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ABSTRACT: 
 
With the continuous development of satellite techniques, it is now possible to acquire a regular series of images concerning a given 
geographical zone with both high accuracy and low cost. Research on how best to effectively process huge volumes of observational 
data obtained on different dates for a specific geographical zone, and to exploit the valuable information regarding land cover 
contained in these images has received increasing interest from the remote sensing community. In contrast to traditional land cover 
change measures using pair-wise comparisons that emphasize the compositional or configurational changes between dates, this 
research focuses on the analysis of the temporal sequence of land cover dynamics, which refers to the succession of land cover types 
for a given area over more than two observational periods. Using a time series of classified Landsat images, ranging from 2006 to 
2011, a sequential pattern mining method was extended to this spatiotemporal context to extract sets of connected pixels sharing 
similar temporal evolutions. The resultant sequential patterns could be selected (or not) based on the range of support values. These 
selected patterns were used to explore the spatial compositions and temporal evolutions of land cover change within the study region. 
Experimental results showed that continuous patterns that represent consistent land cover over time appeared as quite homogeneous 
zones, which agreed with our domain knowledge. Discontinuous patterns that represent land cover change trajectories were 
dominated by the transition from vegetation to bare land, especially during 2009–2010. This approach quantified land cover changes 
in terms of the percentage area affected and mapped the spatial distribution of these changes. Sequential pattern mining has been 
used for string mining or itemset mining in transactions analysis. The expected novel significance of this study is the generalization 
of the application of the sequential pattern mining method for capturing the spatial variability of landscape patterns, and their 
trajectories of change, to reveal information regarding process regularities with satellite imagery.  
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1. INTRODUCTION 

Land use and land cover change are becoming increasingly 
recognized as important drivers of global environmental change 
(Turner et al., 2007). The characteristics of land cover can have 
important effects on the local climate, radiation balance, 
biogeochemistry, hydrology, and the diversity and abundance 
of terrestrial species (Randerson et al., 2006). Therefore, the 
study of land cover change is an important problem within the 
geoscience domain. Advances in earth observation technologies 
have led to the acquisition of vast volumes of accurate, timely, 
and reliable environmental data, which encompass wide-
ranging information about the earth’s land, ocean, and 
atmosphere (Karpatne et al., 2013). Remote sensing imagery 
consisting of satellite-based observations of the land surface, 
biosphere, solid earth, atmosphere, and oceans, combined with 
historical climate records and predictions from ecosystem 
models, offer new opportunities for understanding how the 
earth is changing, determining the factors causing these changes, 
and predicting future changes (Boriah et al., 2009). Therefore, 
remote sensing satellite imagery has emerged as the most useful 
data source for characterizing and quantitatively measuring 
landscape-scale land cover changes (Hudak and Wessman, 
1998).  
 
Detecting and characterizing change over time is the natural 
first step towards identifying the drivers of the change and 

understanding the change mechanism (Verbesselt et al., 2010). 
Satellite remote sensing has long been used as a means of 
detecting and classifying temporal changes in the condition of 
the land surface (Coppin et al., 2004; Lu et al., 2004). Satellite 
sensors are well suited to this task because they provide 
consistent and repeatable measurements on a spatial scale 
appropriate for capturing the processes of change (Jin and Sader, 
2006). A given scene may be observed repeatedly from space, 
resulting in a times series of satellite images. The high spatial 
resolution of current sensors provides detailed information on 
spatial structures, which after a series of revisits, can be 
extended to spatiotemporal data structures. It follows that a time 
series of satellite images represents a highly complex data set 
that potentially contains valuable spatiotemporal information 
(Gueguen and Datcu, 2007).  
 
Although the value of remotely sensed long-term data sets to 
change detection has been firmly established (De Beurs and 
Henebry, 2005), only a limited number of time-series change-
detection methods have been developed. Most previous change-
detection studies have relied primarily on examining the 
differences between two or more satellite images acquired on 
different dates (Boriah, 2010). These procedures can be 
categorized into three types. Procedures of the first category 
identify simple proportional differences of certain classes 
within a certain area between two points in time without being 
spatially explicit (Godoy and Contreras, 2001; Sierra, 2000). 
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The second category procedures involve the calculation of 
annual rates of change between end-member periods (Lambin 
and Ehrlich, 1997; Puyravaud, 2003). Methods in the third 
category quantify changes in the spatial configuration and 
composition of land cover on multiple dates using pair-wise 
comparisons (Mertens and Lambin, 2000; Schneider, 2012). 
One limitation of these methods is the inadequacy of detailed 
observation and discrimination of the process of land cover 
change. Actually, temporally, the change process of land cover 
types can be viewed as a trajectory, which highlights the 
dynamic character of change (Petit et al., 2001). By analyzing 
change trajectories, we can investigate the detailed dynamics of 
change processes (i.e., sequences of successive changes in land 
cover types). However, such methods used for analyzing 
change trajectories can usually be found for use with green 
cover; for example, vegetation (Cai and Wang, 2010), cropland 
(Liu et al., 2005), forest land (Chen et al., 2012; Gimmi et al., 
2010; Kennedy et al., 2007; Lambert et al., 2011), and 
grassland (Dubinin et al., 2010; Dusseux et al., 2011) research. 
These methods are rarely applied in the change analysis of other 
land cover types. Therefore, there is an urgent need for a new 
universal technique for transforming remote sensing data into 
information on the patterns and processes of land cover change. 
The effective use of a satellite image time series to characterize 
and monitor land cover change trajectories requires the analysis 
of temporal variations in spatial patterns (Henebry and Goodin, 
2002). When analyzing a sequence of items, one basic problem 
to be addressed is to find frequent episodes (Mannila and 
Toivonen, 1996.), or in other words, to extract regular patterns 
from temporal data. Therefore, there is a critical need for a 
method that can enable efficient and reliable characterization of 
spatiotemporal patterns contained in an image time series 
(Henebry and Goodin, 2002). Mining sequential and spatial 
patterns is an active area of research in artificial intelligence 
(Le Ber et al., 2006), and it has been used for string mining or 
itemset mining in transactions analysis. The objective of this 
study is the generalization of the application of the sequential 
pattern mining method for capturing the spatial variability of 
landscape and their temporal trajectories of change, to reveal 
information regarding process regularities with satellite imagery. 
In this study, a sequence of repeated satellite images of the 
same scene was used to establish the land cover change 
sequence set, and a typical sequence mining algorithm—the 
Continuous Association Rule Mining Algorithm (CARMA)—
used on this sequence set to analyze the land cover change in 
the form of change patterns.  
 
This article is organized as follows. Section 1 discussed the 
significance of land cover change and introduced the objectives 
of this study. Section 2 covers the sequential pattern mining 
method and Section 3 presents a case study and an analysis of 
the results. Finally, Section 4 discusses the principal findings 
and offers our conclusions. 
 

2. METHODOLOGY  

The methodology used in this study includes remote sensing 
image processing, spatial analysis, and image data mining. In 
addition to image pre-processing and remote sensing image 
classification, a sequential pattern mining method is applied in 
the analysis of land cover change, which forms the main part of 
the research. Therefore, in this section, the sequential pattern 
mining method based on the CARMA algorithm is introduced. 
First, some basic concepts of pattern mining are provided in 

Section 2.1, followed by an introduction to the CARMA 
algorithm in Section 2.2. 
 
2.1 Basic concepts 

Let I = {I1,I2,…,Ip} be the set of all items; a set of items is 
referred to as an itemset and a sequence is an ordered set of one 
or more itemsets. For example, in a sequence s = <e1,e2,…,ej>, 
itemset e1 shows before e2, and e2 shows before e3, and so on. 
Itemset ej is also an element of the sequence s denoted as 
(x1,x2,…,xq) in which xq ∈  I

 
. A sequence that contains k 

itemsets is a k-sequence. If there exists 1 ≤ i1 < i2 <…< in ≤ m 
such that 

1 21 2, ,...,
ni i n ia b a b a b⊆ ⊆ ⊆  appears in sequence 

1 2, ,... nA a a a= 〈 〉  and sequence 1 2, ,... mB b b b= 〈 〉 , then it is said 
that A is contained in B (denoted as A B⊆ ). A set of 
sequences is referred to as a sequence set. In a sequence set, if a 
sequence s is not contained in any other sequence, then s can be 
called the largest sequence. Additionally, in the sequence set, 
the number of sequences that contain s is known as the support 
of s (written as sup(s)). In the mining process, if a sequence 
satisfies the pre-determined minimum support, then it is a 
frequent sequence. Sequential pattern mining is the mining of 
the largest sequences from the frequent sequences in a sequence 
set, and the sequences found by sequential pattern mining can 
be called the sequential pattern. In a sequential pattern 
s = <e1,e2,…,ej>, sequence s’ = <e1,e2,…,ej-1> is called the 
antecedent and sequence s” = <ej> is called the consequent. 
The confidence for a sequential pattern can be defined as the 
ratio of sup(s) to sup(s’). The confidence for each generated 
sequential pattern should be calculated and those sequential 
patterns for which confidence is larger than the minimum 
confidence threshold are recognized as more interesting (or 
more useful for us) than the other sequential patterns.  
 
2.2 CARMA algorithm 

2.2.1 First part of CARMA 
For the first step, the main target is to form a set V of all 
potentially large itemsets in a lattice. There are three parameters 
for each itemset in the lattice: Count(v), firstTrans(v), and 
maxMissed(v). The meanings of these three parameters are 
introduced below and shown in Fig. 1: 

Count(v): the number of occurrences of itemset v since v 
was inserted in the lattice.  

firstTrans(v): the index of the sequence data at which v was 
inserted in the lattice. 

maxMissed(v): upper bound on the number of occurrences 
of v before v was inserted in the lattice. 

 
The construction of the lattice is shown in Table 1: 

 
Itemset Count firstTrans maxMissed 
i1 Count(i1) firstTrans(i1) maxMissed(i1) 
i2 Count(i2) firstTrans(i2) maxMissed(i2) 
… … … … 
ik Count(ik) firstTrans(ik) maxMissed(ik) 

 
Table 1. Example of the lattice 

 
In Figure 1, t1,t2,…,tn are the sequences in the database. When tj 
was under the scan process, itemset v was inserted into V. 
Suppose we are reading sequence ti; therefore, maxMissed(v) 
means the number of occurrences of v from t1 to tj-1, the value 
of firstTrans(v) is j, and Count(v) means the number of 
occurrences of itemset v from tj to ti. For any itemset v in the 
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lattice, we get a deterministic lower bound Count(v)/i and upper 
bound [maxMissed(v) + Count(v)]/i. We denote these bounds 
by minSupport(v) and maxSupport(v), respectively. 
 

 
 

Figure 1. Scan of the equence database 
 
First, we initialize V to {ø} and set Count(ø) = 0, 
firstTrans(ø) = 0, and maxmissed(ø) = 0. Thus, V is a support 
lattice for an empty sequence. Suppose V is a support lattice up 
to sequence i-1, we are reading the i-th sequence ti, and we 
want to transform V into a support lattice up to i; there are three 
steps to go through. 
 
First, for each itemset v in V, if v is contained in ti, let 
Count(v) = Count(v) + 1.We insert a subset v of ti into V, if and 
only if all subsets w of v are already contained in V and satisfy 
maxSupport(w) ≥ σi (where σi is the current user defined 
support threshold). As v is contained in the current sequence ti, 
let Count(v) = 1, firstTrans(v) = i, and we compute the value of 
maxMissed(v). As w is a subset of v, we obtain 
maxSupport(w) ≥ maxSupport(v).  
Second, for maxSupport(w) = [maxMissed(w) + Count(w)]/i, 
maxSupport(v) = [maxMissed(v) = Count(v)]/i and Count(v) = 1; 
therefore, we obtain 
maxMissed(v) ≤ maxMissed(w) + Count(w) - 1. When we are 
inserting a subset v into V, the set v is not yet contained in V. 
Hence, the support of v for the first (i-1) sequences satisfies 

supporti-1(v) -1 1

1
avg ( )

1i i

v
i

σ −

−
≤ ⎡ ⎤ +

−
 , where v  means the 

number of items in v. In addition, considering 
maxMissed(v) = supporti-1(v) × (i – 1), we obtain 

1 1maxMissed( ) 1 avg 1i iv i vσ− −≤ ⎣( − ) (⎡ ⎤ )⎦ + −  . Based on all of 
the above, we can define that 

{ }1 1max Missed( ) min 1 avg 1,maxMissed( ) count( )-1i iv i v w w w vσ− −= ⎣( − ) (⎡ ⎤ )⎦ + − + ⊂ . 
And third, We compute maxSupport = (maxMissed + Count)/i 
for each itemset v of V when every k sequences (the value of k 
is defined by the user) are scanned. For any itemset v whose 
maxSupport < σi, we delete v from V. 
 
2.2.2 Second part of CARMA 
 
For the second step, the main aim is to scan the sequences a 
second time and generate sequential patterns based on the 
frequent sequences found in the first part of CARMA. In the 
second step, we compute the precise support of all itemsets v in 
V and continually remove itemsets with maxSupport < σn where 
σn is the last threshold of minSupport. While performing the 
scanning, all itemsets v of V are checked and the parameters 
associated with v updated. Two situations may arise:first, if 
firstTrans(v) < i, then v is considered as a large itemset. If the 
current sequence index is past firstTrans for all itemsets in the 
lattice, the second part of the CARMA algorithm stops. And 
second, if the current sequence contains itemset v of V, we set 

Count(v) = Count(v) + 1 and maxMissed(v) = maxMissed(v) - 1, 
and if firstTrans(v) = i, we set maxMissed(v) = 0. However, 
setting maxMissed(v) = 0 for an itemset v, might yield 
maxSupport(w) > maxSupport(v) for some superset w of v. Thus, 
we set maxMissed(w) = Count(v) – Count(w) for all supersets w 
of v with maxSupport(w) > maxSupport(v). We also remove the 
itemsets v from V with maxSupport < σn. 
 
From all the above, it is clear that CARMA only requires two 
scans of the sequences to obtain the sequential pattern. 
 
2.3 Data 

A time series of Landsat TM images, path 123/row 32, for 
2006–2011 were selected as the data source (Table 2). The 
chosen acquisition time was June–July; this corresponds to the 
spring and summer for most areas in northern China, which are 
the best seasons for analyses of land cover change. Satellite 
data used in the experiment were all downloaded free of charge 
from two websites, http://ids.ceode.ac.cn/ and 
http://glovis.usgs.gov/.  
 

Image data Acquisition date 
I 7.12.2006 
II 5.28.2007 
III 5.30.2008 
IV 7.20.2009 
V 6.5.2010 
VI 6.8.2011 

 
Table 2. Acquisition time of the six Landsat TM images used in 
the experiment 
 
As cloud and fog can seriously affect the results of the mining, 
we chose the northern part of Beijing as the study area, which 
was clear in all six images (Figure 2).  
 

 
 
Figure 2. Overview of study area, (a) location of Beijing within 
the People's Republic of China, (b) location of  the study area 
within Beijing 

 
2.4 Experimental Procedure 

For the rational and effective analysis of land cover changes, 
after the image pre-processing, we firstly classified the six time-
series images of the study area into land cover maps. Secondly, 
based on the land cover map, we constructed the image 
sequence set within which each sequence is a land cover class 
trajectory at pixel level that is described through the classified 
images assembled in the time series. Thirdly, we applied the 
sequential pattern mining algorithm to the image sequence set 
to search for sequential patterns. Finally, we analyzed some 
interesting sequential patterns to reveal the trajectory of land 
cover change and evaluated the degree of change. The 
flowchart of the experimental procedure is shown in Figure 3. 
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Figure 3. The flowchart of the experimental procedure 
 

2.5 Pre-processing and classification 

The pre-processing steps included atmospheric correction, 
geometric correction, and data format conversion. Landsat TM 
image from 2011, obtained from the United States Geological 
Survey, is orthorectified and therefore, it was selected as the 
master or reference data for geometric correction. Ground 
control points were collected from the reference image for 
rectifying the remaining images from 2006 to 2010 (i.e., 
relative registration) (Kennedy and Cohen, 2003). In this paper, 
the Gauss-Kruger projection was used in the geometric 
correction, and a minimum of 20 evenly distributed ground 
control points were selected to ensure geometric precision of 
0.5 pixel (<15 m) for all images. Thus, all the data were 
arranged in the same coordinate system to form a data set with 
consistency and integrity, suitable for spatial and sequential 
comparative analyses. 
 
For image classification, we used eCognition software, and for 
visualization, the band composite included bands 5, 4, and 3 in 
the TM data, shown as red, green, and blue, respectively. 
Because differences and disagreements may appear in the 
classification process when interpreting land cover types, the 
classification for all six remote sensing images was undertaken 
by a single expert in a manner combining software and manual 
techniques. The land cover types were classified into four 
categories: built-up area, vegetation, bare land, and water 
bodies, using a modified Anderson land cover classification 
scheme (Anderson, 1976). After all the pre-processing steps, the 
original digital number values for every pixel in the six images 
were transformed into the value of land cover type. Then, the 
land cover types or classes were converted into symbols. The 
experiment used four characters "1”, “2”, “3”, and “4" as a 
representation for built-up area, bare land, vegetation, and water 
bodies, respectively. The classification results are shown in 
Figure 4 and the statistical results for the classification are 
shown in Table 3. 
 

 
 
Figure 4. (a) Original satellite image of the study area, (b)-(g) 
the classification results of the study area from 2006 to 2011 
 

    
Land cover 
types 1 2 3 4 

2006

Number of 
pixels 590487 525164 2735895 148454
Percentage of 
the research 
area (%) 14.76 13.13 68.40 3.71 

2007

Number of 
pixels 848970 638272 2362560 150198
Percentage of 
the research 
area (%) 21.22 15.96 59.06 3.76 

2008

Number of 
pixels 879715 275484 2692544 152257
Percentage of 
the research 
area (%) 21.99 6.89 67.31 3.81 

2009

Number of 
pixels 900253 889216 2071981 138550
Percentage of 
the research 
area (%) 22.51 22.23 51.80 3.46 

2010

Number of 
pixels 1094414 679474 2094474 131638
Percentage of 
the research 
area (%) 27.36 16.99 52.36 3.29 

2011

Number of 
pixels 1330093 510013 2039183 120711
Percentage of 
the research 
area (%) 33.25 12.75 50.98 3.02 

 
Table 3. Statistical results for the classification of the six remote 
sensing images 
 
Considering the image from 2006 as an example: 590487 pixels 
were interpreted as built-up area, ac Counting for up to 14.76% 
of the research area; 525164 pixels were interpreted as bare 
land, ac Counting for 13.13% of the research area; and 2735895 
and 148454 pixels, ac Counting for 68.40% and 3.71% of the 
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research area were interpreted as vegetation and water bodies, 
respectively. 
 
Because of the lack of quality ground data, it is difficult to 
quantify the error in classifications at the pixel level (Foody, 
2002), especially for multi-temporal analysis (Lunetta, 1999). 
Although the classification accuracy of year 2011 and year 
2010 nearly reached 87% and 85%, the degree of uncertainty is 
not possible to quantify. 
 
2.6 Construction of land cover change sequence set 

An image time series portraying the same scene can be 
transformed into a landscape trajectory by decomposing the 
sequence image-by-image and projecting it as a time-ordered 
series of coordinates in a pattern metric space (Henebry and 
Goodin, 2002). In our research, as land classes were converted 
to symbols, a categorical land cover change sequence set that 
contains the pixel history, or the land cover trajectory, at the 
pixel-level, was created by obtaining each sequence for every 
pixel transition. Suppose the classification results for the pixel 
located in position (1, 1) in the image is vegetation in year 2006, 
vegetation in 2007, vegetation in 2008, bare land in 2009, bare 
land in 2010, and built-up area in 2011; then, the land cover 
change sequence for this pixel can be denoted as “333221”. 
Therefore, the land cover change sequence set can be generated 
by copying the land cover change sequence sequentially for 
each pixel in the study area from the beginning of the image to 
the end. 
 
2.7 Sequential pattern mining 

To identify the typical land cover changes within the six-year 
period, sequential pattern mining was performed on the 
constructed land cover change sequence set. In the mining 
process, the two most important parameters are the support and 
confidence of the sequence mode. We selected a number of 
different combinations to establish the most appropriate support 
and confidence values and tested the resultant sequential 
patterns, as shown below. 
 

 
 
Figure 5. Performance comparison of different values for the 
CARMA parameters(“support” and “confidence”) 

 
In Figure 5, the numbers of generated patterns of different 
support tend to coincide as confidence increases. Therefore, in 
subsequent experiments, we selected a confidence level of 40% 
and a support rate of 0.02% as the parameters for the sequential 
pattern mining. To select the most representative land cover 
change patterns in the different periods, the resultant patterns 
were subdivided into two types. If the support rate of a pattern 
was more than 0.1%, it was considered as a selected pattern; if 

not, it was not selected. Furthermore, to characterize the 
direction of change, a distinction was made between continuous 
and discontinuous patterns within the selected patterns. 
Continuous patterns are characterized by pixels that belong to 
the same class (e.g.: 111111 and 222222), whereas 
discontinuous patterns are characterized by pixels that change 
class (e.g.: 111112, 121211) through time. 
 
2.8 Analysis 

For the study area, the mining process over the six images led 
to the identification of 118 sequential patterns, each with their 
own proportion. Table 4 presents the top ten land cover pixel 
trajectories, the support rates for which were more than 0.1%, 
and which were selected as land cover patterns.  
 

Pattern Support (%) Confidence (%) 

333333 44.30 83.43 

111111 12.83 58.56 

322322 3.97 67.71 

222322 2.92 53.39 

444444 2.58 80.19 

433333 0.80 52.55 

322423 0.60 40.79 

442444 0.17 71.83 

443444 0.17 68.07 

322422 0.10 70.98 

Total 68.44%  

 
Table 4. The resultant top 10 patterns 

 
Among all the resultant sequential patterns, the selected top 10 
patterns ac Count for 68.44% of the land cover change of the 
entire study area (Table 4). The remainder is spread among the 
other 108 patterns. Table 5 shows the composition of land cover 
change in the selected top 10 patterns for each year, which 
reveals that the land cover change trajectories are dominated by 
the transition from vegetation to bare land, especially during 
2009 to 2010. It also shows that during 2008 to 2009, the 
highest percentage (7.83%) of the area was affected by land 
cover change. 
 
Land 
cover 
change 

2006–
2007 

2007–
2008 

2008–
2009 

2009–
2010 

2010
–
2011 

Total 

2–3 0 0 6.89% 0 0.6% 7.49% 

2–4 0 0 0.77% 0 0 0.77% 

3–2 4.67% 0 0 6.89% 0 11.56%

3–4 0 0 0.17% 0 0 0.17% 

4–2 0 0.17 0 0.7 0 0.87% 

4–3 0.8% 0.17 0 0 0 0.97% 

Total 5.47% 0.34% 7.83% 7.59% 0.6% 21.83%

 
Table 5. Composition of land cover change in the selected top 
10 patterns 
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The percentage area of a land cover type involved in land cover 
change is illustrated in Table 6. From this table, we can 
conclude that the trajectories are dominated by transitions that 
contain vegetation, especially during 2009 to 2010, and that the 
most stable land cover type is built-up area. These conclusions 
are also interesting because they reflect our domain knowledge 
that vegetation is liable to change and built-up area are not. 
 

Land 
cover 

type in 
land 
cover 

change 

2006–
2007 

2007–
2008 

2008–
2009 

2009–
2010 

2010
–

2011
Total 

1 0 0 0 0 0 0 

2 0 0 7.66% 0 0.6% 8.26% 

3 4.67% 0 0.17% 6.89% 0 11.73%

4 0.8% 0.34% 0 0.7 0 1.84% 

Total 5.47% 0.34% 7.83% 7.59% 0.6% 21.83%

 
Table 6. Different land cover types contained in the land cover 
change 
 
Although the support and confidence in the mining process can 
help identify the sequential pattern, alone they are insufficient. 
Not all the resultant patterns can be considered as meaningful 
(i.e., to reflect the needs and interests of a particular user). 
Therefore, an analysis of pattern interestingness is essential for 
the resultant patterns. Typically, only the user can make a 
judgment of the degree of pattern interestingness, and this 
judgment is subjective. As the image sequence mining is a data-
driven model, it requires expert knowledge to analyze and 
interpret the semantic meaning of the generated sequential 
patterns. Therefore, we describe just a few interesting patterns 
for demonstration purposes. 
 
Among the selected patterns, three are continuous from 2006 to 
2011 and they jointly represent 59.71% of the study area. 
Therefore, the majority of the study area has remained in the 
cluster to which it belonged in 2006 for the duration of the 
entire time series. Considering the continuous pattern “111111” 
as an example, the spatial distribution of this pattern is shown 
as the pixels within the red area in Figure 6. The support of the 
pattern is 12.83%, and it shows that 86.9% of the built-up area 
of cluster 1 in 2006 still belonged to that same cluster in 2011, 
and that 38.59% of the built-up area in 2011 originated from 
that same cluster in 2006. Thus, the current land area share of 
the same cluster can have different histories. Thus, this method 
can provide new ideas and approaches for the study of urban 
development.  
 

 
 
Figure 6. Spatial distribution of the continuous pattern “111111” 
(in red) 
 
Considering the discontinuous pattern “442444” as an example, 
the support of the pattern is 0.17% and its spatial distribution is 
shown in Figure 7. 
 

 
 
Figure 7. (a)Spatial distribution of the discontinuous pattern 
“442444”(in red), (b) Partial enlarged image detail of (a) 
 
In Figure 7, the pixels within the red area represent the pattern 
“442444” and they are mainly located on the waterside of 
Miyun Reservoir. The “442444” pattern means that since 2006, 
except for 2008, the area represented by this pattern belonged to 
cluster 4 (water bodies). However, in 2008, this area belonged 
to cluster 2 (bare land). In other words, these areas were not 
covered by water at the end of May 2008 (the acquisition time 
of the image was May 30, 2008). Table 7 shows the end-of-year 
water storage of the Miyun Reservoir from 2006 to 2011, 
according to the “Beijing Water Resource Bulletin.” 
 

Year Water volume (billion cubic meters) 

2006 1.093 

2007 0.976 

2008 1.13 

2009 1.039 

2010 1.066 

2011 1.101 
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Table 7. End-of-year water storage of the Miyun Reservoir 

 
Compared with other years, the water storage of the Miyun 
Reservoir at the end of 2008 was significantly higher, which is 
not consistent with the obtained pattern “442444”. However, 
according to the Beijing Water Authority, the water level of the 
Miyun Reservoir was reduced to a minimum of 853.1 million 
cubic meters by the end of June 2008. The main flood season 
began in late July and by September 6, the water volume of the 
Miyun Reservoir exceeded one billion cubic meters. Therefore, 
because of the lower water level at the time of image 
acquisition, some additional bare land was exposed, which is 
reflected in “442444” pattern in the sequence mining results. 
 

3. CONCLUSION  

The method developed in this study has allowed the 
identification, classification, and spatial localization of land 
cover types and their trajectories of change for a temporal series. 
It quantified the land cover changes in terms of the percentage 
of area affected, as well as mapping the spatial distribution of 
these changes. It has also provided a different measure for the 
description of land cover change according to their current 
characteristics and history. The expected novel significance of 
this study is the generalization of the application of the 
sequential pattern mining method for capturing the spatial 
variability of landscape patterns and their trajectories of change, 
to reveal information regarding process regularities with 
satellite imagery. 
Although the presented case study clearly demonstrates that the 
sequential pattern mining method is a promising analytical tool 
for spatiotemporal data analysis, a number of issues warrant 
further investigation. As with other studies using historical data 
for studying landscape changes, the availability and quality of 
the data, their classification, and analysis all influence the 
typology of the landscape patterns and of the changes detected 
(Antrop, 1998). Discovering interesting patterns is also an 
important requirement in this field and in future research; we 
intend to develop interestingness and mining methods that are 
more sophisticated, to improve the utility and efficiency of 
applying sequential pattern mining to remote sensing data. 
Moreover, we will try to set a threshold of minimal covered 
area used to clump the isolated results, to avoid the outliers and 
other minority patterns which would introduce errors and 
further problems to understand the results.  And most important 
of all, as the more snapshots included in the time series, the 
more complex the pattern code will be. So, providing more 
efficient method to dissolve and understand the pattern code 
would be the major challenge. 
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