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ABSTRACT:

With the continuous development of satellite techniques, it is now possible to acquire a regular series of images concerning a given
geographical zone with both high accuracy and low cost. Research on how best to effectively process huge volumes of observational
data obtained on different dates for a specific geographical zone, and to exploit the valuable information regarding land cover
contained in these images has received increasing interest from the remote sensing community. In contrast to traditional land cover
change measures using pair-wise comparisons that emphasize the compositional or configurational changes between dates, this
research focuses on the analysis of the temporal sequence of land cover dynamics, which refers to the succession of land cover types
for a given area over more than two observational periods. Using a time series of classified Landsat images, ranging from 2006 to
2011, a sequential pattern mining method was extended to this spatiotemporal context to extract sets of connected pixels sharing
similar temporal evolutions. The resultant sequential patterns could be selected (or not) based on the range of support values. These
selected patterns were used to explore the spatial compositions and temporal evolutions of land cover change within the study region.
Experimental results showed that continuous patterns that represent consistent land cover over time appeared as quite homogeneous
zones, which agreed with our domain knowledge. Discontinuous patterns that represent land cover change trajectories were
dominated by the transition from vegetation to bare land, especially during 2009-2010. This approach quantified land cover changes
in terms of the percentage area affected and mapped the spatial distribution of these changes. Sequential pattern mining has been
used for string mining or itemset mining in transactions analysis. The expected novel significance of this study is the generalization
of the application of the sequential pattern mining method for capturing the spatial variability of landscape patterns, and their

trajectories of change, to reveal information regarding process regularities with satellite imagery.

1. INTRODUCTION

Land use and land cover change are becoming increasingly
recognized as important drivers of global environmental change
(Turner et al., 2007). The characteristics of land cover can have
important effects on the local climate, radiation balance,
biogeochemistry, hydrology, and the diversity and abundance
of terrestrial species (Randerson et al., 2006). Therefore, the
study of land cover change is an important problem within the
geoscience domain. Advances in earth observation technologies
have led to the acquisition of vast volumes of accurate, timely,
and reliable environmental data, which encompass wide-
ranging information about the earth’s land, ocean, and
atmosphere (Karpatne et al., 2013). Remote sensing imagery
consisting of satellite-based observations of the land surface,
biosphere, solid earth, atmosphere, and oceans, combined with
historical climate records and predictions from ecosystem
models, offer new opportunities for understanding how the
earth is changing, determining the factors causing these changes,
and predicting future changes (Boriah et al., 2009). Therefore,
remote sensing satellite imagery has emerged as the most useful
data source for characterizing and quantitatively measuring
landscape-scale land cover changes (Hudak and Wessman,
1998).

Detecting and characterizing change over time is the natural
first step towards identifying the drivers of the change and
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understanding the change mechanism (Verbesselt et al., 2010).
Satellite remote sensing has long been used as a means of
detecting and classifying temporal changes in the condition of
the land surface (Coppin et al., 2004; Lu et al., 2004). Satellite
sensors are well suited to this task because they provide
consistent and repeatable measurements on a spatial scale
appropriate for capturing the processes of change (Jin and Sader,
2006). A given scene may be observed repeatedly from space,
resulting in a times series of satellite images. The high spatial
resolution of current sensors provides detailed information on
spatial structures, which after a series of revisits, can be
extended to spatiotemporal data structures. It follows that a time
series of satellite images represents a highly complex data set
that potentially contains valuable spatiotemporal information
(Gueguen and Datcu, 2007).

Although the value of remotely sensed long-term data sets to
change detection has been firmly established (De Beurs and
Henebry, 2005), only a limited number of time-series change-
detection methods have been developed. Most previous change-
detection studies have relied primarily on examining the
differences between two or more satellite images acquired on
different dates (Boriah, 2010). These procedures can be
categorized into three types. Procedures of the first category
identify simple proportional differences of certain classes
within a certain area between two points in time without being
spatially explicit (Godoy and Contreras, 2001; Sierra, 2000).
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The second category procedures involve the calculation of
annual rates of change between end-member periods (Lambin
and Ehrlich, 1997; Puyravaud, 2003). Methods in the third
category quantify changes in the spatial configuration and
composition of land cover on multiple dates using pair-wise
comparisons (Mertens and Lambin, 2000; Schneider, 2012).
One limitation of these methods is the inadequacy of detailed
observation and discrimination of the process of land cover
change. Actually, temporally, the change process of land cover
types can be viewed as a trajectory, which highlights the
dynamic character of change (Petit et al., 2001). By analyzing
change trajectories, we can investigate the detailed dynamics of
change processes (i.e., sequences of successive changes in land
cover types). However, such methods used for analyzing
change trajectories can usually be found for use with green
cover; for example, vegetation (Cai and Wang, 2010), cropland
(Liu et al., 2005), forest land (Chen et al., 2012; Gimmi et al.,
2010; Kennedy et al., 2007; Lambert et al., 2011), and
grassland (Dubinin et al., 2010; Dusseux et al., 2011) research.
These methods are rarely applied in the change analysis of other
land cover types. Therefore, there is an urgent need for a new
universal technique for transforming remote sensing data into
information on the patterns and processes of land cover change.
The effective use of a satellite image time series to characterize
and monitor land cover change trajectories requires the analysis
of temporal variations in spatial patterns (Henebry and Goodin,
2002). When analyzing a sequence of items, one basic problem
to be addressed is to find frequent episodes (Mannila and
Toivonen, 1996.), or in other words, to extract regular patterns
from temporal data. Therefore, there is a critical need for a
method that can enable efficient and reliable characterization of
spatiotemporal patterns contained in an image time series
(Henebry and Goodin, 2002). Mining sequential and spatial
patterns is an active area of research in artificial intelligence
(Le Ber et al., 2006), and it has been used for string mining or
itemset mining in transactions analysis. The objective of this
study is the generalization of the application of the sequential
pattern mining method for capturing the spatial variability of
landscape and their temporal trajectories of change, to reveal

information regarding process regularities with satellite imagery.

In this study, a sequence of repeated satellite images of the
same scene was used to establish the land cover change
sequence set, and a typical sequence mining algorithm—the
Continuous Association Rule Mining Algorithm (CARMA)—
used on this sequence set to analyze the land cover change in
the form of change patterns.

This article is organized as follows. Section 1 discussed the
significance of land cover change and introduced the objectives
of this study. Section 2 covers the sequential pattern mining
method and Section 3 presents a case study and an analysis of
the results. Finally, Section 4 discusses the principal findings
and offers our conclusions.

2. METHODOLOGY

The methodology used in this study includes remote sensing
image processing, spatial analysis, and image data mining. In
addition to image pre-processing and remote sensing image
classification, a sequential pattern mining method is applied in
the analysis of land cover change, which forms the main part of
the research. Therefore, in this section, the sequential pattern
mining method based on the CARMA algorithm is introduced.
First, some basic concepts of pattern mining are provided in

Section 2.1, followed by an introduction to the CARMA
algorithm in Section 2.2.

2.1 Basic concepts

Let I={I,,],,....I,} be the set of all items; a set of items is
referred to as an itemset and a sequence is an ordered set of one
or more itemsets. For example, in a sequence s = <ej,e,,...,e>,
itemset e; shows before e,, and e, shows before e;, and so on.
Itemset e; is also an element of the sequence s denoted as
(x1,%2,...,X,) in which x, € I . A sequence that contains k&
itemsets is a k-sequence. If there exists 1 <7 < i) <...< i, <m
such that a cb,,a,cb,,...,a,cb appears in sequence

A={a,,a,,..a,) and sequence B =(b,,b,,...b, ) , then it is said
that 4 is contained in B (denoted as A< B ). A set of

sequences is referred to as a sequence set. In a sequence set, if a
sequence s is not contained in any other sequence, then s can be
called the largest sequence. Additionally, in the sequence set,
the number of sequences that contain s is known as the support
of s (written as sup(s)). In the mining process, if a sequence
satisfies the pre-determined minimum support, then it is a
frequent sequence. Sequential pattern mining is the mining of
the largest sequences from the frequent sequences in a sequence
set, and the sequences found by sequential pattern mining can
be called the sequential pattern. In a sequential pattern
5 =<eye,...,e>, sequence s’ =<eje,,....e;;> is called the
antecedent and sequence s” =<e> is called the consequent.
The confidence for a sequential pattern can be defined as the
ratio of sup(s) to sup(s’). The confidence for each generated
sequential pattern should be calculated and those sequential
patterns for which confidence is larger than the minimum
confidence threshold are recognized as more interesting (or
more useful for us) than the other sequential patterns.

2.2 CARMA algorithm

2.21  First part of CARMA
For the first step, the main target is to form a set V of all
potentially large itemsets in a lattice. There are three parameters
for each itemset in the lattice: Count(v), firstTrans(v), and
maxMissed(v). The meanings of these three parameters are
introduced below and shown in Fig. 1:

Count(v): the number of occurrences of itemset v since v
was inserted in the lattice.

firstTrans(v): the index of the sequence data at which v was
inserted in the lattice.

maxMissed(v): upper bound on the number of occurrences
of v before v was inserted in the lattice.

The construction of the lattice is shown in Table 1:

Itemset Count firstTrans maxMissed

i Count(i;) firstTrans(i;) maxMissed(i;)
i Count(ip) firstTrans(iy) maxMissed(i,)
i Count(iy) firstTrans(ix) maxMissed(ix)

Table 1. Example of the lattice

In Figure 1, #1,t,...,t, are the sequences in the database. When ¢
was under the scan process, itemset v was inserted into V.
Suppose we are reading sequence #; therefore, maxMissed(v)
means the number of occurrences of v from ¢ to #.;, the value
of firstTrans(v) is j, and Count(v) means the number of
occurrences of itemset v from # to #. For any itemset v in the
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lattice, we get a deterministic lower bound Count(v)/i and upper
bound [maxMissed(v) + Count(v)]/i. We denote these bounds
by minSupport(v) and maxSupport(v), respectively.
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Figure 1. Scan of the equence database

First, we initialize V to {o} and set Count(s)=0,
firstTrans(¢) = 0, and maxmissed(¢) =0. Thus, V' is a support
lattice for an empty sequence. Suppose V' is a support lattice up
to sequence i-1, we are reading the i-th sequence #;, and we
want to transform ¥ into a support lattice up to ; there are three
steps to go through.

First, for each itemset v in V, if v is contained in #;, let
Count(v) = Count(v) + 1.We insert a subset v of ¢; into V, if and
only if all subsets w of v are already contained in 7 and satisfy
maxSupport(w) > o; (where o; is the current user defined
support threshold). As v is contained in the current sequence ¢;,
let Count(v) = 1, firstTrans(v) = i, and we compute the value of
maxMissed(v). As w is a subset of v, we obtain
maxSupport(w) > maxSupport(v).

Second, for maxSupport(w)=[maxMissed(w) + Count(w)]/,
maxSupport(v) = [maxMissed(v) = Count(v)]/i and Count(v) = 1;
therefore, we obtain
maxMissed(v) < maxMissed(w) + Count(w) - 1. When we are
inserting a subset v into ¥, the set v is not yet contained in V.
Hence, the support of v for the first (i-1) sequences satisfies

M-t

support;_;(v) Savg[._l(|—0'—|,.7l)vL , where M means the

i—

number of items in v. In addition, considering
maxMissed(v) = support,; ;(v) x (i — 1), we obtain
maxMissed(v) < (i —l)avgifl(FO'Ll)J + M —1 . Based on all of
the above, we can define that

max Missed(v) = min {L(i ~Davg, (o 1_)J+|v|-1,maxMissed(w) + count(w)-1|w < v} .

And third, We compute maxSupport = (maxMissed + Count)/i
for each itemset v of J when every k sequences (the value of k&
is defined by the user) are scanned. For any itemset v whose
maxSupport < g;, we delete v from V.

2.2.2  Second part of CARMA

For the second step, the main aim is to scan the sequences a
second time and generate sequential patterns based on the
frequent sequences found in the first part of CARMA. In the
second step, we compute the precise support of all itemsets v in
V and continually remove itemsets with maxSupport < g, where
o, is the last threshold of minSupport. While performing the
scanning, all itemsets v of V are checked and the parameters
associated with v updated. Two situations may arise:first, if
firstTrans(v) <1, then v is considered as a large itemset. If the
current sequence index is past firstTrans for all itemsets in the
lattice, the second part of the CARMA algorithm stops. And
second, if the current sequence contains itemset v of V, we set

Count(v) = Count(v) + 1 and maxMissed(v) = maxMissed(v) - 1,
and if firstTrans(v) =i, we set maxMissed(v) =0. However,
setting maxMissed(v)=0 for an itemset v, might yield
maxSupport(w) > maxSupport(v) for some superset w of v. Thus,
we set maxMissed(w) = Count(v) — Count(w) for all supersets w
of v with maxSupport(w) > maxSupport(v). We also remove the
itemsets v from 7 with maxSupport < g,,.

From all the above, it is clear that CARMA only requires two
scans of the sequences to obtain the sequential pattern.

2.3 Data

A time series of Landsat TM images, path 123/row 32, for
2006-2011 were selected as the data source (Table 2). The
chosen acquisition time was June—July; this corresponds to the
spring and summer for most areas in northern China, which are
the best seasons for analyses of land cover change. Satellite
data used in the experiment were all downloaded free of charge

from two websites, http://ids.ceode.ac.cn/ and
http://glovis.usgs.gov/.
Image data Acquisition date

1 7.12.2006

II 5.28.2007

111 5.30.2008

v 7.20.2009

\% 6.5.2010

VI 6.8.2011

Table 2. Acquisition time of the six Landsat TM images used in
the experiment

As cloud and fog can seriously affect the results of the mining,
we chose the northern part of Beijing as the study area, which
was clear in all six images (Figure 2).

Figure 2. Overview of study area, (a) location of Beijing within
the People's Republic of China, (b) location of the study area
within Beijing

2.4 Experimental Procedure

For the rational and effective analysis of land cover changes,
after the image pre-processing, we firstly classified the six time-
series images of the study area into land cover maps. Secondly,
based on the land cover map, we constructed the image
sequence set within which each sequence is a land cover class
trajectory at pixel level that is described through the classified
images assembled in the time series. Thirdly, we applied the
sequential pattern mining algorithm to the image sequence set
to search for sequential patterns. Finally, we analyzed some
interesting sequential patterns to reveal the trajectory of land
cover change and evaluated the degree of change. The
flowchart of the experimental procedure is shown in Figure 3.
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Figure 3. The flowchart of the experimental procedure

2.5 Pre-processing and classification

The pre-processing steps included atmospheric correction,
geometric correction, and data format conversion. Landsat TM
image from 2011, obtained from the United States Geological
Survey, is orthorectified and therefore, it was selected as the
master or reference data for geometric correction. Ground
control points were collected from the reference image for
rectifying the remaining images from 2006 to 2010 (i.e.,
relative registration) (Kennedy and Cohen, 2003). In this paper,
the Gauss-Kruger projection was used in the geometric
correction, and a minimum of 20 evenly distributed ground
control points were selected to ensure geometric precision of
0.5 pixel (<15 m) for all images. Thus, all the data were
arranged in the same coordinate system to form a data set with
consistency and integrity, suitable for spatial and sequential
comparative analyses.

For image classification, we used eCognition software, and for
visualization, the band composite included bands 5, 4, and 3 in
the TM data, shown as red, green, and blue, respectively.
Because differences and disagreements may appear in the
classification process when interpreting land cover types, the
classification for all six remote sensing images was undertaken
by a single expert in a manner combining software and manual
techniques. The land cover types were classified into four
categories: built-up area, vegetation, bare land, and water
bodies, using a modified Anderson land cover classification
scheme (Anderson, 1976). After all the pre-processing steps, the
original digital number values for every pixel in the six images
were transformed into the value of land cover type. Then, the
land cover types or classes were converted into symbols. The
experiment used four characters "17, “2”, “3”, and “4" as a
representation for built-up area, bare land, vegetation, and water
bodies, respectively. The classification results are shown in
Figure 4 and the statistical results for the classification are
shown in Table 3.

(b)
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Figure 4. (a) Original satellite image of the study area, (b)-(g)
the classification results of the study area from 2006 to 2011

Land cover

1 2 3 4

types

Number of

pixels 590487 525164 2735895 148454
2006  Percentage of

the  research

area (%) 14.76 13.13 68.40 3.71

Number of

pixels 848970 638272 2362560 150198
2007  Percentage of

the  research

area (%) 21.22 15.96 59.06 3.76

Number of

pixels 879715 275484 2692544 152257
2008  Percentage of

the  research

area (%) 21.99 6.89 67.31 3.81

Number of

pixels 900253 889216 2071981 138550
2009  Percentage of

the  research

area (%) 22.51 22.23 51.80 3.46

Number of

pixels 1094414 679474 2094474 131638
2010  Percentage of

the  research

area (%) 27.36 16.99 52.36 3.29

Number of

pixels 1330093 510013 2039183 120711
2011  Percentage of

the  research

area (%) 33.25 12.75 50.98 3.02

Table 3. Statistical results for the classification of the six remote
sensing images

Considering the image from 2006 as an example: 590487 pixels
were interpreted as built-up area, ac Counting for up to 14.76%
of the research area; 525164 pixels were interpreted as bare
land, ac Counting for 13.13% of the research area; and 2735895
and 148454 pixels, ac Counting for 68.40% and 3.71% of the
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research area were interpreted as vegetation and water bodies,
respectively.

Because of the lack of quality ground data, it is difficult to
quantify the error in classifications at the pixel level (Foody,
2002), especially for multi-temporal analysis (Lunetta, 1999).
Although the classification accuracy of year 2011 and year
2010 nearly reached 87% and 85%, the degree of uncertainty is
not possible to quantify.

2.6 Construction of land cover change sequence set

An image time series portraying the same scene can be
transformed into a landscape trajectory by decomposing the
sequence image-by-image and projecting it as a time-ordered
series of coordinates in a pattern metric space (Henebry and
Goodin, 2002). In our research, as land classes were converted
to symbols, a categorical land cover change sequence set that
contains the pixel history, or the land cover trajectory, at the
pixel-level, was created by obtaining each sequence for every
pixel transition. Suppose the classification results for the pixel
located in position (1, 1) in the image is vegetation in year 2006,
vegetation in 2007, vegetation in 2008, bare land in 2009, bare
land in 2010, and built-up area in 2011; then, the land cover
change sequence for this pixel can be denoted as “333221”.
Therefore, the land cover change sequence set can be generated
by copying the land cover change sequence sequentially for
each pixel in the study area from the beginning of the image to
the end.

2.7 Sequential pattern mining

To identify the typical land cover changes within the six-year
period, sequential pattern mining was performed on the
constructed land cover change sequence set. In the mining
process, the two most important parameters are the support and
confidence of the sequence mode. We selected a number of
different combinations to establish the most appropriate support
and confidence values and tested the resultant sequential
patterns, as shown below.

1100

Support 0.005%
M Support 0.01%

Support 0.015%

Support 0.02%

©
=]
=]

700

500

Number of resulting patterns

300

100

10 20 30 40 50 &0 70|

Confid interval (%)

Figure 5. Performance comparison of different values for the
CARMA parameters(“support” and “confidence”)

In Figure 5, the numbers of generated patterns of different
support tend to coincide as confidence increases. Therefore, in
subsequent experiments, we selected a confidence level of 40%
and a support rate of 0.02% as the parameters for the sequential
pattern mining. To select the most representative land cover
change patterns in the different periods, the resultant patterns
were subdivided into two types. If the support rate of a pattern
was more than 0.1%, it was considered as a selected pattern; if

not, it was not selected. Furthermore, to characterize the
direction of change, a distinction was made between continuous
and discontinuous patterns within the selected patterns.
Continuous patterns are characterized by pixels that belong to
the same class (e.g.: 111111 and 222222), whereas
discontinuous patterns are characterized by pixels that change
class (e.g.: 111112, 121211) through time.

2.8 Analysis

For the study area, the mining process over the six images led
to the identification of 118 sequential patterns, each with their
own proportion. Table 4 presents the top ten land cover pixel
trajectories, the support rates for which were more than 0.1%,
and which were selected as land cover patterns.

Pattern Support (%) Confidence (%)
333333 44.30 83.43
111111 12.83 58.56
322322 3.97 67.71
222322 2.92 53.39
444444 2.58 80.19
433333 0.80 52.55
322423 0.60 40.79
442444 0.17 71.83
443444 0.17 68.07
322422 0.10 70.98
Total 68.44%

Table 4. The resultant top 10 patterns

Among all the resultant sequential patterns, the selected top 10
patterns ac Count for 68.44% of the land cover change of the
entire study area (Table 4). The remainder is spread among the
other 108 patterns. Table 5 shows the composition of land cover
change in the selected top 10 patterns for each year, which
reveals that the land cover change trajectories are dominated by
the transition from vegetation to bare land, especially during
2009 to 2010. It also shows that during 2008 to 2009, the
highest percentage (7.83%) of the area was affected by land
cover change.

5:3; 2006- 2007~ 2008~  2009- 10 Total

change 2007 2008 2009 2010 Lo
23 0 0 6.89% 0 0.6%  7.49%
2-4 0 0 0.77% 0 0 0.77%
3-2 4.67% 0 0 689% 0 11.56%
3-4 0 0 0.17% 0 0 0.17%
42 0 0.17 0 0.7 0 0.87%
43 0.8% 017 0 0 0 0.97%
Total  547%  034%  7.83%  7.59%  0.6%  21.83%

Table 5. Composition of land cover change in the selected top
10 patterns
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The percentage area of a land cover type involved in land cover
change is illustrated in Table 6. From this table, we can
conclude that the trajectories are dominated by transitions that
contain vegetation, especially during 2009 to 2010, and that the
most stable land cover type is built-up area. These conclusions
are also interesting because they reflect our domain knowledge
that vegetation is liable to change and built-up area are not.

Land
cover
type in 2006— 2007— 2008— 2009— 20_10 Total
land 2007 2008 2009 2010
2011
cover
change
1 0 0 0 0 0 0
2 0 0 7.66% 0 0.6% 8.26%
3 4.67% 0 0.17% 6.89% 0 11.73%
4 0.8% 0.34% 0 0.7 0 1.84%
Total 5.47% 0.34% 7.83% 7.59% 0.6% 21.83%

Table 6. Different land cover types contained in the land cover
change

Although the support and confidence in the mining process can
help identify the sequential pattern, alone they are insufficient.
Not all the resultant patterns can be considered as meaningful
(i.e., to reflect the needs and interests of a particular user).
Therefore, an analysis of pattern interestingness is essential for
the resultant patterns. Typically, only the user can make a
judgment of the degree of pattern interestingness, and this
judgment is subjective. As the image sequence mining is a data-
driven model, it requires expert knowledge to analyze and
interpret the semantic meaning of the generated sequential
patterns. Therefore, we describe just a few interesting patterns
for demonstration purposes.

Among the selected patterns, three are continuous from 2006 to
2011 and they jointly represent 59.71% of the study area.
Therefore, the majority of the study area has remained in the
cluster to which it belonged in 2006 for the duration of the
entire time series. Considering the continuous pattern “111111”
as an example, the spatial distribution of this pattern is shown
as the pixels within the red area in Figure 6. The support of the
pattern is 12.83%, and it shows that 86.9% of the built-up area
of cluster 1 in 2006 still belonged to that same cluster in 2011,
and that 38.59% of the built-up area in 2011 originated from
that same cluster in 2006. Thus, the current land area share of
the same cluster can have different histories. Thus, this method
can provide new ideas and approaches for the study of urban
development.
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Figure 6. Spatial distribution of the continuous pattern “111111”
(in red)

Considering the discontinuous pattern “442444” as an example,
the support of the pattern is 0.17% and its spatial distribution is
shown in Figure 7.
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Figure 7. (a)Spatial distribution of the discontinuous pattern
“442444”(in red), (b) Partial enlarged image detail of (a)

In Figure 7, the pixels within the red area represent the pattern
“442444” and they are mainly located on the waterside of
Miyun Reservoir. The “442444” pattern means that since 20006,
except for 2008, the area represented by this pattern belonged to
cluster 4 (water bodies). However, in 2008, this area belonged
to cluster 2 (bare land). In other words, these areas were not
covered by water at the end of May 2008 (the acquisition time
of the image was May 30, 2008). Table 7 shows the end-of-year
water storage of the Miyun Reservoir from 2006 to 2011,
according to the “Beijing Water Resource Bulletin.”

Year Water volume (billion cubic meters)
2006 1.093
2007 0.976
2008 1.13
2009 1.039
2010 1.066
2011 1.101
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Table 7. End-of-year water storage of the Miyun Reservoir

Compared with other years, the water storage of the Miyun
Reservoir at the end of 2008 was significantly higher, which is
not consistent with the obtained pattern “442444”. However,
according to the Beijing Water Authority, the water level of the
Miyun Reservoir was reduced to a minimum of 853.1 million
cubic meters by the end of June 2008. The main flood season
began in late July and by September 6, the water volume of the
Miyun Reservoir exceeded one billion cubic meters. Therefore,
because of the lower water level at the time of image
acquisition, some additional bare land was exposed, which is
reflected in “442444” pattern in the sequence mining results.

3. CONCLUSION

The method developed in this study has allowed the
identification, classification, and spatial localization of land

cover types and their trajectories of change for a temporal series.

It quantified the land cover changes in terms of the percentage
of area affected, as well as mapping the spatial distribution of
these changes. It has also provided a different measure for the
description of land cover change according to their current
characteristics and history. The expected novel significance of
this study is the generalization of the application of the
sequential pattern mining method for capturing the spatial
variability of landscape patterns and their trajectories of change,
to reveal information regarding process regularities with
satellite imagery.

Although the presented case study clearly demonstrates that the
sequential pattern mining method is a promising analytical tool
for spatiotemporal data analysis, a number of issues warrant
further investigation. As with other studies using historical data
for studying landscape changes, the availability and quality of
the data, their classification, and analysis all influence the
typology of the landscape patterns and of the changes detected
(Antrop, 1998). Discovering interesting patterns is also an
important requirement in this field and in future research; we
intend to develop interestingness and mining methods that are
more sophisticated, to improve the utility and efficiency of
applying sequential pattern mining to remote sensing data.
Moreover, we will try to set a threshold of minimal covered
area used to clump the isolated results, to avoid the outliers and
other minority patterns which would introduce errors and
further problems to understand the results. And most important
of all, as the more snapshots included in the time series, the
more complex the pattern code will be. So, providing more
efficient method to dissolve and understand the pattern code
would be the major challenge.
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