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ABSTRACT:

In this paper, we present a fully automatic approach to localize the outlines of facade objects (windows and doors) in 3D point clouds
of facades. We introduce an approach to search for the main facade wall and locate the facade objects within a probabilistic framework.
Our search routine is based on Monte Carlo Simulation (MC-Simulation). Templates containing control points of curves are used to
approximate the possible shapes of windows and doors. These are interpolated using parametric B-spline curves. These templates
are scored in a sliding window style over the entire facade using a likelihood function in a probabilistic matching procedure. This
produces many competing results for which a two layered model selection based on Bayes factor is applied. A major thrust in our work
is the introduction of a 2D shape-space of similar shapes under affine transform in this architectural scene. This transforms the initial
parametric B-splines curves representing the outlines of objects to curves of affine similarity in a strongly reduced dimensionality thus
facilitating the generation of competing hypotheses within the search space. A further computational speedup is achieved through the
clustering of the search space to disjoint regions, thus enabling a parallel implementation. We obtain state-of-the results on self-acquired
data sets. The robustness of our algorithm is evaluated on 3D point clouds from image matching and LiDAR data of diverse quality.

1 INTRODUCTION

The modeling of architectural scenes is a very busy research topic
and can be viewed from very different perspectives: The nature
of the data (images vs. LiDAR, aerial vs. terrestrial), its scale
(building vs. city), or its purpose, e.g., cultural heritage, construc-
tion planning or touristic applications. Consequently, the em-
ployed methodologies also differ. For examples, Lin et al. (2013)
concentrate on fast data processing methods to reconstruct subur-
ban areas from a mobile mapping system using LiDAR, Lafarge
and Mallet (2012) derive a scene representation at city-scale in
which simple surfaces are modeled by geometric primitives, and
complex structures are represented by a triangular mesh. While
Friedman and Stamos (2013) focus on repetitive structures of
modern buildings, Brandenburger et al. (2013) extract ornamental
details from images of historical facades.

Since man-made objects like buildings show a rich diversity in
size, shape, or style, all approaches for reconstructing, approxi-
mating or interpreting such data have to deal with model selec-
tion, i.e., methods for fitting and comparing competing models to
the acquired data are employed. If scenes are only coarsely mod-
eled, the presentation of the approaches often concentrate on data
representation, e.g., (Lafarge and Mallet, 2012), or the focus of
the publication lies on the modeling of domain knowledge or its
transfer during the data analysis, e.g., (Becker and Haala, 2008;
Friedman and Stamos, 2013; Lin et al., 2013). The model selec-
tion is often only sketched. In contrast, when modeling smaller
structures, often several models roughly fit to the data. Then in
this case model selection methods are often discussed to demon-
strate the plausibility of the model refinements, e.g., (Alegre and
Dellaert, 2004; Dick et al., 2004; Brandenburger et al., 2013).

Which model fits best to the data? This is a very old and philo-
sophical question. Already in the 14th century, William of Ock-

ham stated that it is better to choose a simple model than a com-
plex one. This principle is known as Occam’s razor. Since this
judgement is sensible, many modern model selection approaches
in computer sciences consider both, the closeness of the model
to the data, and the model complexity. E.g., Akaike (1973) de-
rived his selection criterion from information theory, and Ris-
sanen (1987) proposed the minimum description length (MDL)
principle for choosing the best model, i.e., he evaluates its size
for representation.

A probabilistic view on model selection is proposed by Ale-
gre and Dellaert (2004) who interpret a rectified facade im-
age by its stepwise division in meaningful parts of rectangular
shape. The segmented parts are interpreted by a Bayesian gener-
ative model which was constructed from a context-free grammar.
Markov Chain Monte Carlo (MCMC) sampling is employed to
derive posterior probabilities for each part. Another probabilistic
Bayesian framework is proposed by Dick et al. (2004) who use
one complex model for windows of several shapes, e.g., with arch
height and bevels on the one hand, and various priors, e.g., on ob-
ject shape and position on the other hand. The evaluation is based
on likelihoods derived from image intensities of backprojected fa-
cade objects. Besides the high complexity of the MCMC-based
search for facade objects, the approach has another deficit regard-
ing the assumption on normalized illumination condition and a
uniform material characteristic of each object. In probabilistic
approaches, model complexity is considered when defining like-
lihood terms, e.g., (Dick et al., 2004), or in the probabilities for
jumps of the reversible jump Markov Chain Monte Carlo (1jM-
CMC) framework, e.g., (Ripperda and Brenner, 2006).

In photogrammetric research, several approaches achieve satis-
fying results for detecting rectangular doors and windows. For
instance Becker and Haala (2008) derive building models with
windows and doors from LiDAR point clouds by detecting 3D

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-1-3-87-2014 87



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 11-3, 2014
ISPRS Technical Commission Ill Symposium, 5 — 7 September 2014, Zurich, Switzerland

edge points in the point cloud, and an axis-aligned cell decom-
position to obtain outlines of doors and windows. The authors
state that arch-shaped doors can also be considered, but the cor-
responding model selection step is not discussed in (Becker and
Haala, 2008). We assume that the classification is performed by
a decision stump, hence arches with a small height are not de-
tected. Recently, Fritsch et al. (2013) adopted the approach to
dense point clouds derived from 3D reconstruction. Another ap-
proach for building analysis in LiDAR point clouds is presented
by Schmittwilken et al. (2009) who derive the scene interpretation
by employing a conditional random field and an attribute gram-
mar to interpret geometrical entities which were recognized be-
fore. While this approach combines a probabilistic and a flexible
model-based interpretation, the shape of the recognized building
parts only relies on the previous segmentation step which is some-
how similar to (Becker and Haala, 2008). As third example, Tut-
tas and Stilla (2013) derive building models from oblique ALS,
and they derive window hypotheses from 3D points reflected by
objects within the rooms (voyeur effect) assuming glass windows.
Only rectangular shaped windows are presented in their results,
although the facade shows arch-shaped windows.

All the mentioned state of the art approaches have one step in
common: First a coarse building model is determined, i.e., the
major planes of ground, facade and roof, and then, it is refined in
a successive step. Yet, in our experiments we saw that it is some-
times difficult or even impossible to find the perfect facade plane,
because of a highly structured facade in 3D due to ornaments,
balconies and oriels, or because of the building construction, es-
pecially considering historical buildings and old buildings in rural
areas. Consequently, state of the art approaches may have prob-
lems when detecting building parts in such environments. We
want to overcome this drawback by considering a discrete set of
segmented planes for facade hypothesis rather than a single per-
fect segmentation of the facade.

In this paper we propose a window and door detection based on
sampling with only few iterations, which works well on various
kinds of facades with a geometric structure in 3D, and as demon-
strated in our experiments we are able to reliably distinguish be-
tween various window and door shapes. Specifically, we want to
estimate a precise outline of all windows of a facade, which has
been reconstructed from image sets by recent approaches, e.g.,
(Snavely et al., 2006; Frahm et al., 2010; Mayer et al., 2012).
We use MC-Simulation to generate and score competing mod-
els and apply a model selection based on Bayes factor. For the
parametrization of the models, we use the notion of sub-space
from (Isard and Blake, 1998) which originally has been proposed
in the field of object contour tracking.

The rest of the paper is structured as follows; In Section 2, be-
ginning with an introduction, we present our probabilistic facade
object localization algorithm in its entirety. This is followed by
a thorough discussion of our results in the evaluation presented
in Section 3, and finally, in Section 4, we conclude and present
possible future work.

2 PROBABILISTIC OBJECT LOCALIZATION ON
FACADES

2.1 Overview of the Algorithm

The input to our system is an unstructured 3D point cloud, D,
containing one or more building facades. This could have origi-
nated from image matching or LiDAR. The output are fitted con-
tours defining the outlines of windows and doors. We divide the

work flow of our algorithms into three main stages: Facade Seg-
mentation, Window and Door Localization, and Model Selection.
Within the Facade Segmentation, assuming that D underlies a
known metric scale and the gravity (up) vector v is known, we
extract facades planes and estimate the outlines of interesting ob-
jects present on the facade. In the localization stage, making no
assumptions about the occurrences of windows and doors on fa-
cades, we build probability distributions of these objects on every
location of the facade by matching predefined templates on the
estimated outlines. This results in multiple detections of compet-
ing templates. We remedy this during the model selection stage.
Figure 1 depicts the detailed work flow of our algorithm.

2.2 Facade Segmentation

There exist a plethora of work describing oriented plane segmen-
tation in 3D point clouds. However, in the real world, a single
segmented vertical plane from the 3D point clouds of a facade is
hardly enough to capture information about the true boundaries of
facade objects e.g. windows. Reasons are for instance architec-
tural imperfections, variability in shapes and styles of windows
and doors as well as variability in the distances these off-the-
facade objects protrude from the true facade. Also, a possible
unequal point distribution on the facade originating from textural
differences could possibly be an additional problem. To remedy
this we first segment a single vertical plane using MSAC from
(Torr and Zisserman, 2000). This serves as a starting hypothe-
sis for the construction of a discrete probability distribution over
facades. We sweep this first segmented plane along its normal
direction, whilst randomly changing the angle of the vertical di-
rection (the value of v) at each sweeping step. We call this pro-
cedure a plane-angular sweep. The small and random changes in
v during plane sweeping ensures the construction of an ensem-
ble of planes slightly but non-parallel to the first main segmented
plane. For the plane-angular sweeping, a finer inlier threshold
is used compared to that used within MSAC to segment the first
plane. For M such plane-angular sweeps, the output for a given
facade are a finite set of M segmented planes, {F (i)}{\il, used
as a discrete representation of p(F|D), the probability of the true
facade given the data. For each element of {F (i)}f\;ll, we esti-
mate boundary points using a boundary estimation algorithm e.g.
(Rusu et al., 2007). These boundary points {B® M, are a dis-
crete approximation of the probability of the outlines of facade
objects. Figure 2 shows on the left side the inliers of two plane-
angular sweeps of a reconstructed facade points and the right side
depicts hypothesis of the estimated object boundaries. Taking the
windows on this facade as an example, a single facade hypothe-
sis from plane segmentation makes only a partial coverage of the
presence and locations of these facade objects. In some simple
cases, a single sweep’s boundary hypothesis can reveal almost all
the outlines of windows and doors. This is the case shown in 3 for
these facades gained from 3D point clouds from image matching.

Optionally, for buildings whose windows and doors protrude very
little from the facade, surface curvature of 3D points are esti-
mated using e.g. algorithms presented in (Nguatem et al., 2012).
Points exhibiting high curvature values are then fused to every
element of {B"}M,.

2.3 Window and Door Localization

The goal of the detection stage is to localize portions of {B(i) }f\;‘l
with high probability of being the outlines of windows and doors.
Using orthogonal projection, we convert these boundary esti-

mates from 3D to 2D points, {ng M,. On every element of

{Bg’g}f\il, using MC-Simulation in a sliding window style, we
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Figure 1: Block diagram of the complete algorithmic work flow. An optional clustering is used to divide the search space to enable a
parallel implementation. Also the fusion of surface curvature values is optional and only needed for facades whereby, windows and
doors are only slightly off the main facade plane thus providing little 3D geometrical information. This can be found particularly in
some modern buildings.

Figure 2: The left side shows two hypothesis from plane-angular
sweep segmentation of the same facade and the corresponding
outlines are shown on the right. These combined outlines in most
cases reveals the correct outlines of windows and doors.

search and score predefined templates for windows and doors us-
ing a window and door likelihood function. In Figure 3, we can
see that huge portions of the boundary estimates contain no 3D
point. Optionally, to avoid sliding over these big empty regions,
we cluster {Bé% M, and apply the sliding window only on clus-
ters of reasonable sizes. For very long facades, this results in a
significant speedup.

2.3.1 Notation, Model Definition and Parametrisation Be-
fore explaining our probabilistic template matching algorithm,
we first define the notations used and the choice of parametri-
sation for window and door templates. Figure 4 illustrates the
span of windows and door models used during this research and
the corresponding templates. Analogous to approaches on shape
analysis, e.g., Ferrari et al. (2006) and Riemenschneider et al.
(2010), we define these templates by control points (the blue
stared markers) whose 2D coordinates when interpolated gives
the full outlines (the red curves) of the model r (s). This in-
terpolation is performed using parametric B-spline curves and is
defined as follows

r0= (70" pir)e

where Q = (x1,%2,23,...,ZN,Y1,Y2, Y3, - - - ,yN)T defines
the coordinates of the control points, B () a spline basis function
and NV is the number of control points. The choice of interpola-
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Figure 3: The point clouds of two facades are shown above a
single hypothesis boundary estimates. The boundary estimates
reveals the outlines of most windows and doors present on the
facades.

tion using the B-spline representation brings along some advan-
tages: First, this representation enforces the natural smoothness
inherent in the object outlines. Secondly, this turns out to be more
robust to measurement noise than explicit parametrisation, and it
reduces the dimensionality considerably. We further reduce the
dimensionality of these templates by defining a mapping from
the spline space of control points to a much lower dimensional
sub-space, the 2D affine shape-space, with a shape-space vector,
0, given by

Q=W0+Qo @)

where Qo defines the template, and W the shape-space matrix.
W is defined as

Q O

Q @

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-11-3-87-2014 89



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 11-3, 2014
ISPRS Technical Commission Il Symposium, 5 — 7 September 2014, Zurich, Switzerland

1| rectangular 11 arched-dormer 1} half-circular gothic

Figure 4: The span of windows and doors templates, Qo, used
during this work. This ranges from the simple rectangular rep-
resented by the four corner points (marked blue) through the
arched-dormer, half-circular and gothic windows and doors rep-
resented by many more control points.

where 0 = (0,0,...,0)" and 1 = (1,1,...,1)". Q¥ and Q}
are the decomposition of the template curve Qg into vectors of
its  and y coordinates respectfully. Thus mapping in equation
(2) can be written as follows

Q* Qo
= W@o 4
{Qy + g “
Elements of 6 are given by

where

0= (tz7t’y7817‘sy)T7

t» = a shift in the x-axis
sz = scaling in the x-axis

t, = a shift in the y-axis
sy = scaling in the y-axis

Examples of 2D shape-space vectors and the respective meaning
of the affine transformations on the template are:

e 0=(0,0,0, O)T , the original template Qo

e 0=1(0,1,0,0)", Qo shifted 1 unit to the left

e 0=1(0,0,1,1)", Qo doubled in size.

This mapping ensures that changes in the components of 8 results
in all the necessary affine transformations of similarities by our
templates. We neglect a rotation term since windows and doors
are assumed to be placed up-right on the facade, knowing that
our vertical up direction is reliable. If 0 is defined over a com-
pact support S, then for a given template from the span, the only
elements of @ which are expected to vary are s; and s, to en-
able the capturing of the different windows and door sizes and ¢
and t,, for shifting the templates to different positions of the fa-
cade. However, the later is implicitly gained through the sliding
of the template over the facade and is deterministic. This leaves
an effective dimensionality of two and therefore substantiates the
choice of shape-space over the spline space parametrisation.

2.3.2 Template Likelihood Computation In this section we
derive a measure of how good a realization of 8 from S explains
the data. Ideally, we would like a template, when placed on a
particular position on an element of {B<Z) }Ml to exhibit perfect
fit, i.e. all the inliers should lie uniformly spread on the interpo-
lated curve. MSAC is usually used to capture the goodness of
the fit. A good approximation of the point spread is the standard
deviation o(0) of the number of inliers along the curve. This
value is inversely proportional to the goodness of the inliers point
spread. Uniformly spread inliers have a lower standard deviation
than non-uniformly spread points. These two terms, normalized
between 0 and 1 are combined to define our window or door out-
line likelihood function as follows

L(8) < w(6) + o(0), (5)
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Figure 5: The bottom row shows on the left hand side the input 3D
point clouds and the right hand a single element of { B5 7 ) M. An
enlarged portion of the red marked area is shown on the top row.
The green crosses are the boundary points, the brown pluses are
100 interpolation points of the B-spline curve used in fitting the
data. The inliers of these curves are shown by the yellow crosses.

where
w(0) x exp ( Z o( ek 6)
pis
2 2 2
2\ €L €L < T
plei) = { T2 ei > Tz’ @)

€2 is the shortest distance from the 2D point py to the interpo-
lated template curve defined by 0 and T is the inlier threshold.
The summation index k runs over all the points in the element

of {5’2 D} Z; considered. In Figure 5, the green crosses are the
boundary points and the brown pluses represents 100 points on
the interpolated curve for the template of a half-circular window.
It may seem that the interpolated curve on the left side of the top
row of the Figure has a better fit to the data than the one on the
right side (the yellow crosses represent the inliers). Yet, the in-
liers on the curve of the right hand side show a better average
spread (lower o(0)) than the ones on the right. This results in
an overall reduction in the likelihood of the curve on the right to
that on the left and substantiates our choice of likelihood function
over the vanilla MSAC.

2.3.3 Probabilistic Template Matching We define the goal
of the probabilistic template matching as follows: Given a com-
pact support S over 6, and a span of templates, compute the like-
lihood (£(8),, L(0),, L(8),,...L(0) )OfN realisations of
for every position of each element of {357, (l) M. and find the max-
imum. We defined this optimization as follows

6 = argmax(L£(0)) (8)
6es

For each template Qo from the span, we solve this optimization
using MC-Simulation in the algorithm depicted in Algorithm (1).

Table 1 defines three main categories of variations of windows
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Data: {ng M, Qo

Result: 91, 92, ..

initialization;

while i < M do

while j < N do
6~S8 (i.e. sample 6 uniformly from S)
Get the control points, Q, using equation (2)
Interpolate Q to get r (s) using equation (1)
Score r (s) on Bg% using equation (6)

end
Get 6 with highest score using equation (5)
end
Algorithm 1: Probabilistic template matching.

Categories Type-1 Type-2 Type-3
Rdoor 0.8m-13m 1.7m-23m 13m-1.7m
Wdoor 0.8m-14m 14m-23m 2.3m-3.0m
Rwindow 1.8m-26m 2.6m-33m 3.3m-3.5m
Wwindow 0.8m-14m 14m-2.0m 2.0m-3.5m

Table 1: Variations of window and door heights and widths of our
experiments. These define a compact support S over 6.

and doors heights (hq) and widths (wq) respectively and this
intend defines the compact support S over 6.

A snapshot of the results of this probabilistic template matching
for the input data from Figure 5 is shown in Figure 6 for
two different templates. This reveals the problem of multiple
detections. Our approach to solving this problem is presented in
the next section.

2.4 Model Selection

For the rectangular template, linear parametric B-spline curves
(also known as a spline of degree one) are used for interpolation.
This is equivalent to connecting the four corner points of the rect-
angle shown in Figure 4. For the other templates, quadratic B-
spline curves (splines of degree two) are employed to produce
smooth interpolated curves. Though most popular model selec-
tion approaches, e.g. AIC, explicitly need to include this differ-
ence in dimensionality, we argue that the Bayes factor implicitly
penalizes complex models compared to simpler ones when sam-
ples are generated from independent and identically distributed
(i.i.d) random variables.

The problem of multiple detections can be divided into two main
groups: Overlap detection of different templates and overlap de-
tections of the same template but sampled from different cate-
gories of the compact support. In a model selection sense, these
are all competing detections. We apply a two layered solution
called inter class model selection and intra class model selection,
respectively.

24.1 Intra Class Model Selection Here, all models originate
from one and the same template from the span and the ultimate
goal is to select one of the category (Type-1, Type-2, Type-3)
from Table 1. Let us consider the case where we are using a rect-
angular template. Using only two samples, i.e., N' = 2, for each
category of the compact support, Figure 7 shows screen shots of
the output for a given run of our algorithm at a given position
while sliding over an element of {B;% M. The yellow points
represent the inliers and the corresponding sampled rectangular
curve (brown pluses) depicts a window hypothesis. It can be seen
that the two rectangles on the lower row fit this data better than

Figure 6: Multiple detections of a half-circular and a gothic win-
dow models.
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Figure 7: Intra class model selection using the simple rectangular
template. The upper row depicts two samples (the brown pluses)
of a rectangular template of Type-2 from Table 1 while the lower
row shows two samples of Type-1. The strong evidence of Type-1
rectangular window over Type-2 can be seen by the higher num-
ber of inliers (yellow crosses) on the samples of the lower row.

the two on the upper row. Since the likelihood function captures
the goodness of this fit, one of these two lower rectangles would
have the highest score for £(6). We call this the maximum a
posteriori sample (MAP), 6y.cc: for the rectangular template. In
accordance to Bayes factor, we select the category from where
Oycct was sampled (Type-1) in this case.

2.4.2 Inter Class Model Selection Having solved the prob-
lem of intra class model selection on all sliding positions as ex-
plained above, over the entire facade MAP values are available
for all templates from the span, i.e. Ogothic,0arc, Ocircie. NOW,
the ultimate goal is to choose one of the four competing tem-
plates. Again, in accordance with Bayes factor, at a given posi-
tion on the facade we chose the template whose MAP value at
that position is highest. Finally, we select all non-overlapping
curves with the highest MAP values. Example MAP estimates of
an arched-dormer and a gothic window are compared in Figure 8
demonstrating our inter class model selection.

Since the no assumption about the sizes and placement of win-
dows and doors is made, the end results are estimates of windows
and doors from i.i.d samples. This can be seen on the examples in
Figures 9, 12 and 10 in the form of different sizes of the localized
object outlines, filled in red giving 3D polygons. We can how-
ever, use this assumption and vote between any two neighbouring
windows or doors for the most probable size. Occasionally, there
will be false localizations as shown in Figure 11.
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Figure 9: The diagram shows localization results of two different facades. The outlines filled in red giving 3D polygons represent
windows and doors. The dimensions of window and door estimates may not be the same. This is because these estimates are from i.i.d
random variables. This can be seen on three of the doors on the right facade.

gpAtAtez san francisco-coffee-company

Figure 12: Filled red polygons representing localized windows and doors. Most often, segments of these outlines are embedded within
the 3D point clouds of the facade. As mentioned in Figure 9, dimensions of windows and doors estimates may not be the same.

Figure 8: Inter class model selection between templates of a
gothic (brown pluses on the left side) and an arched-dormer
(right side) window. The inliers (yellow crosses) show a strong
evidence for the arched-dormer window compared to the gothic
at this position of the facade.

3 EVALUATION

We evaluate our algorithm based on several data sets of vary-
ing complexity characterised by point density variations, irregu-
lar and regular window and door locations, different window and

door models as well as the data acquisition method (LiDAR and
image matching). In each test case we downsampled the input
data to a resolution of 0.03m and used an MSAC inlier threshold
of 0.3m for building the hypothesis of the first main facade plane.
For the plane-angular sweeping, a finer inlier threshold of 0.12m
was used and an angular deviation sampled uniformly between 0
and 3 degrees from the vertical (up) vector. We segmented five
hypothesis for each facade, i.e., M = 5. Also, for every element
of the compact support, we generate 30 samples using a uniform
distribution, i.e., N = 30. Thus, for every search position while
sliding on a facade, 5 x 30 x #templates hypothesis are analysed.
To scale the search, a 2D KD-tree is build for every boundary el-
ement using a fast approximate nearest neighbors search, e.g.,
(Muja and Lowe, 2009). An inlier threshold of 0.1m was used
within our likelihood function to score 6.

Compared to all the other MC-simulation based search methods
mentioned above e.g., Dick et al. (2004), our algorithm requires
a very small number of samples. We think that this is due to
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Figure 10: Two top left windows are not localized. This is because
these windows are too close the neighbouring windows and their
hypothesis overlaps these neighbouring windows and gets vote
out due to the overlap. In general, we can remedy such problems
by allowing many more samples that would increase the probabil-
ity of getting a global maximum, i.e., in this case getting exactly
two non-overlapping but very close windows.

Figure 11: The left facade shows localized windows and doors
(filled red polygons) of a facade. An image of a part of the facade
is depicted on the right. The arrows shows a false localization of
a door.

the strong hypotheses of window and door outlines generated
through our combined angular-plane sweeping and boundary es-
timation. Our algorithm requires no parameter fine tuning for a
diversity of input data compared to image based methods for find-
ing object boundaries e.g., the Canny edge detector. However,
it will show a poor performance if the 3D geometry of off-the-
facade objects is lacking, e.g., for modern facades with very huge
glass windows embedded within the facade, popular for office
buildings.

We analyze the overall performance of our algorithm on 20 data
sets: 18 from image matching e.g., (Kuhn et al., 2013) and 2
from LiDAR with a point density of 0.01m. For the (dense) im-
age matching, 20-80 images at 3264 x 2448 resolution were cap-
tured using a RICOH Caplio 500SE camera in a wide baseline
configuration. Table 2 summarizes the results of the number of
true detections of windows and doors using the templates from
the span. The poor detections of the doors from the point clouds
from image matching is due to the occlusion of doors by cars
parked in front of the buildings. Occlusion is also a problem for
the lower windows. Additionally, the poor performance on the

Rectangular Template # objects correct wrong
#windows(image matching) 645 580 65
#doors(image matching) 40 26 14
#windows(LiDAR) 35 34 1
#doors(LiDAR) 7 7 0
Half-Circular Template

#windows(image matching) 60 47 13
#doors(image matching) 34 26 8
#windows(LiDAR) 12 12 0
Arched-Dormer Template

#windows(image matching) 27 16 11
Gothic Template

#windows(image matching) 15 13 2

Table 2: Results of our experiments conducted on different data
sets using the four templates for windows and doors. The number
of correct versus wrong localizations for 20 data sets of point
clouds of facades.

detections of the arched-dormer models is due to the difficulties
to distinguish between the arched-dormer and the simple rectan-
gular template.

3.1 Geometrical Evaluation

We count objects as true positives if and only if the enclosed
polygon defining the localised outlines is having an overlap
larger than 50%. We consider only rectangular windows from
category Type-1 of Table 1 for this evaluation and substantiate
our choice by the frequent occurrence of this window type and
the ease of annotation of bounding boxes compared to spline
curves. The primary reference data set used for the evaluation
concerning geometrical accuracy are self annotated bounding
boxes in 3D point clouds of facades acquired by matching
images. We annotated 200 bounding boxes of rectangular shaped
windows from 9 facades. For each of these facades, a dominant
vertical plane was segmented. All annotated bounding boxes as
well as the localized rectangular window outlines are projected
on the dominant plane. Next, we computed for each localized
outline the intersection over union area (Jaccard Index). On
this criterion, we achieved a mean accuracy of 85% for all 200
annotated bounding boxes.

4 CONCLUSION

We have proposed a framework for localizing windows and doors
in point clouds of facades. A suitable parametrisation, likelihood
and model selection combined within an MC-simulation search
yields a consistent localization of facade objects (windows and
doors) without any regularity assumption for the facade. Our
evaluation shows the robustness and accuracy of our framework
on data sets of diverse point density and origin. With the present
developments in feature point detection in 3D points clouds and
images, a natural extension of our approach is to incorporate a
supervised learning using information gained from manually an-
notated input data sets. A further extension would be to evaluate
our localizations for other non-rectangular shaped windows and
doors with respect to accuracy using hand annotated data sets.
Also, rather than using the MAP estimates, other more robust
estimators such as the minimum mean squared error estimator
(MMSE) could be used to improve the geometrical accuracy.
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