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ABSTRACT: 
 

Over the last couple of years, applications that support navigation and wayfinding in indoor environments have become one of the 

booming industries. However, the algorithmic support for indoor navigation has so far been left mostly untouched, as most 

applications mainly rely on adapting Dijkstra’s shortest path algorithm to an indoor network. In outdoor space, several alternative 

algorithms have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding 

behavior (e.g. simplest paths, least risk paths). The need for indoor cognitive algorithms is highlighted by a more challenged 

navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). Therefore, the 

aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for 

this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as 

proposed by Grum (2005) is duplicated and tested in a complex multi-story building. Several analyses compare shortest and least risk 

paths in indoor and in outdoor space. The results of these analyses indicate that the current outdoor least risk path algorithm does not 

calculate less risky paths compared to its shortest paths. In some cases, worse routes have been suggested. Adjustments to the 

original algorithm are proposed to be more aligned to the specific structure of indoor environments. In a later stage, other cognitive 

algorithms will be implemented and tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall 

user experience during navigation in indoor environments. 

 

 

1. INTRODUCTION AND PROBLEM STATEMENT 

Over the last decade, indoor spaces have become more and 

more prevalent as research topic within geospatial research 

environments (Worboys, 2011). Within indoor research, 

applications that support navigation and wayfinding are of 

major interest with both technological advancements for 

tracking people (Mautz et al., 2010) as well as developments 

of the underlying space frameworks (e.g. Lee, 2004).  

 

However, the algorithmic support for indoor navigation 

applications has so far been left mostly untouched. In outdoor 

research, a wide variety of different algorithms exist, initially 

originating from shortest path algorithms (Cherkassky et al., 

1996) with many of them based on the famous Dijkstra 

shortest path algorithm (Dijkstra, 1959). Over time, 

alternative algorithms were proposed adding a more cognitive 

notion to the calculated paths and as such adhering to the 

natural wayfinding behavior in outdoor environments. 

Examples are hierarchical paths (Fu et al., 2006), paths 

minimizing route complexity (Duckham & Kulik, 2003; 

Richter & Duckham, 2008) or optimizing risks along the 

described routes (Grum, 2005). The major advantage of those 

algorithms is their more qualitative description of routes and 

their changed embedded cost function. After all, various 

cognitive studies have indicated that the form and complexity 

of route instructions is equally important as the total length of 

path (Duckham & Kulik, 2003). Algorithms which simplify 

the use and understanding of the calculated routes improve as 

such the entire act of navigation and wayfinding. 

 

Algorithms for 3D indoor navigation are currently restricted 

to Dijkstra or derived algorithms. To date, only few 

researchers have attempted to approach algorithms for indoor 

navigation differently, for example incorporating dynamic 

events (Musliman et al., 2008), or modeling evacuation 

situations (Atila et al., 2013; Vanclooster et al., 2012). 

However, the need for more cognitively rich algorithms is 

even more pronounced in indoor spaces than outdoors. This 

has its origin in the explicit distinctiveness in structure, 

constraints and usage between indoor and outdoor 

environments (Li, 2008; Walton & Worboys, 2009). Also, 

wayfinding tasks in multi-level buildings have proven to be 

more challenging than outdoors, for reasons of disorientation 

and less visual aid (Hölscher et al., 2009). As such, building 

occupants are faced with a deficient perspective on the 

building structure, influencing their movement behavior 

(Hölscher et al., 2009). Algorithms developed to support a 

smooth navigation will have to consider these intricacies and 

create route instructions that are more aligned with the human 

cognitive mapping of indoor spaces. 

 

The main goal of this paper is to translate existing outdoor 

cognitive algorithms to an indoor environment and compare 

their efficiency and results in terms of correctness, difference 

to common shortest path algorithms and their equivalents in 

outdoor space. Based on the results of this implementation, 

suggestions for a new and improved cognitive algorithm will 

be stated, which will be more aligned to the specific context 

of indoor environments and wayfinding strategies of users 

indoor. In this paper, we currently focus on the 

implementation and adjustment of the least risk path 

algorithm (LRP algorithm hereafter) as described by Grum 

(2005). 

 

The remainder of the paper is organized as follows. Section 2 

elaborates on the definition of the LRP algorithm. In section 

3, the indoor dataset is presented while section 4 discusses 
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the main case study where the outdoor LRP algorithm is 

duplicated and implemented in an indoor setting with 

multiple analyses comparing its results. Section 5 presents 

various improvements to the original algorithm to be more 

compatible with indoor networks.  

 

 

2. LEAST RISK ALGORITHM 

The ultimate goal of cognitive algorithms is to lower the 

cognitive load during wayfinding experiences. In this paper 

we focus on the LRP algorithm (Grum, 2005) and its 

implementation in a three-dimensional building. More 

specifically, we want to investigate whether or not the least 

risk path has the same connotation and importance in indoor 

spaces compared to its original outdoor setting. 

 

The LRP algorithm as defined by Grum (2005), calculates the 

path between two points where a wayfinder has the least risk 

of getting lost along the path. The risk of getting lost is 

measured at every intersection with the risk cost calculated as 

a cost for taking the wrong decision at that intersection. 

While the algorithm assumes that an unfamiliar user 

immediately notices a wrong choice and returns to the 

previous intersection, the author also acknowledges that the 

algorithm needs to be tested for its representativeness of the 

actual behavior of users (Grum, 2005). 

 

The formula for the calculation of the risk value at a certain 

intersection i and the total risk of an entire path p is as 

follows: 
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Formula 1 demonstrates that the risk value (RV) is dependent 

on the number of street segments converging on the 

intersection, combined with the length of each individual 

segment. The risk value of an intersection increases with 

more extensive intersections and with many long edges that 

could be taken wrongly. The algorithm favors paths with 

combined long edges and easy intersections. Applied to 

indoor environments, it could be assumed that the least risk 

path might be quite similar to the shortest path and simplest 

path. Indoor spaces often consist of many decision points and 

short edges along long corridors, making derivations of the 

shortest path more difficult than outdoors. This will be 

examined in the following sections. 

 

The algorithmic structure of the LRP algorithm is similar to 

the Dijkstra shortest path algorithm (SP algorithm hereafter) 

with a continuous loop over all nodes consequently 

calculating the costs for adjacent nodes starting from the node 

with the currently smallest cost. The LRP algorithm only 

differs from the SP algorithm in its cost calculation: the cost 

value is not only based on the length of the edge but also on 

the risk value of each intersection that is passed. As such, the 

cost calculation is much more complex requiring calculations 

of nodes further ahead. The algorithm has been extensively 

described in Vanclooster et al. (2013). Given the fact that the 

only difference with the SP algorithm in the cost calculation 

only affects the amount of edges in the selected node, the 

computational complexity is similar to Dijkstra, being O(n2). 

 

 

3. INDOOR DATASET 

Testing the applicability of the LRP algorithm in indoor 

space requires a dataset of an extensive and complex indoor 

environment to be a valid alternative for the outdoor 

algorithmic testing. Although the authors realize that using a 

single specific building dataset for testing can still be too 

limited to generalize the obtained results, the chosen building 

has several features that are quite common for many indoor 

environments. The dataset for our tests consist of the 

‘Plateau-Rozier’ building of Ghent University. It is a 

complex multistory building where several wings and 

sections have different floor levels and are not immediately 

accessible. It is assumed that the mapped indoor space is 

complex enough with many corners and decision points to 

assume reasonable wayfinding needs for unfamiliar users. 

Previous research executed in this building has shown that 

even familiar users have considerate difficulty recreating a 

previously shown route through the building (Viaene & De 

Maeyer, 2013). 

 

For this research, only the ground floor and first floor were 

considered. For application of the LRP and SP algorithm, the 

original floor plans are converted into a three-dimensional 

indoor network structure, which is chosen to be compliant to 

Lee’s Geometric Network Model (Lee, 2004) as this is one of 

the main accepted indoor data structures and currently also 

put forward as indoor network model in the IndoorGML 

standard proposal (OGC, 2013). 

 

 
Figure 1: Floor plan of the ground floor with network 

visualization. 

 

In this model, each room is first transformed into a node, 

forming a topologically sound connectivity model. 

Afterwards, this network is transformed into a geometric 

model by creating a subgraph for linear phenomena (e.g. 

corridors), as such enabling network analysis (Fig. 1). The 

position of the node within the room is chosen to be the 

geometrical center point of the polygons defining the rooms. 

This premise implies that the actual walking pattern will 

sometimes not be conform to the connectivity relationships in 

the network inducing small errors in the calculations of 

shortest and least risk paths. We will need to verify whether 

this error is significant in the total cost of certain paths. The 

selection of corridors to be transformed into linear features is 

based on the map text labels indicating corridor functionality. 

These areas also appear to be perceived as corridors when 

inspecting the building structure itself in the field. Obviously, 

this topic is depending on personal interpretation and choice. 

Therefore, in a future part of this research, the dependency of 

the performance of cognitive algorithms on the indoor 
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network topology will be investigated. This will also include 

testing various other indoor models, like grids and meshes. 

 

 

4. ANALYSIS OF LEAST RISK PATHS IN INDOOR 

SPACE 

In this section, a case study within our selected indoor 

building is analyzed on several levels: comparisons between 

LRP and SP algorithms in indoor space, comparison to their 

outdoor variants and for some preselected path a more in-

depth analysis using a benchmark parameter set.  

 

4.1 Selecting a benchmark parameter set for analysis 

The goal of the LRP algorithm is to minimize the risk of 

getting lost. However, it is not clearly stated what a 

‘minimal’ risk exactly signifies. In the original algorithm, the 

main parameters used to quantify and minimize ‘total risk’ 

are the length of each individual segment and a risk value, 

both weighted 50%. This raises the question on how to 

determine which path is actually less risky compared to other 

paths and on how to quantify the improved minimization in 

risk in the adjusted algorithm, without using the parameters 

defined in the algorithm itself. Several methodologies could 

be suggested as solutions, ranging from actual testing the 

accurateness with real test persons, to simulating the 

wayfinding problems in an agent-based environment. In this 

paper, we opted to select a benchmark of objective 

parameters that contribute to the quantification of the risk of 

getting lost based on research of wayfinding literature (both 

in indoor and outdoor space). Only those parameters are 

selected which are objectively linked to the spatial building 

structure itself. Note that the first 2 parameters are part of the 

algorithm itself and as such will not be used further in the 

benchmark parameter set. 

- Risk value, i.e. more or less coinciding with the average 

length of taking the wrong streets at an intersection. 

- Route efficiency, sometimes referred to as total path 

length (Hölscher et al., 2011). 

- Route complexity, i.e. number of turns and number of 

streets used (Hölscher et al., 2011).  

- Number of curves. In wayfinding, the direction strategy 

continuously minimizes the angle between destination 

and current position (Hölscher et al., 2011). However, 

we assume unfamiliar users which mostly follow a 

planned strategy. Also, in an indoor environment it is 

even harder to assume indoor orientation and good 

visibility of the destination. On the other hand, more 

familiar users might deviate from path, so it would be 

better to have a path with fewer curves. People also 

might feel more at ease navigating paths with fewer 

curves. 

- Width of the corridor. Wide streets are considered more 

salient (Hölscher et al., 2011). Equivalent in indoor 

space, the selection of wider corridors can be important 

to reduce the risk of getting lost. 

- Redundancy, i.e. a decrease in decision points that the 

user has to pass. Fewer nodes to make wrongful 

decisions at have proven to decrease wayfinding 

difficulties (Peponis et al., 1990). 

- Integration value quantifies to what extent each space is 

directly or indirectly connected to other spaces. People 

naturally move to the most integrated nodes when 

navigating through a building (Peponis et al., 1990). 

- Probability of path choice at an intersection, i.e. the 

weighing of which paths are most likely to be taken. An 

uneven distribution of probability exists at each 

intersection, especially given the fact that more 

integrative spaces naturally gather more people (Peponis 

et al., 1990). 

- Number of visible decision points. Unfamiliar 

participants during the initial exploration of a building, 

rely mostly on local topological qualities, such as how 

many additional decision points could be seen from a 

given node (Haq & Zimring, 2003). 

 

As the individual importance and weighing of the parameters 

still has to be decided on, we currently use this benchmark set 

as a way to analyze several example routes that have been 

calculated (see section 4.2.2). A more elaborate evaluation 

has been planned as future work and as input for adjusting the 

initial cognitive algorithm. 

 

4.2 Analysis of least risk paths within indoor space 

4.2.1 Analysis of the entire dataset: The entire dataset 

consists of more than 600 nodes and more than 1300 edges. 

This required a computation of almost 800.000 paths to 

exhaustively calculate all possible paths between all nodes 

for both the SP and LRP algorithm. 

 

As stated before, we would like to investigate whether least 

risk paths have a similar advantage to shortest paths in terms 

of navigational complexity as in outdoor space. Given the 

definition of least risk paths, we put forward the following 

hypotheses:  

1. Length(LRP) ≥ Length(SP): measure of detour for the 

wayfinder for choosing a path that is less difficult to get 

lost on. 

2. RV(LRP) ≤ RV(SP): least risk paths will more likely 

take routes with fewer intersections and longer edges. 

The shortest path will go for the most direct option 

ignoring the complexity of the individual intersections. 

3. TotalRV(LRP) ≤ TotalRV(SP): minimization criterion 

for the LRP algorithm. 

Above aspects are analyzed in the following paragraphs by 

comparing paths calculated by both the LRP and SP 

algorithm. These results aim to provide an indication of the 

balance struck by the different algorithms between the desire 

for direct routes and less risky routes. 

 

On average, the difference in path length for least risk paths 

is around 4,5m with a decrease in risk value of 15,5m. These 

values (Fig. 2) align with the hypothesis stated before, with 

an increase in risk values for shortest paths and an increase in 

path length values for least risk paths. 

 
Total Cost 

Difference (m)

Length 

Difference (m)

Risk Value 

Difference (m)

Average 11,11 -4,47 15,59

Min 0,00 -74,63 0,00

Max 135,48 0,00 145,73  
Figure 2: Comparison of the results of LRP versus SP 

algorithm over the entire indoor dataset. 

 

Over the entire dataset, a least risk path is on average 4% 

longer than its respective shortest path. Although 55% of 

least risk paths are longer than the shortest paths, the majority 

(almost 99%) of the paths are less than a quarter longer. A 

classification of the path differences between shortest and 

least risk paths is shown in Fig. 3. 
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LengthIncrease Nr of paths % of total paths

Equal 161613 46,74%

5% or > 96491 27,90%

10% or > 45718 13,22%

25% or > 4522 1,31%

50% or > 159 0,05%

Total 345785 100,00%  
Figure 3: Classification of paths 

 

The average path lengths of the shortest and least risk paths 

were almost equal (109,22m to 113,69m with standard 

deviations of 45,89m and 48,74m respectively), intensifying 

the found limited differences on a whole between shortest 

and least risk paths in indoor spaces. 

 

Fig. 4 summarizes the entire data set of paths and its 

individual differences. More specifically, it visualizes the 

spatial distribution of the standard deviation for all least risk 

paths starting in that point. The standard deviations have been 

classified in five quintiles, similar to Duckham and Kulik’s 

(2003) analysis. The figure shows generally low standard 

deviations (blue data points) on the first floor and in lesser 

connected areas of the building. The higher standard 

deviations (dark red data points) generally occur on the 

ground floor in denser connected areas and around staircases 

both on the ground and first floor. This greater variability can 

be interpreted as a result of the deviations of the least risk 

path from the shortest path being more pronounced at the 

rooms with many options like around staircases where paths 

can be significantly different in the final route. Starting 

locations within isolated areas (e.g. on the first floor) have no 

option but to traverse similar areas to reach a staircase and 

deviate from there onwards. Note that at this point elevators 

are not included in our dataset. 

 
Figure 4: Spatial distribution of the standard deviation of 

normalized least risk path lengths (floor 0 (top) and 1 

(below)) 

 

The ground floor standard deviations are generally larger due 

to a network with higher complexity and connectivity. This 

trend can also be detected in the classification of the paths 

and their respective increase in length by choosing a less 

risky road. 80% of least risk paths with a length increase of 

50% or more are found on the ground floor, while half of the 

paths on the first floor are equal to their respective shortest 

path. 

 

4.2.2 Analysis of selected paths: In this section, a few 

example paths are highlighted for further analysis. In Fig.5, 

an example shortest and least risk path is calculated and 

visualized, showing a significant difference in path choice. 

Both the starting and the end point are on the ground floor of 

the building.  

 
Figure 5: Comparison of a typical shortest and least risk path 

 
We used the previously defined benchmark parameter set to 

further analyze the differences between the LRP and SP in 

this example (Fig. 6). For the parameters used in the 

algorithm itself, the results are as expected: the total risk 

value for the least risk path is lower compared to the SP 

algorithm with a considerable lower risk value at the decision 

points. The least risk path is 43% longer than the shortest 

path, which minimizes its total length. For all the other 

benchmark parameters, the LRP algorithm performs worse in 

terms of choosing less risky edges. For example, the shortest 

path has 7 turns in its description, while the least risk path 

requires 12 turns. The number of curves in the total route is 

also higher in the result of the LRP algorithm. The chosen 

corridors in the LRP algorithm are generally less integrated, 

with less visibility towards the next decision points and a 

higher route complexity. 

 

 
Figure 6: Comparison of the parameters between an example 

shortest and least risk path 

 

These results indicate a less comfortable (and much longer!) 

route traversing for unfamiliar users compared to the shortest 

path which completely undermines the initial intentions of 

the LRP algorithm to produce easier and less risky roads. 

This is a perfect example of why the LRP algorithm might 

need to be differently implemented especially in indoor 

spaces.  

 

A comparison of the lengths of the least risk and shortest 

paths for one set of paths from a single source to every other 

vertex in the data set is shown in Fig. 7. The figure provides a 

Shortest path 

algorithm

Least risk path 

algorithm

Risk values of decision points (average; m) 274,27 166,36

Risk value of the entire path (m) 445,07 411,79

Route efficiency (length of path segments; m) 170,80 245,43

Route complexity (number of turns) 7 12

Route complexity (number of streets) 6 13

Number of curves 0 3

Width of corridors (m) 3,2 3,2 and 2

Redundancy 29 37

Number of visible decision points at each decision point (average) 5,17 4,68
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scatter plot of the normalized least risk path length (the ratio 

of least risk to shortest path lengths), plotted against shortest 

path length. In this example, more than 98% of the least risk 

paths are less than 50% longer than their corresponding 

shortest paths. 

 

 
Figure 7: Graph of the ratio of least risk on shortest path 

length to the shortest path length 

 

Most paths are (almost) similar in length to its shortest path 

equivalent. Often only a small change in path choice can be 

found with a difference of only a couple of nodes compared 

to the shortest path. On the other hand, the strongly correlated 

stripes going from top left to bottom right in the graph exhibit 

blocks of correlated paths with very similar path sequences 

throughout their entire route. These occur because many 

adjacent nodes are required to take similar edges to reach 

their destination. This can also be seen in Fig. 5. The nodes 

within the dashed rectangle all take the same route for both 

their least risk and shortest path, resulting in connected ratios 

in Fig. 7. 

 

4.2.3 Analysis of path sequences: In previous analyses, 

the overall differences in path length and risk value have 

been compared. In this section, we focus on the actual paths 

themselves in more detail, by trying to calculate the 

correlation of the entire route between shortest and least risk 

paths. How much alike or different are the actual paths in 

terms of node and edge use? 

 

In a first analysis, we calculated for each edge the number of 

times all paths from a certain source node pass by this edge 

and this for both the SP and the LRP algorithm. The result is 

a map showing the use of each edge by varying line 

thickness. As an example, Fig. 8 (at the back of the paper) 

shows this calculation for all paths starting in source node 

1086 (a room in the upper left corner on the first floor). This 

map shows a significant difference in the resulting choice of 

paths between SP and LRP algorithm, even though the 

average path length and risk value difference is respectively 

limited to 7,7m and 13,9m which is in line with the limited 

differences found over the entire dataset. More in detail, in 

the Dijkstra case, from the source node a large amount of 

paths stay on the first floor to go to a more southern located 

staircase and deviate from there to the specific rooms. For the 

LRP algorithm, to access the same nodes in the southern part 

of the building on the ground floor, a large amount of paths 

immediately descend to the ground floors and choose a 

specific corridor and outdoor area to find their way through 

the building. Additionally, nodes that have limited path 

choice generally take the same path in both cases (for 

example the northeast corner and middle/middle-east corridor 

on 1st floor). This effect was also visible in the scatter plot 

(Fig. 7). Remarkable are the similar choices in paths for areas 

in the southwestern corner of the ground floor that take the 

same staircase. These results imply that the location of the 

stairs is of major importance in the selection of the paths. 

 

In a second analysis, we computed the number of nodes that 

are equal between shortest and least risk path for each node to 

a certain source node (i.e. the Jaccard similarity coefficient 

for each path). The result is the ratio of the number of equal 

nodes divided by the total number of nodes of the respective 

path for the Dijkstra algorithm. Fig. 9 shows the Jaccard 

index for paths with source node 1086. 

 
Figure 9: Jaccard index showing the path differences in usage 

of nodes (floor 0 (top) and 1 (below)) 

 

The results confirm the previously mentioned importance of 

stairs in path choice. Also, areas that are alike in path flow 

have similar ratios. A low equality of nodes can be found on 

the ground floor (southern middle part) as the paths take a 

significant different route (use of different staircase). A 

surprising low equality can also be found on the first floor 

(south middle part) which is not entirely visible on the flow 

map due to the small amount of paths in that area. The results 

from both analyses also confirm the fact that neighboring 

nodes often have similar path structures (with here and there 

a single boundary node difference). Also, the distance to the 

source node influences to a certain degree the path 

differences found in this comparison. 

 

4.3 Analysis of indoor least risk paths compared to the 

results in outdoor space 

In this section, we want to investigate whether our results of 

the calculations in indoor space are similar to those from 

outdoor space. 

 

A comparison with the result obtained by Grum (2005) is 

difficult as the author only calculated a single path in outdoor 

space. In both the indoor and outdoor examples, the total risk 

value for the least risk path is minimal and the length is 

longer than its shortest path. The outdoor least risk path is 9% 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W1, 2013
ISPRS Acquisition and Modelling of Indoor and Enclosed Environments 2013, 11 – 13 December 2013, Cape Town, South Africa

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W1-19-2013 23



 

longer than the shortest path, while in our dataset an average 

increase of 4% is detected. Applying the benchmark set to 

several indoor examples revealed riskier paths when using 

the LRP algorithm (compared to SP algorithm indoor), while 

the least risk path in the outdoor dataset is indeed the less 

risky choice applying the benchmark analysis. An 

explanation could be that the author only works with a 

limited outdoor dataset. Also, the least risk path indoor might 

have a different connotation because of the description of the 

indoor network. Due to the transformation of the corridor 

nodes to a linear feature with projections for each door 

opening, the network complexity is equivalent to a dense 

urban network. However, the perception for an indoor 

wayfinder is totally different. While in outdoor space each 

intersection represents a decision point; in buildings, the 

presence of door openings to rooms on the side of a corridor 

is not necessarily perceived as a single intersection where a 

choice has to be made. Often these long corridors are 

traversed as if they were a single long edge in the network. 

 

Simplest paths have similarly to least risk paths the idea of 

simplifying the navigation task for people in unfamiliar 

environments. The cost function in both simplest and least 

risk paths accounts for structural differences of intersections, 

but not for functional aspects (direction ambiguity, landmarks 

in instructions…) like the simplest instructions algorithm 

(Richter & Duckham, 2008). However, the simplest path 

algorithm does not guarantee when taking one wrong 

decision that you will still easily reach your destination, 

while the LRP algorithm tries to incorporate this with at the 

same time keeping the complexity of the instructions to a 

minimum. Several of the comparison calculations are similar 

to the ones calculated for simplest paths (Duckham & Kulik, 

2003). At this point, we cannot compare actual values as it 

covers a different algorithmic calculation. In the future, we 

plan to implement the simplest path algorithm also in indoor 

spaces. However, it might be useful at this point to compare 

general trends obtained in both. 

 

With regard to the variability of the standard deviations (Fig. 

4) similar conclusions can be drawn. At the transition 

between denser network areas and more sparse regions, the 

variability tends to increase as a more diverse set of paths can 

be calculated. The sparse and very dense areas have similar 

ratios showing similar network options and path calculations. 

The worst-case example can also be compared to a worst-

case dataset of the outdoor simplest path. A similar trend in 

‘stripes’ as found in the graph in Fig. 7 is also found in the 

outdoor simplest path results, also due to sequences of paths 

that are equal for many adjacent nodes (Duckham & Kulik, 

2003). 

 

 

5. RECOMMENDATIONS FOR ADJUSTING THE 

LEAST RISK PATH ALGORITHM 

The previous analyses have shown multiple times that the 

calculated least risk paths are actually not less risky than its 

shortest path equivalent in indoor environments. Therefore, 

adjustments to the original definition of the algorithm are 

required to be more in line with the indoor situation. These 

will be tested in future research as to result in a more 

cognitively accurate algorithm for wayfinding in indoor 

spaces.  

 

Currently, the risk value of a decision point is calculated 

based on the assumption that the wayfinder recognizes his 

mistake at the first adjacent node and returns from there to 

the previous node. However, is it actually realistic that people 

already notice at the first intersection that they have been 

going wrong? An increasing compounding function could be 

suggested taking into account the possibility of going further 

in the wrong direction. Also, depending on the environmental 

characteristics, the chances of noticing a wrong decision can 

change dramatically. For example, signage and landmarks 

can help, but there appearance and understanding by the user 

is highly unpredictable. Additionally, the fact that you have 

to walk up and down staircases (or taking an elevator) could 

be naturally having a greater weight because taking a wrong 

decision might result in walking up and down the stairs twice. 

On the other hand, chances of taking a wrong decision by 

changing floors are likely to be slimmer given the effort for 

vertical movement and a changed cognitive thinking. 

 

In line with this last point, wayfinding research (Hölscher et 

al., 2009) has shown that people’s strategy choice indoors 

varies with different navigation tasks. Tasks with either a 

floor change or a building part change result in no problems, 

with the participants first changing to the correct floor or 

building part. However, for tasks with changes in both 

vertical and horizontal direction, additional information is 

required to disambiguate the path choice. An algorithm that 

wants to minimize the risk of getting lost necessarily needs to 

account for these general indoor wayfinding strategies as they 

correspond to the natural way of multilevel building 

navigation for all types of participants. 

 

In the current implementation of the LRP algorithm, both the 

length of the path as well as the sum of the risk values at 

intermediate decision points have an equal weight in the 

calculation of the total risk value. Varying the individual 

weight of both parameters might results in a more cognitively 

correct calculation of the indoor least risk paths. Also, a more 

sophisticated algorithm could select routes that preferentially 

use more important or higher classified edges. 

 

As previously mentioned, the description of the indoor 

network has a large influence on the results of the least risk 

comparisons. The introductions of many dummy nodes in 

front of doors that are not perceived as intersections, 

introduces a complexity in the risk value calculation, which 

seems to heavily influence our results. Therefore, the second 

stage of this research will investigate the importance and size 

of this dependency of the performance of cognitive 

algorithms on the indoor network topology. 

 

 

6. CONCLUSIONS 

In this paper, the LRP algorithm as developed by Grum 

(2005) in outdoor space is implemented and tested in an 

indoor environment. Analyses on our indoor dataset revealed 

the following conclusions. First, only a limited average 

increase in path length is found compared to the shortest 

paths in return for theoretically less risky paths. Second, 

deviations from the least risk path compared to the shortest 

path were mostly recognized at nodes with many decision 

points (e.g. around staircases). Those staircases appeared to 

be also of major importance for the selection of paths in the 

correlation analysis. Third, a benchmark parameter set was 

deducted from wayfinding literature to objectively qualify the 

‘riskiness’ of the least risk paths. Several examples have 

proven that the least risk path is not necessarily less risky 

than its shortest path equivalent. On the contrary, in one of 
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the examples, the shortest path would still be preferred over 

the least risk path. Fourth, comparisons of our results to the 

outdoor variant are difficult due to limited data outdoor. 

However, a similar increase in length has been found.  

 

Our main conclusions from the analyses indicate that 

improvements to the indoor variant of the LRP algorithm are 

necessary, given the complexity of the current least risk 

paths. Changes in the calculation of the risk value, together 

with a weighing of the parameters will be tested. The 

benchmark parameter set will be implemented to test more 

paths in the future and will also be used to adjust and 

compare the improvements to the improved LRP algorithm. 

Finally, the influence of the network structure will be 

investigated in future research in a search for optimizing the 

algorithm to be more compliant to the cognitive notion of 

indoor wayfinding. 
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Figure 8: Path use of shortest path and least risk path algorithm for source node 1086 (floor 0 and 1) 
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