 

− A combined global energy function encoding data energy 
and prior energy for determination of the best polygonal 
simplification, where the model complexity is controlled 
by the number of vertices obtained from the vertex-driven 
DP algorithm; 

− An explicit reconstruction incorporating geometric 
knowledge of buildings (parallelism and perpendicularity) 
in a global optimization to improve robustness and 
accuracy; and 

− An implicit reconstruction through a connector structure to 
ensure completeness and topological correctness of the 
building polygon. 

 
The proposed approach has been experimentally tested and 
evaluated with both simulated and real data over large urban test 
areas. Quantitative assessment of the resulting building 
footprints against accurate reference data, using various quality 
criteria, has shown that the developed approach displays a high 
level of robustness and reliability. The experiments conducted 
have also shown that even better performance can be achieved 
with LiDAR data of a higher point density. 
 
It is noteworthy that the developed approach assumes that 
building footprints consist of sets of piecewise linear segments. 
While this is true for the majority of buildings, those with 
‘special’ structural characteristics, such as domed and curved 
structures, are not uncommon. Improvement of the current 
approach or development of new methods is warranted to 
accommodate these cases.  
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