
OPTIMAL PARAMETER SELECTION FOR INTENSITY-BASED  

MULTI-SENSOR DATA REGISTRATION  
 

 

Ebadat G. Parmehr a,b, *, Clive S. Fraser a,b, Chunsun Zhang a,c, Joseph Leach b 

 
a
 Cooperative Research Centre for Spatial Information, VIC 3053, Australia  

b
 Department of Infrastructure Engineering, University of Melbourne, VIC 3010, Australia –  

ebadatg@student.unimelb.edu.au, (c.fraser, leach)@unimelb.edu.au 

 
c
 School of Mathematical and Spatial Sciences, RMIT University, VIC 3000, Australia - chunsun.zhang@rmit.edu.au 

 

 

KEY WORDS: Registration, Optical Imagery, LiDAR Point Cloud  

 

 

ABSTRACT: 

 

Accurate co-registration of multi-sensor data is a primary step in data integration for photogrammetric and remote sensing 

applications. A proven intensity-based registration approach is Mutual Information (MI). However the effectiveness of MI for 

automated registration of multi-sensor remote sensing data can be impacted to the point of failure by its non-monotonic convergence 

surface. Since MI-based methods rely on joint probability density functions (PDF) for the datasets, errors in PDF estimation can 

directly affect the MI value. Certain PDF parameter values, such as the bin-size of the joint histogram and the smoothing kernel, 

need to be assigned in advance, since they play a key role in forming the convergence surface. The lack of a general approach to the 

assignment of these parameter values for various data types reduces both the automation level and the robustness of registration.  

This paper proposes a new approach for selection of optimal parameter values for PDF estimation in MI-based registration of optical 

imagery to LiDAR point clouds. The proposed method determines the best parameters for PDF estimation via an analysis of the 

relationship between similarity measure values of the data and the adopted geometric transformation in order to achieve the optimal 

registration reliability. The performance of the proposed parameter selection method is experimentally evaluated and the obtained 

results are compared with those achieved through a feature-based registration method. 
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1. INTRODUCTION 

The automatic registration of multi-sensor data remains a 

research topic of interest in photogrammetry and remote 

sensing, due in large part to the increasing availability of Earth 

observation data from a range of sensors. The need for reliable 

and accurate automatic integration of multi-source data to 

exploit the complementary information of datasets is ongoing, 

and an area of current interest is the registration of aerial and 

satellite imagery with LiDAR (Light Detection And Ranging) 

point clouds. The fused imagery and LiDAR data, registered to 

1-pixel level, is required for many applications, such as the 

creation of photorealistic 3D models, automatic building 

extraction, mapping, change detection and the updating of geo-

information products.   

Although multi-modal data may be provided in the form of 

complementary georeferenced datasets, residual misalignment 

errors often persist and these errors need to be removed through 

a further registration procedure. Conventional featured-based 

methods for registration of multi-sensor data rely on the robust 

detection of corresponding features in the data, such as points, 

lines and planes. However, feature-based registration of multi-

modal data can suffer from a lack of evenly distributed 

corresponding features, as well as from accuracy limitations in 

the extraction of these features. Furthermore, features can 

appear differently in multi-modal datasets, which can greatly 

complicate the feature correspondence determination and 

decrease the level of automation.  

 

Intensity-based (area-based) methods, on the other hand, do not 

rely on specific features to quantify similarity measures between 

multi-modal datasets. Mutual Information (MI), which 

emanated from information theory in the mid 1990s (Collignon 

et al., 1995; Viola and Wells, 1997), is now a popular similarity 

measure for multi-modal image registration applications in 

medical imaging, remote sensing and computer vision. 

 

MI quantifies the transformable information between two 

datasets using their joint probability density function (PDF), 

and since the joint PDF changes with the relative geometric 

transformation of the images, the MI value can vary for each 

and every transformation. Importantly, the maximum value of 

MI is expected to be achieved when the datasets are 

geometrically aligned (Collignon et al., 1995). A 

comprehensive review of technical aspects of MI adoption for 

the registration of multi-sensor data is provided by Pluim et al. 

(2003). Although, the effectiveness of MI-based methods for 

multi-sensor data registration has been established, they still 

suffer from appearance of local maxima in their convergence 

surfaces (non-monotonic convergence surface) (Mastin et al., 

2009; Wang et al., 2012). This can degrade registration 

accuracy and robustness (Roche et al., 2000). Local maxima can 

occur due to the presence of good local matches between the 

datasets and noise (Pluim et al., 2003). Therefore, some 

modification to the similarity measure have been proposed to 

increase the reliability of this intensity-based registration 

method (Parmehr et al., 2012).  

 

Up until now, the general approach to addressing the problem 

of non-optimal reliability of MI-based registration has been 

either to use a more reliable definition of the similarity measure, 

or to estimate a more appropriate joint PDF for the purpose of 
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registration. Since the bin-size of the joint histogram 

significantly affects the PDF, several statistical methods have 

been proposed to determine the optimum bin-size (Freedman 

and Diaconis, 1981; Knuth, 2006; Scott, 1979). These methods 

operate under the assumption that the density function of the 

dataset is known, which is not generally the case for remote 

sensing datasets. In addition, the methods do not consider the 

effect of bin-size on the MI convergence surface. However, 

research has shown that various sizes of bin can significantly 

affect the registration in medical imaging (Hahn et al., 2010; 

Legg et al., 2009) as well as in multi-sensor registration of 

remote sensing data (Suri and Reinartz, 2010). In addition, a 

method to determine the bin-size has been proposed based upon 

achieving the maximum value of both normalised MI and 

kurtosis of the convergence surface (Parmehr et al., 2013). 

 

As distinct from the method proposed in this paper, the 

approaches referred to above neither provide a general solution 

for selection of an optimum bin-size for PDF estimation nor an 

analysis of the impact of the election on the robustness of the 

registration procedure.  Aerial imagery and  3D  LiDAR  data  

have  been  utilised  in  this  paper  to efficiently  analyse  the  

effect of optimal bin-size selection in PDF estimation on the 

automatic registration of multi-sensor data.      

 

This paper is organised as follows: Section 2 presents the 

proposed approach for optimum PDF estimation. Then, the 

performance of the intensity-based registration method using an 

optimum bin-size for the PDF is experimentally evaluated in 

Section 3 and conclusions follow in Section 4. 

 

2. METHODOLOGY 

2.1 Mutual Information 

The statistical similarity of two random variables A and B, 

which measures the degree of dependence of A and B, can be 

defined as the distance between the joint PDF P(A,B) and the 

case of complete independence P(A)P(B). The well-known 

Kullback-Leibler probability divergence has been used to define 

the MI as 
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Here, P(A,B) is  the  joint PDF of the pair A and B, and P(A) 

and P(B) are the marginal PDFs of A and B, respectively. It is 

clear that the MI value is a weighted sum of the dependence 

value for every joint intensity a and b.  

 

MI can also be defined using Shannon entropy (Shannon, 1948) 

via the following equation   
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where H(A) and H(B) are the marginal entropy of A and B, 

respectively, and H(A,B) is their joint entropy. Marginal and 

joint entropies are defined as 
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It is assumed that the maximum value of MI can be achieved 

when images are geometrically aligned. In Eq.2, the maximum 

value of MI is achieved when the joint entropy is minimised. 

That is, in the case of misalignment, corresponding elements of 

images are duplicated in the joint PDF, which increases the 

value of the joint entropy. On the other hand, corresponding 

elements appear once in aligned images, yielding a smaller joint 

entropy. Since MI depends on the amount of overlapping area 

of the images, an invariance version of MI, called Normalised 

Mutual Information, NMI (Studholme et al., 1999), has been 

proposed:   
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In practice, the maximum value of MI is achieved through 

maximising of the marginal entropies rather than minimising the 

joint entropy value. This implies less effect of the relationship 

between the images on the MI value. In contrast, NMI is able to 

take into account any increase in marginal entropies through a 

change in joint entropy by using the ratio of joint and marginal 

entropies. As a result, more robust registration is achieved by 

utilising NMI instead of MI to find the appropriate geometric 

transformation of the dataset (Parmehr et al., 2013).  

 

The multi-variable generation of MI has also been defined via a 

higher-order joint entropy (McGill, 1954; Watanabe, 1960). 

The MI of three variables A, B and C is defined as 
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In order to consider existing geometric dependence between a 

pair of variables, Normalised Combined Mutual Information 

(NCMI) has been adopted for registration of optical imagery 

with LiDAR data (Parmehr et al., 2014). The NCMI of a 

variable C and two already aligned variables A and B is defined 

as  
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This measures the amount of information of C that would be 

gained simultaneously from the pair (A,B). Since LiDAR 

intensity data is inherently registered via the generated digital 

surface model (DSM), NCMI is applied to exploit both the 

geometric dependence and complementary character of the 

LiDAR DSM and intensity data.  

 

In order to adapt NCMI for registration of optical images and 

LiDAR data, both datasets need to be represented in the same 

data structure. In this paper, the 3D LiDAR dataset is treated as 

a 2D image. Therefore, the elevation and intensity values in the 

LiDAR data are both treated as image grey values. 

 

2.2 Optimal PDF estimation 

In accordance with the definitions of MI-based similarity 

measures, the statistical similarity between the datasets is 

calculated using the probability of coincident content of 

intensity pairs in the PDF. For instance, if the information 

content of co-occurring a and b, with a high value of 

probability, relates to corresponding regions in the images, the 

similarity measure can reflect the geometric misalignment 
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effect. Otherwise, it can mislead the registration process by 

having an even higher value of the similarity measure without 

any connection to geometric alignment. This highlights the role 

of the PDF in intensity-based registration methods. 

 

Generally, the PDF of datasets can be estimated using 

parametric and non-parametric methods. The parametric 

estimators assume the PDF is a mixture of known probability 

functions, such as Gaussian, and the parameters are the only 

information that needs to be stored. However, the non-

parametric estimators have no fixed structure and depend for an 

estimate upon all the data points being used. 

 

Simply, the joint and marginal PDFs of the overlapping parts of 

both datasets can be estimated by histogramming as a non-

parametric approach for PDF estimation. In histogramming, 

each entry of the joint histogram of the datasets denotes the 

number of elements of data with coinciding intensities. Dividing 

the joint histogram by the total number of members in the data, 

Nx, yields the joint PDF, and the marginal PDF of each dataset 

can be found by summing over the rows and columns, 

respectively. It can be adopted when estimates of derivatives are 

neither needed nor available (Bishop, 1995).  

 

The kernel density estimator is widely used as a non-

parametric density estimator of the PDF. It smooths out the 

contribution of each observed data point over a local 

neighbourhood using a Kernel function. The estimated density 

at any point x is  
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Here, K is the kernel function, and h and n are its bandwidth 

and number of samples, respectively (Silverman, 1986). The 

operation is called Parzen windowing if K is the Gaussian 

function (Viola and Wells, 1997). The joint PDF can also be 

estimated by other non-parametric approaches such as spline-

based estimation (Mattes et al., 2003), partial volume estimation 

(PVE) (Maes et al., 1997), non-parametric windows (Dowson et 

al., 2008) and the wavelet-based approach (Peter and 

Rangarajan, 2008).  

 

Regardless of the smoothing approach used for PDF estimation, 

all PDF estimators utilise the joint histogram of datasets. The 

histogram of two variables A and B can be defined as  
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where c is the membership function, Di is the bin-size of 

histogram, and fA(X) and fB(X) are fixed and moving images, 

respectively. The membership function can be defined using b, 

B-spline basis function, and each sample of datasets is added to 

one histogram bin via 
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A more detailed definition of the membership function for 

Parzen-windowing and PVE methods  is provided in Dowson 

and Bowden (2006). As shown in Eq. 8, the joint histogram is 

not invariant to the bin-size Di. Consequently, any MI-based 

similarity measure is highly dependent upon the bin-size 

utilised in PDF estimation. The bin-size can be determined by 

dividing the range of intensities by the number of bins, and the 

number of bins plays a key role in representation of datasets for 

statistical similarity determination.  

 

Furthermore, the bin-size of the histogram plays a crucial role 

as a smoothing parameter in the process of PDF estimation. For 

instance, the use of a small bin (a large number of bins) yields a 

spiky PDF, while the use of a large bin provides a very smooth 

PDF. Since the selection of the number of bins has a significant 

impact on both the MI value and the results of registration, an 

optimum number of bins that preserves the necessary 

information for similarity measure determination is required. In 

other words, the larger number of bins might highlight the role 

of noise and thus reduce the reliability of registration.  

 

More importantly, the variation of the MI value does not always 

reflect the true geometric transformation of the images because 

it may highlight the role of increments of statistical 

correspondence rather than the geometric correspondence of the 

images.  

 

In this paper, the idea of achieving maximum variation of the 

similarity measure for a unit geometric transformation is 

exploited. A component of statistical information that is more 

sensitive to geometric transformation is employed, rather than 

relying only on the value of the similarity measure. The 

proposed optimum bin-size is defined as 
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The derivations of NMI, and marginal and joint entropies with 

respect to the transformation μ, can be calculated as follows: 
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In intensity-based image registration, one of the images is 

assumed as ‘fixed’ and the other as ‘moving’. Therefore, the 

marginal entropy of the fixed image is constant, and the moving 

image is transformed under different values of the 

transformation function. These require the estimation of the 

marginal entropy of the moving image, as well as the joint 

entropy of the images. The marginal entropy of the fixed image 

is therefore not related to the parameters of the transformation μ 

and this simplifies the calculation of the derivative of NMI 

(Thévenaz and Unser, 2000). The derivations of the PDF 

respect to the transformation can be derived as 
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Since the joint PDF is data dependent, the bin-size for its 

estimation should be based on data content, on every portion of 

the dataset.  

 

The use of uniform bin-size is typically ineffective and may lead 

to misregistration, due to introduced artificial features, in 

regions that have higher statistical similarity, rather than real 

regions of images. For instance, in a portion of data which can 

be divided into a  number of homogeneous regions, uniform 

bin-size derived from linear histogramming neglects the features 

in the dataset and thus provides inaccurate PDF estimation 

(Knops et al., 2006). The proposed non-linear binning approach 

takes data content into account and adapts, so variable bin sizes 

are generated to provide desirable clustering with a less 

dispersed joint PDF. Thus, the bin-size Di is not constant and 

can be defined as a function of clusters of the images. The k-

mean clustering method has been utilised to create non-uniform 

bin sizes and increase the reliability of registration (Knops et 

al., 2006; Liu and Chrisochoides, 2006; Lo, 2003). The 

optimum number of clusters is achieved when the derivation of 

the NMI value with respect to the geometric transformation is 

maximised. This provides segmented images which reflect the 

maximum variation of the similarity measure for relative 

transformation.  

 

In other words, only the regions with significant impact on the 

similarity measure with respect to transformation will be 

incorporated in its computation. This increases the reliability of 

registration by decreasing the number of local maxima that 

result from using less sensitive information content. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION  

This section presents experimental results obtained with the 

determined optimum bin-size of the PDF in the registration of 

aerial imagery and 3D LiDAR data. A conventional, widely 

adopted feature-based registration method used in 

photogrammetry was also implemented in order to validate the 

performance of the intensity-based approach. The results 

obtained from both the feature- and intensity-based methods 

were then compared.   

  

3.1 Dataset 

The dataset covered a 2 x 2 km suburban area of Bathurst, New 

South Wales, Australia. It comprised 20cm ground sample 

distance (GSD) aerial imagery from a Leica RCD105 digital 

camera. The corresponding LiDAR point cloud of 4pts/m2 point 

density, along with corresponding intensity data, was acquired 

in 2011 with a using Leica ALS50-II scanner. One of the aerial 

images, representing an urban area with many buildings, is 

shown in Figures 1, along with the corresponding LiDAR DSM 

and intensity image.  

 

   
 

Figure 1. Aerial image (left), colour-coded LiDAR DSM 

(middle) and LiDAR intensity image (right) 

It is noteworthy that the resolution of  the  imagery and LiDAR  

is sufficiently high  to  clearly  demonstrate  natural  and  man-

made objects. As shown in Figures 1, the LiDAR DSM offers 

information on areas with significant elevation difference, 

whereas LiDAR intensity data is able to provide information for 

flat areas such as roads. 

 

3.2 Procedure of feature-based registration 

The collinearity equation model was utilised to estimate the 

transformation between the aerial image and the 3D LiDAR 

DSM. Camera calibration parameters including focal length, 

principal point and lens distortion were taken into account, and 

airborne GPS and IMU observations were used as initial values 

for the exterior orientation parameters (EOPs) of the aerial 

images. 

 

Extraction of distinctive features from a LiDAR point cloud is 

not a straightforward task, particularly when the density of the 

point cloud is not high. In this case, the ridge points of 

buildings were employed as features to be matched. Such 

features can be derived from point clouds and have 

demonstrated feasibility for registration (Choi et al., 2011; 

Habib et al., 2005). The building roof planes are first 

determined, and the intersection of roof planes then allows for 

the generation of ridge points. A graphical description of this 

method for the extraction of a corresponding point feature from 

the LiDAR point cloud and aerial image is shown in Figure 2.  

 

As shown in the figure, a small portion of the point cloud is 

selected and then DSM points are clustered based on surface 

normals using fuzzy c-mean clustering (Sampath and Shan, 

2010). The outliers of clustered point groups are removed using 

a RANSAC method (Fischler and Bolles, 1981) during the 

process of plane fitting planes. Afterwards, the fitted planes are 

intersected to determine the ridge point. It is noteworthy that the 

accuracy of extracted point features is highly dependent upon 

the density of the LiDAR point cloud and its accuracy.  

 

The intersection of the ridge lines of the building roofs has been 

employed to extract corresponding point features in image 

space. An interactive method of ridge line extraction from aerial 

imagery was employed, partly due to reliability shortcomings of 

automatic methods. It is clear that the spatial and radiometric 

resolution of the imagery affects the accuracy of extracted point 

features. An array of 3 by 3 extracted ridge points in both 

imagery and LiDAR data were used to estimate EOPs of the 

images via the collinearity equation model. 

 

3.3 Procedure of intensity-based registration 

In order to bring 3D LiDAR and imagery data into the same 

coordinate system, the LiDAR points were back-projected into 

image space. Then, interpolation of the irregular back-projected 

LiDAR points to a regular format was carried out using nearest 

neighbour, linear and natural neighbour interpolation methods. 

Comparison of the estimated EOPs using different interpolation 

methods indicated that natural neighbour interpolation provided 

fewer artefacts and produced a slight improvement in accuracy. 

Since 3D LiDAR point cloud is back-projected to image space, 

only the occlusion of LiDAR data yields artefacts in the 

templates and produces non-corresponding regions. In addition, 

LiDAR data collected via several stripes may lead to artefacts. 

The effect of these can be resolved by the remaining 

corresponding regions of the template images. 
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Point cloud representing a building and its roof 

 
Distribution of surface normals          Clustered point cloud 

 

 
Fitted planes to the clustered point        Intersection of planes 

 

 
Intersection of ridge lines of building roof 

 

Figure 2. The procedure of point-feature extraction from point 

cloud and imagery data 

 

Computation of similarity for whole datasets, such as high 

resolution remote sensing imagery and LiDAR data, is 

impractical due to the high cost of computation. Therefore, a 

well-distributed array of small patches called templates is 

adopted and the centres of these templates are used in the 

computation of transformation parameters.  

 

In a similar way to the feature-based method, an array of 3 by 3 

well-distributed corresponding points (templates) was employed 

to estimate the EOPs of the aerial image. The use of templates 

reduces the search dimensions from n (number of parameters, 

here n=6) to 2 and decreases the risk of failure in the 

registration.  

 

It is clear that a small size of template is not able to provide 

sufficient information to measure the statistical similarity of the 

images due to the lack of common regions between images with 

large misalignment error. The registration approach therefore 

fails to find the correct transformation parameters. On the other 

hand, a large template increases the computation cost. More 

importantly, the complex transformation between the datasets 

may not be modelled with sufficient fidelity by a simple lateral 

translation in the x and y image coordinate directions.  In this 

work, 1000 by 1000 pixel templates were utilised to find 

corresponding points in the LiDAR and imagery data. Figure 3 

shows example corresponding templates for the aerial image, 

LiDAR DSM and LiDAR intensity image. 

 

   
 

Figure 3. Example corresponding templates:  aerial image (left), 

colour-coded LiDAR DSM (middle) and LiDAR intensity 

image (right) 

 

In order to exploit the complementary information of the 

LiDAR DSM and intensity images in the determination of 

similarity between the aerial imagery and LiDAR data, the 

NCMI similarity measure was adopted.  

 

To determine the optimum number of bins, the derivation of 

similarity of the template with respect to transformation for the 

different number of bins is calculated using Parzen windowing. 

The number of bins which yields the maximum value of the 

determined similarity measure is assumed to be the optimum for 

PDF estimation, as indicated in Figure 4. 

 

 
 

Figure 4. The derivation of similarity measure respect to 

transformation for 2-256 number of bins 

 

The use of an optimum number of bins enables the similarity 

measure determination to use regions of the images that have 

the highest variation of statistical similarity of the images with 

respect to the geometric transformation. It provides a distinctive 

sharp peak in the similarity measure, which speeds up the 

optimization procedure and increases the reliability and 

robustness of registration by avoiding local maxima.  
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Here, a 2D Powell’s optimisation method (Press et al., 1992) 

has been employed for maximising the similarity measure, and 

the result of registering an aerial image with LiDAR data is 

shown for the example template in Figure 5. 

 

  
 

Figure 5. Unregistered (left) and registered (right) aerial image 

(green) with LiDAR DSM (magenta) 

 

3.4 Results 

In order to compare the performance of feature- and intensity-

based methods, 15 well-distributed corresponding points in 

LiDAR data and aerial image were used. EOPs of the aerial 

image were then estimated using 9 of the points as control 

points, whereas 6 were used as checkpoints. The estimated 

EOPs for the aerial image are listed in Table 1, and the 

corresponding accuracy estimates are provided in Table 2. 

 

Table 1. Estimated EOPs of aerial image 

EOPs GPS/IMU 
Feature-

based 

Intensity-

based 

Xp(m) 

Yp(m) 

Zp(m) 

739267.748 

6299160.222 

2275.655 

739270.958   

6299156.394  

2249.355 

739272.527 

6299157.357 

2248.921 

v(deg.) 

f(deg.) 

k(deg.) 

0.51737 

-3.19723 

0.0175 

0.6750 

-3.2339 

-0.1322 

0.6505 

-3.1803 

-0.1345 

 

Table 2. Errors of estimated EOPs of aerial image  

Error of EOPs Feature-based Intensity-based 

sXp(m) 

sYp(m) 

sZp(m) 

1.2589 

0.8888 

0.2496 

0.1477 

0.1122 

0.0277 

Mean(m) 0.7991 0.0958 

sv(deg.) 

sf(deg.) 

sk(deg.) 

0.0307 

0.0446 

0.0070 

0.0038 

0.0052 

0.0008 

Mean(deg.) 0.0274 0.0032 

s0 (pixel) 0.82 0.12 

 

As indicated in Table 2, the EOPs of the aerial image were 

estimated with a 0 value of 0.12 pixel via the intensity-based 

registration, and the RMSE of checkpoints was 0.63 pixels. 

This illustrates a high internal accuracy for both the exterior 

orientation and the template matching. In contrast, a 0 value of 

0.82 pixel was achieved for the feature-based method, with the 

associated checkpoint RMSE being 1.08 pixels. The superior 

accuracy and performance of the intensity-based method for 

registration of imagery to LiDAR data is thus clearly 

demonstrated. The distribution of error vectors for control and 

checkpoints is shown for the feature- and intensity-based 

(centre of templates) solutions in Figures 6 and 7, respectively.  

 

 
 

Figure 6. Error vectors for control points (blue) and checkpoints 

(red) from the feature-based method 

  

 

 
 

Figure 7. Error vectors for control points (blue) and checkpoints 

(red) from the intensity-based method  

1 pixel 

1 pixel 
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It can be seen from Figures 6 and 7 that the errors of 

checkpoints and control points from the featured-based 

registration are larger than for the intensity-based method, and 

their distribution, is both irregular and subject in this case to the 

availability of buildings. In contrast, the errors for the intensity-

based registration are more evenly distributed because the 

position of the templates does not rely on the availability of 

man-made features. This further validates the better quality of 

the intensity-based registration approach. 

 

The performance of the two registration methods can be 

demonstrated by overlaying back-projected LiDAR points onto 

the image. An example is given in Figure 8, where the overlay 

of two portions of the dataset near the aerial image border are 

shown before and after registration via both the feature- and 

intensity-based methods. 

 

  
 

  
 

  
 

Figure 8. Overlay of back-projected LiDAR point cloud on to 

the aerial image before (top) and after registration using the 

feature-based method (middle) and intensity-based method 

(bottom) 

 

The  results  of  registering the optical  image  to  LiDAR  data,  

shown  in Figure 8, indicate a precise  match  between  

corresponding features. Although both registration methods 

provided good results, the intensity-based method achieved a 

more accurate registration due to both the use of well-

distributed templates and the sub-pixel accuracy achieved in the 

template matching process. 

4. CONCLUSSIONS 

The performance of the proposed method for determining 

optimal parameter values for MI-based registration of optical 

imagery with LiDAR data has been highlighted. Based on 

comprehensive testing, it has been observed that improper 

histogram bin-sizes can yield a maximum value for the 

similarity measure, but incorrect transformation parameters in 

the intensity-based registration. However, with the proposed 

method for determining the optimum bin-size for the PDF, the 

effect on geometric transformation for various bin-sizes can be 

assessed, which can enhance registration performance. The 

proposed approach introduced a new concept for determining 

optimum parameters for PDF estimation. The approach leads to 

an increased robustness of intensity-based registration via the 

maximum use of information that is sensitive to geometric 

transformation of the datasets.  Moreover, superior performance 

in intensity-based registration was achieved, as compared to 

feature-based registration of aerial imagery to LiDAR data. 

Since the proposed method is not sensor dependent, it can be 

applied to improve the robustness of intensity-based registration 

of multi-sensor remote sensing data for a wide range of 

applications. 
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