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ABSTRACT: 
 
Terrestrial Laser Scanning (TLS) rapidly becomes a primary surveying tool due to its fast acquisition of highly dense three-
dimensional point clouds. For fully utilizing its benefits, developing a robust method to classify many objects of interests from huge 
amounts of laser point clouds is urgently required. Conditional Random Field (CRF) is a well-known discriminative classifier, which 
integrates local appearance of the observation (laser point) with spatial interactions among its neighbouring points in classification 
process. Typical CRFs employ generic label consistency using short-range dependency only, which often causes locality problem. In 
this paper, we present a multi-range and asymmetric Conditional Random Field (CRF) (maCRF), which adopts a priori information 
of scene-layout compatibility addressing long-range dependency. The proposed CRF constructs two graphical models, one for 
enhancing a local labelling smoothness within short-range (srCRF) and the other for favouring a global and asymmetric regularity of 
spatial arrangement between different object classes within long-range (lrCRF). This maCRF classifier assumes two graphical 
models (srCRF and lrCRF) are independent of each other. Final labelling decision was accomplished by probabilistically combining 
prediction results obtained from two CRF models. We validated maCRF’s performance with TLS point clouds acquired from RIEGL 
LMS-Z390i scanner using cross validation. Experiment results demonstrate that synergetic classification improvement can be 
achievable by incorporating two CRF models. 
 
 

1. INTRODUCTION 

Terrestrial Laser Scanning (TLS) is a relatively new surveying 
tool, but has been rapidly adopted for modelling urban street 
scenes. TLS captures a scene by directing laser pulses in various 
directions at a constant scanning rate. Thus, resulting laser point 
clouds are collected as a horizontal or vertical line profile per 
scan angle. One of the main applications of TLS is to assess 
“as-is” condition of key infrastructures in urban environment 
and identify their potential risks by comparing it with “as-built” 
condition. For rapidly responding to risks, it is urgently required 
to develop fully automated and robust classification algorithm. 
However, classifying such complex urban scenes from huge 
amount of TLS point clouds still remains as a challenging 
vision task. 
 
Classification is the problem of identifying corresponding 
object class that belongs to an “entity” (e.g., point, line and 
plane in laser point space) with given observations (“features”). 
A typical approach to the classification problem is to identify a 
target object by only relying on local apparent features 
differentiating the object from the others. However, this naïve 
method often causes classification errors due to ambiguities in 
appearance among classes in varying vision conditions. To 
address this problem, it has been well adopted to consider 
imposing contextual constraint between adjacent entities on the 
classification problem. Conditional Random Field (CRF) is a 
well-known statistical modelling method that enables directly 
modelling of the posterior probability of object classes for each 
entity with given global observations. CRF formulates not only 
dependencies between the entities and their features, but also 
relational context between adjacent entities in an associated 
graphical model. CRF often uses the smoothness prior as the 

relational context to maximize the label homogeneity between 
adjacent entities. However, this “smoothness-only” relational 
encoding scheme is prone to produce classification errors, 
especially over heterogeneous objects with similar appearances.  
 
In this study, we exploit another type of the relational constraint, 
that is, the regularity of spatial arrangement between adjacent 
objects in CRF model. The regularity of spatial arrangement is a 
global prior knowledge on scene-layout among key urban 
objects. For instance, the pedestrian roads are usually placed 
below building façades or trees, while trees or lamp post are 
placed closer to vehicle roads than building facades. Our CRF 
model (maCRF) incorporates such scene-layout compatible 
priors into interaction potential for regulating a configuration of 
spatial arrangement in pairwise object relation. In particular, we 
adopt an asymmetric dependency capturing directional spatial 
arrangement between pairwise objects (e.g. it allows ground is 
lower than building, not vice-versa).  
 
Typical CRF only works locally as it emphasizes on local label 
consistency, not capturing its global properties. To overcome 
this locality problem, we constructs two graphical models, one 
for enhancing a local consistency over labels connected within 
short-range dense graphical model (srCRF) and the other for 
favouring a global regularity of spatial arrangement between 
different object classes that is structured within a sparse long-
range graphical model (lrCRF). A label prediction was 
conducted using two graphical models separately. However, 
final classification was accomplished by combining their label 
prediction results. This ensemble classification system 
synergistically compensates the limitations caused by srCRF 
(“over-smoothing”) and lrCRF (“under-smoothing) respectively. 
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An ultimate goal of the proposed method is to process laser 
point clouds scan-by-scan following TLS’s natural scanning 
pattern. We selected the line primitive as the entity for 
constructing maCRF. Thus, a set of line segments and its 
feature vectors were extracted from each scan profile acquired 
by TLS. The graphical models (srCRF and lrCRF) were 
constructed on extracted line segments per each scan profile. 
The maCRF combined the label decisions from two graphical 
models and finally identifies corresponding labels to individual 
line segments and thus to their member points.  
 
The paper outlines following sections: Section 2 introduces 
previous works related to context-based classification. In 
Section 3, we describe details of data pre-processing, such as 
line segmentation per scan profile and feature extraction. Then, 
we present the methodology for implementing maCRF in 
Section 4 and discuss our experimental results in Section 5. 
Finally, we draw our conclusions and give an outlook of future 
works in Section 6. 
 

2. RELATED WORK 

Classification methods can be categorised into three different 
groups according to the entity used for constructing the spatial 
structure: point-based (Triebel, et al, 2006; Munoz et al, 2008), 
line-based (Zhao et al., 2010; Hu and Ye, 2013) and surface-
based (Belton and Lichti, 2007; Pu and Vosselman, 2009). Point 
based method operates classification directly on individual laser 
points using feature vector extracted from its local neighbours. 
While, surface-based approach firstly segments the laser point 
clouds into homogeneous surface segments and then label them 
based on their feature vectors. Both point-based and surface-
based classification methods are typically implemented in 3D 
volumetric space. This typically requires computationally 
expensive process for constructing relational network from 
massive individual points or segmenting large amount of laser 
point clouds into surfaces.  
 
Besides the points and surfaces, the appearance of objects can 
be also characterized using lines. It is rather straightforward to 
extract lines and construct relational graph per scan line. This 
advantage brings the benefits to improve computational 
efficiency (Jiang and Bunke, 1994). Much research efforts have 
been made to use the line primitives for classification purpose. 
Sithole and Vosselman (2003) detected urban objects by 
segmenting laser point clouds into two families of orthogonal 
profiles running along x and y direction and interpreting their 
properties. Similarly Hu and Ye (2013) used Douglas–Peucker 
algorithm to segment laser scan profile into a set of line 
segments and classified them into buildings and vegetation 
based on a rule-based local analysis of line attributes. Zhao et 
al. (2010) collected data using single-row laser scanner segment 
and extracted line segments within each scan line for 
characterizing building and roads. Then these line segments 
were classified using Markov network. In this study, we used a 
line extraction algorithm similar to (Manandhar and Shibasaki, 
2001). Firstly, entire TLS data was split into a set of vertical 
scan profiles. Then each scan profile was decomposed into a set 
of line segments based on range analysis. The classification task 
finally labels these line segments.  
 
Local classifiers label individual entity by only considering its 
apparent features. This approach is prone to produce 
classification errors due to the ambiguities in the appearance of 
the laser data. Contextual classifier can compensate the 
limitation of local classifiers by introducing label interaction 
among the neighboring entities. Markov Random Fields (MRF) 

is one of the most popular graphical models to incorporate local 
contextual constraints into labeling problems (Cross and Jain, 
1983). It has been used to exploit relationships among laser 
points and been proved to be able to make smoother and more 
consistent classification result (Anguelov et al., 2005). However, 
with the assumption of conditional independence of the data, the 
interaction term between each pair of neighboring nodes in 
MRF is restricted to only the class labels and thus it is likely to 
produce over-smooth classification result. By capturing spatial 
dependencies in labels and observed data simultaneously, 
MRF’s limitation can be overcome by Conditional Random 
Fields (Kumar and Hebert, 2006). CRFs provide discriminative 
framework that allows interaction potential term conditioned on 
class label as well as global observations data. 
 
Recently, many works on classifying laser point clouds using 
CRFs have been reported. Munoz et al. (2008) improved the 
results of associate MRF by utilizing accurate pairwise 
potentials. Shapovalov et al. (2010) and Niemeyer et al. (2014) 
demonstrated that CRF can improve classification results over 
urban areas by augmenting pairwise label consistency between 
adjacent data using airborne laser point clouds. However, those 
CRFs still could mislead over-smoothed labelling configuration 
since they rely only on short-range context. Targeting on this 
problem, He et al. (2004) proposed a multi-scale CRF model, 
which encodes long-range dependency by applying pairwise 
relationships at multi-scale image data. They combined local 
classifier with contextual information retrieved from local 
region to global scale (entire image) into a single probabilistic 
model. Lim and Suter (2009) presented CRF for classifying 
laser point clouds using multi-scale super-voxels by enhancing 
label consistency not only within each voxel (local), but also 
across neighbouring voxels (global). Yang and Förstner (2011) 
presented a hierarchical CRF, in which label inference was 
conducted across segmented imageries generated at different 
scales using multi-scale mean shift algorithm.  
 
In addition to the role of context, spatial arrangement among 
object components adds a significant contribution to the 
perception of the multi-object classification (Bar and Ullman, 
1996). With information about the probable location of objects 
in the scene and relative location relations among objects, the 
classifier with spatial arrangement helps decrease the risk of 
misclassification. Gould, et al. (2008) directly modelled spatial 
relationship by learning the relative locations between classes 
from a set of labelled images. The inter-class spatial relationship 
was modelled using non-parametric relative location maps. In 
our study, we exploited a vertical spatial arrangement between 
adjacent objects (i.e., “above-and-below” relation) captured in 
long-range context. This implicit regularity in spatial 
arrangement was modelled as asymmetric pairwise interaction 
in a probabilistic manner. 
 

3. LINE-BASED FEATURE EXTRACTION 

3.1 Line Segment Extraction 

Our ultimate goal is to apply the proposed method to a real-time 
application, in which classification result is generated per 
scanned line profile. Thus, prior to the primitive extraction, we 
split the entire TLS data into a set of vertical scan profiles. This 
task was simply achieved using a priori knowledge on TLS’s 
scanning angle precision (i.e., 0.05 degree). The interval 
between vertical scan profiles is 0.05 degree at azimuth angle.   
 
Most of urban objects have apparent shapes which are well 
characterized with line primitives. Once the scan profiles were 
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detected, line segments were extracted per scan profile as the 
spatial entity used for classification process. Similar to the work 
suggested by Manandhar and Shibasaki (2001), line segments 
were extracted per scan profile based on range analysis as the 
spatial entity used for classification process. One can find more 
detailed description of scan profile generation and line 
segmentation algorithm used in our previous study (Luo and 
Sohn, 2013). Figure 1(a) shows laser points in a vertical scan 
profile and Figure 1(b) shows the result of line segments 
extraction.  
 

 
Figure 1.Line segment extraction: (a) laser point in scan profile 

(b) line segment extraction result. 
 
3.2 Feature Extraction 

Once the line segments extraction was conducted, seven local 
features were extracted for each line segment. The features 
include: 1) maximum height (z); 2) minimum height (z); 3) 
mean height (z). In addition, all the points belong to the same 
line segment were fit into one straight line using linear 
regression. And the following four features are extracted based 
on the fitted line. 4) length (maximum extension in the major 
direction); 5) mean absolute residual; 6) standard deviation of 
residual; and 7) orientation (angle between the fitted line and z 
axis). The extracted features characterize local appearance of a 
line segment.  
 
While, context features characterize grouping property of a line 
segment of interest and its surrounding neighbours. In our 
study, two neighbouring systems were used for extracting 
context features; circle-based (Figure 2(a)) and vertical column-
based neighbouring system (Figure 2(b)). As illustrated in 
Figure 2(a), a circle with 1m radius was created at the centre of 
a line centroid (black dot). Lines which centroids fall inside the 
circle (both red and pink dots in Figure 2(a)) are considered as 
neighbours of the current line of interest. Moreover, further 
constraint on orientation similarity makes another type of 
neighbour: neighbouring lines with similar orientation (red dots 
in Figure 2(a)).And ones with dissimilar orientation (pink dots 
in Figure 2(a)) were excluded.. Here we set the orientation 
similarity constraint as that included angle between two lines is 
smaller than 30 degree.  
 
Figure 2(b) shows our vertical column-based neighbouring 
system. A scan profile was discretized into a set of non-
overlapping vertical subspaces (rectangle area between dotted 
blue lines) with 0.5m width in Figure 2(b). Then, neighbouring 
lines were searched within a vertical column (blue filled area) 
where current line falls into. Similar to circle-based 
neighbouring system, context features with or without 
considering orientation similarity were extracted. 
 
Once two neighbouring systems were generated for a line 
segment, seven context features were obtained. These include: 

1) maximum z; 2) sum of line length. Points belong to the line 
and its surrounding neighbours were fitted into one straight line 
and the following three features are extracted from the fitted 
line: 3) mean residual; 4) standard deviation; 5) orientation 
(angle between the fitted line and z axis). The other two feature 
are: 6) point density (point number in the line group) and 7) line 
density (line number in the line group). Therefore, four types of 
neighbourhood systems produced total 28 context features. 
 

 
Figure 2. Neighborhood selection for context feature. 

 
3.3 Feature Dimension Reduction  

Total thirty-five features (7 appearance features and 28 context 
features) were extracted as described in the previous section. 
However, high-dimensional feature often causes negative 
effects for classification such as producing highly correlated 
features and high computational complexity. To avoid these 
problems, we applied principle component analysis (PCA) to 
reduce the feature dimensionality. By adopting the cumulative 
energy (90%) criteria proposed by Krzanowski (2000), we 
finally we transformed features with the eight largest eigen-
values selected for classification.  
 

4. MULTISCALE ASYMMETRIC CONDITIONAL 
RANDOM FIELD  

We propose a multi-range and asymmetric Conditional Random 
Field (maCRF) model for classifying TLS point clouds. maCRF 
is developed to incorporate three primary aspects of contextual 
inference in a graphical model: 1) maximising the smoothness 
between short-range nodes, 2) maximizing the regularity of 
spatial dependency between objects in long range nodes and 3) 
considering asymmetric properties of spatial arrangement 
regularity. In this study, it is assumed that two graphical models 
(short-range and long-range) are independent of each other. 
Thus, label predictions from two CRF models were separately 
performed and final conditional probability was accomplished 
by combining their prediction results. 
 
In this research, it is noted that the classification was 
implemented per scan profile and so relationship across scale 
profiles was not considered yet. Supposing that a certain scan 
line has N line segments and X={x1, x2, …xN} are feature vectors 
extracted for each line segment. We aim to classify seven object 
classes, which are defined as hidden variable Y={roof, building, 
vehicle road (VR), pedestrian road (PR), tree, low vegetation 
(LV), low man-made objects (LMO). maCRF model is 
constructed by combining short range CRF(srCRF) and long 
range CRF (lrCRF), as shown in Figure3. The mathematical 
model is given in Equation1. 
 

)|()|()|( XYPXYPXYP LSM =  
 
where PM(Y|X), PS(Y|X) and PL(Y|X), represent the conditional 
probability of maCRF, srCRF and lrCRF respectively. 

(a) (b) 

Current line  
Searching neighbor 
in the circle space 
Neighbors having 
similar orientation 
Neighbors having 
dissimilar orientation  
 Non-neighboring lines 

Searching neighbor 
in the vertical space 
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similar orientation 
Neighbors having 
dissimilar orientation  
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Figure 3. maCRF with short (red) and long (blue) edges. 

 
4.1 Short-range CRF model 

4.1.1   Graphical Model  
 
Let GS = (V, ES) be a short range graph, each of which node, v∈
V represents a line segment (centroid of a line) extracted from 
one scan profile. Its node adjacency relation, eS ∈ ES was 
constructed between two nodes if their distance is smaller than 
certain distance threshold (e.g., 1 m). A red edge shown in 
Figure 3 is considered as short-range edge. It is noted that, 
contrast to a graph model represented in image space, our line-
based graph does not follow a regular grid pattern. 
 
Given the fundamental theorem of random fields, the 
conditional distribution over the labels Y given observed data X 
in the graph Gs is defined in Equation 2. 
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Where Ai(X, yi) is the association potential, which measures 
how likely class label yi is assigned to a single node i given 
global observations X without considering a relational regularity 
(interaction) with other nodes. Sij(yi, yj) is the short range 
potential and measures how the labels at neighbouring nodes (yi, 
yj) interact given the observation X. ZS is the normalization term 
(partition function), which is always computed using a forward-
backward algorithm. 
 
4.1.2   Association Term 
 
The associate potential term in Equation 2 corresponds to a log 
posterior probability. Theoretically, the posterior probability of 
any local classifier can be used, and here we use Gaussian 
Mixture Model-Expectation Maximization (GMM-EM) 
classifier: 
 

))|(log())|(log(),( iiiiii yxPxyPyXA ∝=  
 
where i indicates a line segment. Since we assume that each 
class has equal prior probability, posterior probability P(yi | xi) is 
proportional with class-conditional probability P(xi | yi). Due to 
the complexity of urban objects, the actual probability density 
function is a multimodal and fails to be fit well with single 
Gaussian model. Therefore, the mixture Gaussian 
approximation is a quite reasonable method to model likelihood, 
which is expressed as follows: 
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where                      is the Gaussian mixture component, αm is 
the corresponding weight, and M indicates the number of 
mixture components. The value of αm ranges from 0 to 1 for all 
components, and the sum of αm equals 1. The parameters   

},...,,,...,,,...,{ 111 mmm ΣΣµµαα define the Gaussian mixture 
probability density function. To estimate the parameters of the 
Gaussians Mixture model, the classic Expectation Maximization 
(EM) algorithm was used. In this research, we use a uniform 
component value of three for all class-conditional probabilities. 
 
4.1.3   Short-range Interaction Term 
 
The short-range interaction term enforces a smoothness 
constraint to local neighbourhood. The homogeneous Ising 
model (Potts model for multiclass labelling problem) proposed 
by (Cross and Jain, 1983) is a popular way to model this 
interaction term. However, it only enforces a constant 
smoothing of labels and fails to capture dependencies based on 
observations. Thus, we adopted a generalized linear model 
(GLM) to formulate the short-range interaction potential. For 
each edge connecting two nodes i and j, the interaction potential 
is expressed with a generalized linear function over edge feature 
vector μij(x) as below: 
 

)(),,( , xwkylyxS ij
T

kljiij µ===  
 
In Equation 5, the interaction energy was designed to encourage 
right configuration of (yi, yj) and penalize the wrong label 
configuration. The degree of penalization depends on the edge 
feature vector μij and weight vector v, which is learned from 
training sample. It is assumed that objects have similar node 
features are more likely to have the same label. Here, the edge 
features μij(x) is generated by subtracting node features of two 
neighbouring lines ( μij(x)= xi - xj ). 
 
Standard CRFs assume that clique potential functions are 
symmetric and do not change with the position of a node on the 
edge. Therefore, it often fails to model directional compatibility 
between labels. For example, symmetric potential can model the 
relationship that roof and building are adjacent but fail to model 
the directional relationship that roof is on the top of building 
when they are adjacent. The asymmetric interaction potential 
used here can model this kind of directional relationship. 
 
We can see from Equation 5 that interaction potential design 
makes the potential flow from i to j different with that following 
from opposite direction Sij (x, yi=l, yj=k ) ≠ Sji (x, yj=l, yi=k ), 
because wT 

l,k (xi - xj) ≠ wT 
l,k (xj - xi). This asymmetric potential 

design corresponds to directed edges in the graph. For example, 
given the condition that x represents height information, l is roof 
and k is building, when xi-xj is negative, the potential design will 
encourage yi=k, yj=l but penalize yi=l, yj=k.  
 
4.2 Long-range CRF model  

4.2.1   Graph Model 
 
Let GL = (V, EL) be a long-range graph over line segments. Each 
line segment is regards as one node in GL. The method we use 
to construct a sparse long range graph is similar with (Li and 
Huttenlocher, 2008). In current study, we consider a spatial 
arrangement between adjacent objects only in vertical direction, 
“above-and-below” relation. Thus a line segment finds its 
neighbours upward and downward in relation to current node as 
shown in Figure 3. A scan profile was discretized into a set of 
non-overlapping vertical subspaces (rectangle area between 
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dotted blue lines) with 0.5m width in Figure 3. Long range 
neighbouring nodes were searched in a vertical subspace (blue 
filled area) where current node falls into. After excluding those 
nodes captured within 1 meter away, nodes with the first and 
second nearest (both upward and downward) were selected as 
its long range neighbours. Thus, the maximum number of long 
range neighbours corresponds to four (2 upward and 2 
downward). Please note that some nodes may not have any long 
range neighbours. The conditional distribution over labels Y 
given observed data X in GL can be now defined as below: 
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where Ai(X, yi) is the association potential, similar with short 
range potential. Lij(X, yi, yj) is the long range potential that 
penalizes compatibility of spatial arrangement between labels of 
neighbouring nodes. Since the short range and long range CRF 
model share the same association term, this part will not be 
introduced again. ZL is the normalization term. 
 
4.2.2   Long-range Interaction Term 
 
The long-range dependency can be formulated using Bayesian 
rule, which is described in Equation 7.  
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where(yi, yj) is a pair of lines forming an edge in GL; yabove is 
defined if one of (yi, yj) is placed higher than the other, 
otherwise as ybelow.  
 
Equation 7 estimates the probability of yabove labelled as l, given 
edge feature uij and ybelow labelled as k. In Equation 7, P (yabove= 
l, ybellow=k) models a co-occurrence rate of class l that is placed 
above class k. This prior was calculated over all label pairs, 
which represents a priori knowledge of spatial arrangements 
between object pairs. This statistically-derived knowledge was 
formed in a look-up table shown in Figure 4(a). The likelihood 
in Equation7 is the probability distribution of edge feature uij 
given a configuration of that class l is above class k. The edge 
feature uij = {|hi-hj|,|oi-oj|, |li-lj|}, h, height; o, orientation; l, 
length. We assumed that the likelihood follows a multivariate 
Gaussian distribution (mean vector: μl,k; covariance matrix Σl,k) 
described in Equation 8. The normalization term is a marginal 
probability over yabove. Figure 4(b) give an example of 
probability distribution of height difference when one low man-
made object (LMO) is bellows other objects. The x axis 
represents value of height difference. 
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We use asymmetric pairwise interactive potential to reflect the 
spatial arrangement between adjacent (long range) objects. 
From Equation 7 we can see that logP(yabove= l, ybellow=k | uij)≠ 
logP(yabove= k, ybellow=l | uij),which made asymmetric long range 
potential Lij(x, yi, yj) ≠ Lji (x, yj, yi). For example, given the 
condition that node i is above node j, the asymmetric potential 
encourages yi= building, yj= LMO but penalizes yj=building, 

yi= LMO. 
 

 
Figure 4. (a) Look-up table and (b) probability distribution of 
height difference when LMO is placed below the other objects.  
 
4.3 Parameters Learning 

Since srCRF and lrCRF are independent of each other, their 
parameters are separately learnt. In srCRF, the parameter 
learning is divided into two stages. At the first stage, GMM’s 
parameters were learned using EM algorithm. Once it was done, 
the posterior probabilities of GMM-EM classifier were used as 
the association term in Equation 3. Since lrCRF shares the same 
association term with srCRF, GMM’s parameters can be shared. 
 
Maximum likelihood is often used for estimating parameters by 
differentiating the likelihood function with respect to parameter. 
However, it is not possible to estimate parameter directly in 
CRFs by maximizing the log-likelihood, because it does not 
always yield a closed form solution. Gradient based method is 
an optimal option. An advanced Gradient based method for 
CRFs is limited memory Broyden-Fletcher-Goldfarb-Shanno 
(L-BFGS) method, which uses a limited memory to 
approximate the inverse Hessian matrix, the detail of which can 
be check in (Liu and Nocedal, 1989). However, the batch-only 
algorithm is wasteful when the training data consist of large and 
redundant data sets. Instead of updating parameters until they 
have scanned the entire training set, stochastic gradient descent 
(SGD) takes a small step in the direction given by the gradient 
for that instance only and so it converges faster. To make a 
balance between convergence quality and speed, Vishwanathan 
et al. (2006) proposed a stochastic gradient method to CRFs, 
which is also used to estimate parameters in our srCRF model. 
The last step is to estimate the parameters in long range 
interaction term (Equation 7). The look-up table was created 
from frequency statistics of co-occurrence over labels. 
Parameters in Equation 8 were estimated using Maximum 
Likelihood (ML).  
 
4.4 Inference  

Both of short-range and long- range graphs have cyclic structure 
and so exact inference over cyclic graph is an intractable 
problem. Loopy belief propagation (LBP) is an exact 
approximation solution for graphs with cycles (Murphy et al., 
1999). Computing an approximate gradient using LBP, and 
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(b) 

(6) 

(7) 

(8) 
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learning CRF model parameters using stochastic gradient-based 
optimization method, has been approved to work well in 
Vishwanathan et al. (2006). Given estimated CRF parameters, 
labelling inference was conducted separately in short range 
graph and long range graph using LBP. The conditional 
probability of maCRF model is the product of prediction of 
srCRF and lrCRF models. The final decision was made using 
Maximum a Posterior Probability (MAP) decision rule. 
 

5 EXPERIMENT 

5.1 Dataset 

The performance of our proposed classification method 
(maCRF) was evaluated with TLS data. The data set was 
collected by RIEGL LMS-Z390i at two different sites (Site A 
and Site B) located in Kidd Terrace, Toronto. The datasets show 
typical residential street scenes where both semi- and detached 
houses are densely built. Two sites contain our seven targeted 
object classes, which include building, roof, tree, low 
vegetation, low man-made objects (LMO), pedestrian road and 
vehicle road. Figure 5 shows manually labelled references of the 
two dataset. 
 

 
Figure 5. Ground truth of the Site A (a) and Site B (b). 

 
Table 1 summarizes the total number of spatial entities used for 
constructing CRFs: laser points, scan profiles, line segments 
and edges used in two graphical models of srCRF and lrCRF for 
classifying TLS data.   
 

 
Tabel 1. Total number of the entities: laser point, scan profiles, 

line segments and edges used in srCRF and lrCRF. 
 
To evaluate the importance of multi-range interactions, we 
conducted a comparative analysis of classification results 
obtained from four different classifiers: 1) GMM-EM (local 
classifier without contextual label interactions); and CRF 
models 2) with short-range interaction (srCRF), 3) with long-
range interaction (lrCRF) and 4) with both short-range and 
long-range interactions (maCRF). The two-fold cross validation 
was used for measuring respective classification performance. 

For each classifier, the model parameters were learnt using one 
of the datasets, while the other site was used for testing the 
trained model. The classification performance was measured on 
each site and then averaged over both sites. The classification 
accuracy was estimated on line segment level, not point level. 
First, the ground truth of target object per laser point was 
manually labelled for evaluating the performance of respective 
classifiers. Then, the ground truth of line segments extracted 
was labelled according to the majority vote of labelling results 
of its member points. 
 
5.2 Qualitative Evaluation 

Figure 6 presents classification results of Site B obtained from 
four classifiers. We observed that context-based classifiers 
(srCRF, lrCRF and maCRF) shows better classification 
performance compared to local classifier (GMM-EM). It is clear 
to see that GMM-EM produced very noisy prediction results. 
Compared to GMM-EM, we confirmed that srCRF produced 
much “smoothed” classification results within individual 
objects, especially over building façade and trees (Figure 6(b)). 
As shown in Figure 6(c), lrCRF rectified local classification 
errors caused by srCRF (e.g., the roof below building and tree 
inside façade). This fact implies the scene-layout compatibility 
augmented by long-range contest works well. Finally, we can 
observe that maCRF shows slightly better classification results 
compared to lrCRF.   
  

 
Figure 6. Classification results of Site B: (a) GMM-EM, (b) 

srCRF, (c) lrCRF and (d) maCRF. 

 Site A Site B 
laser points 3,294,337 3,087,301 
scan profiles 2,810 2,580 

 line segments 105,620 100,648 
edges in srCRF 260,579 277,584 
edges in lrCRF 158,276 156,023 

(d) 

(c) 

(b) 

(a) 

(a) 

(b) 
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For further investigation of respective classification 
performance of four classifiers, we arbitrarily selected one scan 
profile and visualized its labelling results as shown in Figure 7. 
It is clear to conclude that maCRF model yielded the most 
accurate classification results and produced significant 
improvement compared to the other classifiers. In Figure 7(a), 
GMM-EM produced the largest commission errors between 
pairwise classes, which include: building-tree, building-LMO 
and tree-LMO. However, Figure 7(b) shows some portion of 
those commission errors were rectified by srCRF through 
enforcing local label consistency among adjacent entities. 
However, this short-range interaction enhances a local 
smoothness only, but did not work effectively to guarantee 
global spatial arrangement. For instance, srCRF still produced 
classification errors, which do not follow common scene-layout 
compatibility such as: “trees are not placed within building 
façade” or “buildings are not placed at the treetops” (Figure 
7(b)). As explained in Section 3, lrCRF model made constraints 
on global spatial arrangement by considering long-range 
interactions of line segments. Figure 7(c) suggests that lrCRF 
enables rectifying spatial arrangement errors in vertical 
direction, but failed to correct local inconsistence in short -range 
interaction. Two CRF models (srCRF and lrCRF) showed their 
respective benefits and limitations. By considering local 
smoothness and global spatial arrangement together, the 
combined maCRF model produced the most accurate 
classification results (Figure 5 (d)). 
 

 
Figure 7. Per-line classification results of Site B: (a) GMM-EM 
classifier, (b) srCRF, (c) lrCRF, (d) maCRF and (e) ground truth. 
 
5.3 Quantitative Evaluation 

To quantitatively evaluate classification results, confusion 
matrices were computed for four classifiers. Based on the 
confusion matrices, the overall classification accuracy (i.e., 
precision and recall) were computed. The overall accuracy of 
four methods on each folder is presented in Table 2. We 
observed an obvious advantage of the contextual information; 
all three contextual classifiers showed higher accuracy than the 
GMM-EM classifier. lrCRF demonstrated better performance 
than srCRF. By combing the short range and long range 
interaction, maCRF improved its classification accuracy by 

6.77% compared with GMM-EM. While the overall accuracy 
indicates the classification performance averaged over all the 
classes, the precision and recall evaluate the performance of a 
classifier per single class. In case of building class, the precision 
measures the percentage of lines that are correctly classified as 
building as a ratio of all the objects that truly be building (Table 
3). The recall describes what proportion of lines that should be 
classified as building is in fact classified as building (Table 4). 
 

 
Tabel 2. The overall classification accuracy of four methods. 

 
In Table 3, we can observe that maCRF has positive effects on 
the precision of all classes. Building and tree classes benefit 
most from multi-range context since enforcing the spatial 
arrangement largely can rectify relational errors (e.g., building 
on the top of tree, or tree in the building). From Table 4, we can 
also observe that maCRF positively contributed on the recall of 
all classes. The recall measure over the roof class was improved 
by 10% since maCRF enforced the scene-layout compatibility 
so that roof is likely to be labelled if they are located above the 
building classes.  
 

Table 3. Precision of each class in four methods. 
 

Table 4. Recall of each class in four methods. 
 

5. CONCLUSION 

In this study, we address the problem of incorporating context 
constraint in TLS point clouds classification. A new multi-range 
and asymmetric CRF model (maCRF) was proposed to 
explicitly model the scene-layout compatibility with respect to a 
long-range dependency. maCRF constructs two independent 
graphical models, short-range (srCRF) for enhancing a local 
labelling smoothness, while long-range (lrCRF) for imposing a 
global and asymmetric regularity on spatial arrangement 
between different object classes. Therefore, the maCRF is 
expected to combine local smoothness and global scene-layout 
compatibility together. To evaluate the importance of multi-
range interactions, classification performance of GMM-EM and 
srCRF, lrCRF and maCRF were comparatively evaluated. 
Experimental results show that context-based classifiers 

 Site A Site B Averaged 
GMM-EM 78.79 79.53 79.16 

srCRF 81.77 81.34 81.56 
lrCRF 85.97 84.72 85.35 

maCRF 86.71 85.14 85.93 

 GMM-EM srCRF lrCRF maCRF 
Building 84.12 89.35 91.01 92.28 

Roof 81.39 72.56 85.20 81.48 
PR 74.10 80.19 76.06 79.17 

Tree 78.73 67.33 93.29 91.48 
LMO 68.75 68.10 77.75 76.30 
VR 91.27 91.35 91.94 91.86 
LV 70.36 77.85 76.10 76.23 

 GMM-EM srCRF lrCRF maCRF 
Building 92.90 90.24 94.49 94.08 

Roof 59.61 65.43 65.11 69.01 
PR 89.42 85.43 91.21 89.86 

Tree 61.62 77.35 80.37 83.45 
LMO 64.95 68.90 74.01 75.13 
VR 87.44 87.55 87.84 88.56 
LV 62.38 66.88 72.80 72.82 

(a) (b) 

(c) (d) 

(e) 
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(srCRF, lrCRF and maCRF) have better classification 
performance than local classifier (GMM-EM). Moreover, 
maCRF is slightly better than individual srCRF and lrCRF, 
which validates the advantages of multi range context 
constraints. In our future research, we will extend the concept of 
the long-range dependency to horizontal direction. Furthermore, 
multi-range contexts will be integrated in the same graphical 
model, rather than independently. In addition to the multi-range 
context, we also will exploit the benefit of multi-scale context.  
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