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ABSTRACT: 

 

Spatial assessments of the potential of renewable energy sources (RES) have become a valuable information basis for policy and 

decision-making. These studies, however, do not explicitly consider the variability in time of RES such as solar energy or wind. Until 

now, the focus is usually given to economic profitability based on yearly balances, which do not allow a comprehensive examination 

of RES-technologies complementarity. Incrementing temporal resolution of energy output estimation will permit to plan the 

aggregation of a diverse pool of RES plants i.e., to conceive a system as a virtual power plant (VPP). This paper presents a 

spatiotemporal analysis methodology to estimate RES potential of municipalities. The methodology relies on a combination of open 

source geographic information systems (GIS) processing tools and the in-memory array processing environment of Python and NumPy. 

Beyond the typical identification of suitable locations to build power plants, it is possible to define which of them are the best for a 

balanced local energy supply. A case study of a municipality, using spatial data with one square meter resolution and one hour temporal 

resolution, shows strong complementarity of photovoltaic and wind power. Furthermore, it is shown that a detailed deployment strategy 

of potential suitable locations for RES, calculated with modest computational requirements, can support municipalities to develop 

VPPs and improve security of supply. 

 

 

1. INTRODUCTION 

Independence from fossil fuel import and climate change 

mitigation are some of the main arguments for adopting 

renewable energy sources (RES) and for transforming our current 

centralized energy supply system into a distributed one. There 

are, however, two major challenges for adopting RES, such as 

wind and solar radiation, as the main energy supply source: First, 

RES are spread on the planet in relatively low concentrations 

(Stoeglehner et al., 2011). Second, the availability of most 

abundant RES is variable on time and these are also non-

dispatchable (Widén et al., 2015). Although these two concerns 

are strongly related, the existent tools for planning energy supply 

systems based on RES attempt to deal with them separately. On 

the one hand, geographic information systems (GIS) are well 

stablished tools to determine potential locations for the 

deployment of RES based on multiple ecological, regulative and 

mostly on resources availability criteria (Angelis-Dimakis et al., 

2011). The latest is still the main factor for determining the 

profitability of individual installations. On the other hand, 

established tools for sizing RES based energy systems 

considering the temporal variability such as; HOMER, the BCHP 

Screening Tool, HYGROGEMS and TRNSYS16, focus on 

stand-alone applications for single buildings, local communities, 

or single project applications (Connolly et al., 2010; Mendes et 

al., 2011). Additionally, there are models such as EnergyPLAN 

and H2RES, that are designed to optimise energy systems to 

accommodate the fluctuations of RES and perform the analysis 

in temporal resolutions of up to one hour time steps (Connolly et 

al., 2010). These work in a technology type aggregated level that 

neglects the differences in the output of the same technology 

located elsewhere in the modelled system. Therefore, system 

sizes can be determined for each technology but it is not possible 

to determine where to locate individual installations unless these 

are modelled as different technologies. Attempting to do this for 
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thousands of potential installations of the same technology, but 

in different locations would become highly time consuming and 

impracticable.  

 

Not to mention that the RES decision support and mapping 

exercises are usually provided by international, national or 

state/provincial agencies while the decisions about RES 

deployment must in fact be taken at the municipal and regional 

scale, where there is often a lack of funding and human resources 

for performing these tasks directly (Calvert et al., 2013). A good 

example to overcome this last limitation are the energy use plans 

for municipalities supported by the state of Bavaria in Germany. 

These are financed by the state government but are developed by 

research institutions in strong interaction with the municipalities. 

There is also an official guide for developing energy use plans 

for municipalities supported on GIS (Bayerisches 

Staatsministerium für Umwelt und Gesundheit et al., 2011). 

These, however, have the same bias of most GIS based 

procedures and are only intended for calculating total yearly 

potentials and finding suitable locations for RES deployment. 

The consequence of using a merely spatial approach is that no 

recommendation can be given about adequate share of RES for 

the local system. Extending GIS-based analysis in the temporal 

dimension will allow to perform these tasks and to propose 

municipality wide system configurations such as virtual power 

plants (VPPs). In the European context VPP refers to a diverse 

pool of RES aggregated to supply a certain demand with a 

reliability level comparable to traditional fossil based power 

plants (Asmus, 2010).  

 

The problem that arises when trying to conduct spatiotemporal 

analysis on GIS platforms is that they are disk-I/O-reliant and are 

usually not conceived for parallel processing. These 

characteristics make traditional GIS tools too slow to handle the 

massive amounts of data that are generated when modeling 
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resources availability in a high spatiotemporal resolution. Bryan 

(2013) showed that without relying on proprietary software (that 

is conceived for optimized parallel computing) and/or large 

computer clusters it is possible to handle models with massive 

amounts of spatial data. He achieved substantial performance 

enhancement by migrating the processing of one test model from 

a GIS platform to the in-memory array processing environment 

of Python and Numpy (Bryan, 2013). Moreover, nowadays 

model performance improvement is widely available due to the 

existence of open source tools and low cost hardware options 

such as multi-core processors, grid computing, cloud computing, 

and graphics processing units (GPUs) with thousands of 

computing units accessible even for personal computers (see e.g., 

Fernández-Quiruelas et al., 2011; Tabik et al., 2012).  

 

This paper presents a spatiotemporal analysis methodology that 

couples GIS-based procedures for determining potential 

locations for wind and photovoltaic power plants with the 

analysis of the temporal variability of these RES. This 

methodology is adjusted to the German context. It is intended to 

deliver results in such a high resolution that allow for an early 

stage planning of the supply infrastructure necessary to integrate 

high shares of wind and PV in the energy matrix of municipalities 

in the form of a municipality wide VPP. The methodology should 

also serve to evaluate the complementarity of the energy 

produced by photovoltaic and wind power from a technical point 

of view in areas that do not allow major spatial dispersion. 

Furthermore, the methodology relies on open source tools and 

can be run with low cost computational infrastructure. The 

intention behind these last characteristics is that municipality 

energy advisors can replicate it without incurring costs (in terms 

of hardware requirements) beyond of the ones that would be 

necessary to perform a GIS-based spatial analysis of RES 

availability.  

 

2. METHODOLOGY 

The methodology consists of five subsequent steps (see Figure 

1). First, a GIS-based workflow reduces the study area to the 

location of the potential RES-based energy generation plants. 

Second, a GIS-based procedure serves to gain the time series of 

available solar radiation and wind resources for every potential 

location. Third, an in-memory array process is used to calculate 

energy yield of  every single potential power plant in a high 

temporal resolution. Fourth, a decision tree selects the most 

appropriate plants to cover a certain demand. Fifth, the resulting 

solution sets of power plants are evaluated using several 

indicators. All GIS related processes and calculations are 

performed with GRASS GIS 7 in a parallel implementation 

(when applicable) using Python (Oliphant, 2007) and all the 

further calculations rely on the in-memory array processing 

environment of Python and NumPy (van der Walt et al., 2011). 

 

 
Figure 1. Overall workflow of the methodology 

The starting points of the proposed methodology are the previous 

developments presented in Ramirez Camargo et al. (2015). These 

developments include; (1) a GIS-based procedure to estimate the 

potential PV electric power and energy generation time series of 

every roof-top section within a study area. (2) A peak-load 

mitigation strategy to define sets of PV plants based on the 

analysis of the energy output of the installation and the local 

demand. (3) A set of technical indicators to evaluate and compare 

the resulting PV sets. These are required for the present 

methodology but to avoid unnecessary repetitions only a brief 

description and applied improvements are described here in the 

corresponding sections. 

 

2.1 Selection of Potential Sites for RES Deployment 

The sum of the potential yearly solar radiation and the average 

wind speed are normally the main factors to identify suitable 

locations for the deployment of PV and wind power plants 

(Angelis-Dimakis et al., 2011). Our interest is, however, to 

account for variability in the availability of the resources and 

therefore we do not consider these simplified factors but the time 

series of resources availability in its best available resolution.  

 

Additional factors, such as land use and legal constraints, are 

necessary to distinguish between relevant and irrelevant areas for 

the deployment of RES. The reduction from the whole area of the 

municipality to only feasible areas, for the construction of a 

certain RES-based power generation plant, strongly contributes 

to reduce complexity and computational time for the further 

analysis. 

 

The selection of areas for wind power deployment follows the 

recommendations regarding the design and approval of wind 

turbines published by the Bayerischen Staatsministerium des 

Innern et al. (2011). The following locations are excluded: (1) 

Locations in a radius of 800 m from residential buildings, 

buildings on areas of especial use, buildings on mixed residential 

and commercial areas. (2) Locations in a radius of 500 m from 

industry buildings, air traffic areas, national parks, landscape 

conservation areas, bird protection areas, biotops and flora and 

fauna habitats. (3) Locations in a radius of 100 m from federal 

motorways (counting from the edge of the road), railways, power 

lines and federal, state and country roads. 

 

Compared to the requirements for wind power plants the 

selection of suitable areas for photovoltaic installations is quite 

straightforward. The best possible locations for photovoltaic 

installations are roof-tops. When using these areas there is no 

conflict with other resources or uses. Nevertheless, it is not 

possible to take advantage of the whole surface of every roof and 

objects such as chimneys and dormers have to be excluded of the 

analysis. The remaining areas are classified depending on 

orientation (aspect) and inclination (slope) since these are two 

important factors that make a difference for the output of PV 

installations (Lang et al., 2015). 

 

2.2 Resources Time Series  

2.2.1 Wind Speed Time Series: The time series of wind 

speed for every location are calculated using the power law of 

logarithmic profiles for estimating wind speed at hub height from 

measurements at lower heights presented in equation 1 (see e.g., 

Hoogwijk et  al., 2004 or Gass et al., 2011). 

 

𝑉ℎ𝑢𝑏 = 𝑉𝑚𝑒𝑠(
ln(ℎℎ𝑢𝑏/𝑧)

ln(ℎ𝑚𝑒𝑠/𝑧)
)   (1) 
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Where  𝑉ℎ𝑢𝑏 = wind speed at hub height 

 𝑉𝑚𝑒𝑠 = wind speed at measurement height 

 ℎℎ𝑢𝑏 = hub height 

 ℎ𝑚𝑒𝑠 = height of the measurement facility 

 𝑧 = surface roughness length 

 

This equation only allows a plausible approximation for wind 

speeds below 80 m height, which is the upper boundary of the 

wind surface layer (Emeis, 2013). Consequently, if the reference 

wind speed is measured in the wind boundary layer (typical case 

for measurements for meteorological stations) only middle size 

turbines up to 80 m height can be modeled.  

 

The parameter roughness length i.e., the distance above ground 

where the wind speed theoretically should be zero (Şen, 2013) 

changes depending on the land use and type of vegetation. This 

can be calculated using land use data for the study area, and 

estimations of the roughness length for different types of land use 

(see e.g., Silva et al., 2007).  

 

The land use information is extracted from the land use map for 

every potential wind site identified following the procedure 

described in section 2.1. These values are compared with the 

roughness length estimation data. Finally the wind speeds at hub 

height for every potential area are calculated with equation 1 and 

stored in form of  Numpy structured arrays.  

 

2.2.2 Solar Radiation Time Series: Instantaneous solar 

radiation is calculated for every single roof-top area identified in 

2.1 for every desired time step in a year using the modules 

r.horizon and r.sun of GRASS GIS, developed by Šúri and 

Hofierka (2004) and following the procedure presented by 

Ramirez Camargo et al. (2015). The horizons on the roof-top 

surfaces from near objects are pre-calculated with module 

r.horizon using a digital surface model (DSM) of the highest 

available resolution. Horizons from larger objects are calculated 

with a DSM of a coarser resolution. Solar radiation under clear-

sky conditions and solar radiation under real-sky conditions (with 

inclusion of measured solar radiation data) are calculated only for 

the suitable roof-top areas. The obtained raster maps are managed 

with the temporal data framework of GRASS GIS 7 developed 

by Gebbert and Pebesma (2014). Differently to the procedure of 

Ramirez Camargo et al. (2015), the extraction of the solar 

radiation values from the global solar radiation raster maps for 

every time step is performed with the module v.rast.stats of 

GRASS GIS 7 and the values are directly moved to memory in 

form of a Numpy structured array. v.rast.stats was tested for 

several cases with different spatial and temporal resolutions. It 

was at least 24 times faster than PKtools (McInerney and 

Kempeneers, 2015), the tool suggested by the authors, when 

running in single and multicore implementations. 

 

2.3 Energy Yield Calculation 

2.3.1 Wind Energy Output: The wind power output of a 

single turbine in every time step is calculated using the turbine 

performance curve presented in equation 2 (Arslan, 2010). 

 

𝑃𝑤𝑖𝑛𝑑(𝑉) =

{
 
 

 
 

0,𝑉ℎ𝑢𝑏 < 𝑉𝑖𝑛
1

2
∗ 𝐶𝑝 ∗ 𝜌 ∗ 𝑉ℎ𝑢𝑏

3 ∗ 𝜋 ∗ (
𝐷

2
)
2

, 𝑉𝑖𝑛 ≤ 𝑉ℎ𝑢𝑏 < 𝑉𝑟

𝑃𝑟_𝑤𝑖𝑛𝑑,𝑉𝑟 ≤ 𝑉ℎ𝑢𝑏 < 𝑉𝑜𝑢𝑡
0, 𝑉ℎ𝑢𝑏 ≥ 𝑉𝑜𝑢𝑡

      (2) 

 

Where  𝑃𝑤𝑖𝑛𝑑 = actual power output of the turbine  

 𝐶𝑝 = capacity factor  

 𝑉𝑖𝑛 = cut-in wind speed  

 𝑉𝑟 = rated wind speed 

 𝑉𝑜𝑢𝑡 = cut-out wind speed  

 D = diameter of the rotor  

 𝑃𝑟_𝑤𝑖𝑛𝑑 = rated power output   

 𝜌 = the air mass density.  

 

A distance of five times the rotor diameter between turbines is 

used to calculate the number of wind power installations that can 

be accommodated in a certain potential area. This is an usual 

value for existent wind parks (Samorani, 2013). Every potential 

area is divided in areas of (5 ∗ 𝐷)2 size. Since the number must 

be an integer and turbines can also be accommodated in the 

border of the potential area, the resulting number of installations 

is rounded to next larger integer number.  

 

A time series of energy output is calculated for every wind 

turbine that fits in the potential area determined using the 

procedure in section 2.1. These time series are kept in form of a 

Numpy structured array. The underlying assumption for 

calculating the energy output is that the conditions given when 

calculating the power output remain constant during the length of 

every time step.  

 

2.3.2 Photovoltaic Energy Output: the photovoltaic power 

output is calculated following equation 3. This equation was 

adapted by Ramirez Camargo et al. (2015) from the set of 

equations for calculating photovoltaic yield proposed by 

Jakubiec and Reinhart (2013). 

 

𝑃𝑃𝑉(𝐺) = 𝐺 ∗ 𝜂𝑃𝑉 ∗ [1 + 𝛼𝑃𝑀𝑃𝑃((𝑇
𝑎𝑚𝑏 + 𝑘𝑇𝐺/𝐴) − 𝑇0)]  (3) 

 

Where 𝑃𝑃𝑉 = photovoltaic power output 

 𝐺 = global irradiance 

 𝜂𝑃𝑉 = photovoltaic panel efficiency 

 𝛼𝑃𝑀𝑃𝑃 = temperature correction factor 

 𝑇𝑎𝑚𝑏 = ambient air temperature  

 𝑘𝑇 = reduction factor due to installation type 

 𝐴 = PV plant area  

 𝑇0 = nominal operating temperature. 

 

To calculate the energy output the ambient temperature and 

global irradiance are assumed to be constant during every time 

step. The time series of PV energy output for every potential roof-

top area are also kept in form of a Numpy structured array. 

 

2.4 Decision Tree for Constituting Municipality Wide RES-

Based Energy Systems Configurations  

Beyond the usual analysis that suggests the most suitable power 

plants based on the yearly yield, we use a decision tree that selects 

plants based on the match of its power output time series to the 

time series of the local demand. The criterion for evaluating the 

match of the energy supply to the demand is 𝑃𝑟𝑜𝑝𝑒𝑟𝐹 as 

proposed by Ramirez Camargo et al. (2015) and presented in 

equation 4. This criterion rates the power output of every plant 

based on the amount of properly supplied energy (equation 5) and 

the amount of excess energy (equation 6). 

 

𝑃𝑟𝑜𝑝𝑒𝑟𝐹 = {

∑ 𝑃𝑟𝑆𝑢𝑡
𝑇
𝑡=1

∑ 𝐸𝑥𝑐𝑡
𝑇
𝑡=1

𝑖𝑓(𝐸𝑥𝑐𝑡 > 0)

∑ 𝑃𝑟𝑆𝑢𝑡
𝑇
𝑡=1 𝑖𝑓(𝐸𝑥𝑐𝑡 = 0)

 (4) 

 

𝑃𝑟𝑆𝑢𝑡 = {
𝐷𝑡𝑖𝑓(𝐸𝑡 ≥ 𝐷𝑡)

𝐸𝑡 𝑖𝑓(𝐸𝑡 < 𝐷𝑡)
   (5) 
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𝐸𝑥𝑐𝑡 = {
𝐸𝑡 − 𝐷𝑡𝑖𝑓(𝐸𝑡 > 𝐷𝑡)

0𝑖𝑓(𝐸𝑡 ≤ 𝐷𝑡)
  (6) 

 

Where 𝐸𝑥𝑐𝑡  = amount of excess energy in the time step t 

 𝐷𝑡 = local electric energy demand at the time step t 

𝐸𝑡  = energy output of the power plant (wind or PV) 

in the time step t 

𝑃𝑟𝑆𝑢𝑡  = amount of proper supplied demand in the 

time step t 

 

In a first step 𝑃𝑟𝑜𝑝𝑒𝑟𝐹 is calculated for all potential power 

plants. The power plant with the highest 𝑃𝑟𝑜𝑝𝑒𝑟𝐹 is selected and 

its energy output is discounted from the local energy demand 

time series. In the next step the energy output of the remaining 

plants is evaluated with 𝑃𝑟𝑜𝑝𝑒𝑟𝐹 against the new demand. A 

further installation is selected. The selection process continues 

until the sum of the energy output of the plants equals a desired 

share of the total yearly demand of the studied municipality. This 

procedure is not amenable for parallelization. However, the 

implementation in Python and Numpy allows the efficient 

handling of the energy output data from several thousands of 

power plants and temporal resolutions up to quarter hours with 

state of the art hardware for usual GIS processing.  

 

2.5 Indicators for Evaluation of the System Configurations 

To evaluate the contribution of a certain system configuration to 

the local energy balance a series of indicators are proposed; (1) 

Total installed capacity (in kW). It is the sum of the required 

installed capacity of PV and/or wind power, which is required to 

cover a certain desired share of the total yearly demand. (2) 

Variability of the output (in kW). It serves to evaluate how high 

the average variation between time steps in the output of a system 

configuration is. This indicator also serves to have an idea of how 

much back-up power capacity would be required to provide a 

stable supply. Variability is defined as presented by Hoff and 

Perez (2012). (3) Total unfulfilled demand (in MWh). It is the 

sum of the energy demand that cannot be covered by the 

evaluated power plants solution set. (4) Total excess energy (in 

MWh). This indicator is the sum for all time steps of the value 

defined in equation 6. (5) Total properly supplied energy (in 

MWh). It is the sum for all time steps of the value defined in 

equation 5. (6) The loss of power supply probability (LPSP). It is 

used for evaluating the reliability of the energy systems 

configuration. Its definition can be found in Yang et al. (2003). 

(7) Hours of supply higher than the highest demand. It serves to 

quantify the number of moderately high energy generation peaks. 

(8) Hours of supply higher than 1.5 times the highest demand. 

This indicator shows the number of high energy generation 

peaks. (9) Storage required energy capacity (MWh). This 

indicator provides information about the size of the storage 

system that must be installed in order to store the totality of the 

produced energy by a certain system configuration. It is 

calculated following the algorithm developed by  Solomon et al. 

(2010). We assume that the only energy loss is due to storage 

inefficiencies (the usually assumed efficiency for storage is 

systems is 75%) and that all the energy generated by the power 

plants solution set is accepted regardless of the back-up capacity 

that would be necessary to ensure security of supply. (10) Storage 

required power capacity. This indicator can be calculated 

following the same algorithm as for the previous indicator. It 

represents the maximum amount of excess power that must be 

stored in a certain time step during the studied period. 

 

3. CASE STUDY  

The data from Waldthurn, a rural municipality located in 

northeast Bavaria (Germany), was used to test the proposed 

methodology. The total area of this municipality comprises 30.97 

Km2. It is characterized by a very diverse topography; with 

terrain elevations above the sea level ranging from 480 to 800 m. 

Waldthurn has 2,019 inhabitants and a total of 2,518 buildings 

divided in 650 main buildings (e.g., one family houses, multiple 

family houses or business) and 1,868 secondary buildings (e.g., 

stables, garages or tools deposits). The Bavarian Surveying 

Agency (2014) provided the Vector data with the built-up areas 

and use classification of the buildings and infrastructure, land use 

data, soil classification data, and LiDAR data with a density of at 

least 4 points per square meter in 32 tiles of 1 km2. Only the tiles 

where buildings were located were considered for creating a 

DSM with a pixel resolution of 1 m2 (DSM1). The DSM1 was 

generated according to the procedure described by Neteler and 

Mitasova (2008). To calculate the horizon on the roof-surfaces 

generated by distant large objects as hills and mountains, we used 

the freely available DSM25 of the European Union from the 

GMES RDA project (EU-DEM).  

 

Concerning wind power potential, only 9 of the 14 criteria for 

defining the suitable areas were pertinent due to the lack of air 

traffic areas, flora and fauna habitats, bird protection areas, 

national parks and railways in the municipality. The Surface 

roughness length was determined using the land use data and the 

surface roughness classification presented by Silva et al. (2007). 

 

The roof-top surfaces for potential photovoltaic power plants 

were defined using the vector layer of the build-up areas, the 

DSM1 and its derived slope and aspect maps. The roof-top areas 

were extracted from the DSM1, aspect and slope maps using the 

vector layer and the resulting maps were compiled in an image 

group. This image group was the input for an unsupervised 

classification to divide the roof-tops parts in four different 

categories. The classification was performed with the i.cluster 

and i.maxlik modules of GRASS GIS 7. The resulting raster layer 

was smoothed with the r.neighbors module in GRASS GIS 7 and 

the new raster map was transformed into a vector map where the 

potentially usable roof-top areas were divided in four 

homogeneous groups. These groups describe surfaces oriented in 

cardinal directions that range from: (1) north to east, (2) east to 

south, (3) south to west and (4) west to north. In a last step, all 

surfaces smaller than 15 m2  were removed to avoid considering 

roof objects unsuitable for PV installations such as chimneys and 

dormers.  

  

The total electric energy demand of the municipality divided by 

households, commercial buildings, heat pumps, public 

institutions, street lighting and agriculture for 2012 was obtained 

from the final report of the current energy use plan of the 

municipality. Bayernwerk, the local grid operator, provided the 

measured data presented in that report. To disaggregate the yearly 

totals in hourly time steps the standardized load profiles provided 

by the BDEW (Bundesverband der Energie- und 

Wasserwirtschaft) are used. These data sets consider the daily 

and seasonal variations of the demand profiles of 11 different 

types of users in 15 minutes time steps. The 7 users reported in 

the energy use plan of the municipality were summarized in 5 of 

the users types of the standardized load profiles, namely; 

households, agriculture in general, commerce in general, 

commerce on week days from 8 am to 6 pm and street lightning. 

It is assumed that all consumers are part of the same grid. The 

resulting time series for households are expected to be reliable 

(deviations around +/-10%) because the number of considered 
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residential buildings is above 400 (Esslinger and Witzmann, 

2012). The time series in 15 minutes time steps are aggregated 

into hours to fit the temporal resolution of the weather data.   

 

The input weather data obtained from a neighbouring weather 

station coincide with the geographic characteristics of the areas 

for potential power plants and the year of the available demand 

data of the study area. The data includes global solar radiation, 

ambient temperature and wind speed for the year 2012. These 

were retrieved from the Bavarian agrometeorological service 

(Bayerische Landesanstalt für Landwirtschaft 2014), from the 

nearest one of 132 available stations. Although there were three 

stations within a distance of 17km from the centre of the 

municipality (Almesbach, Söllitz and Konnersreuth), the selected 

station (Söllitz)was preferred because it is located 550 m above 

the sea level, which is comparable to the average altitude of the 

areas of the case study municipality with potential locations for 

photovoltaic and wind power plants. The global solar radiation 

was divided into its direct and diffuse parts using the algorithm 

based on the clearness index and the solar altitude proposed by  

Reindl et al. (1990). 

 

For the estimation of the potential energy output of the 

installations we used data of an average monocrystalline silicon 

cell PV module and a Vestas V29 wind turbine. The technical 

characteristics of these plants are presented in table 1. 

 

 Parameter Value Units 

W
in

d
 t

u
rb

in
e 

Rated power output 225 kW 

Rated wind speed 16 m/s 

Cut-in wind speed 3.5 m/s 

Cut-out wind speed 25  m/s 

Rotor diameter 29 m 

Hub height 31 m 

P
V

-p
an

el
 

Panel efficiency 14.4 % 

Temperature correction factor  -0.0045 %/K 

Reduction factor due to 

installation type 0.035 K/(W/m2) 

inverter and cable losses 14 % 

Table 1. Technical parameters of the photovoltaic plants and 

wind turbines 

 

The selected wind power plant technology has a total height of 

44.5 m, which under German regulation do not require the strict 

pollution control authorization that is mandatory for wind 

turbines with a total height above 50 m (Bayerischen 

Staatsministerium des Innern et al., 2011). This reduced size also 

means that the proposed potential plants will be less profitable 

than state of the art installations with a total height beyond 100 

m (when considering only the total amount of energy generated). 

Nevertheless, under the current German and Bavarian regulations 

these turbines with less than 50 m height have much more 

chances of being actually build. 

 

Only-PV, only-wind and combined PV-wind supply system 

configurations that achieve penetration levels of 25%, 50%, 75% 

and 100% in terms of the total yearly demand as well as systems 

configurations that do not allow any energy dumping during the 

year were calculated. The only-PV and only-wind solutions sets 

for the different penetration levels correspond to a solely spatial 

analysis where plants are selected based on the maximum yearly 

production. The combined PV-Wind for all penetration levels 

and the no-dump system configurations were calculated using the 

proposed decision tree. Finally, the solutions sets were evaluated 

with the proposed indicators. 

  

The methodology for this case study was run in a 64bit AMD 

LINUX workstation with an Intel Xeon E5-1620 v2 CPU of four 

physical cores and 16GB of RAM. The employed software 

includes the first stable release of GRASS GIS 7, Python 2.7.5 

and NumPy 1.8. 

 

4. RESULTS AND DISCUSSION 

The potential maximum energy yield from PV is 25,244 MWh 

obtained from the sum of the yearly yield of 4,118 considered 

potential installations. Four locations were found to be spatially 

suitable for wind power plants, these cover a total area of 254,199 

m2 and can fit up to fourteen V29 wind turbines with a total yearly 

yield of 1,870 MWh. The total demand amounts 5,369 MWh and 

the accumulated values per hour for the whole year and for a 

random day in summer and a random day in winter are presented 

in Figure 2. 

 

 

Figure 2. Cumulated energy demand of all user types in one 

hour time step for 2012 

 

All indicators for the calculated system configurations are shown 

in Table 2. These present a strong contrast to the potential 

maximum yearly values. Although the total energy yield from PV 

installations is 3.7 times larger than the total yearly demand, in 

effect the only-PV solution set that should be able to produce as 

much energy as it is demanded in the whole year only achieves a 

LPSP of 0.701 and provides less than 50% of the energy when it 

is actually required. The only-PV configuration that does not 

allow any excess energy already shows that only a minimum part 

of the PV potential can be fully utilized (846 of 38,109 potential 

kWp installed capacity).  

 

In contrast to the PV energy generation potential the wind energy 

potential represents only 35% of the total yearly demand. 

However, the results obtained with the spatiotemporal 

methodology for only-wind system configurations deliver 

(analogue to the case of only-PV system configurations) a 

completely different picture than the one provided when only 

considering the yearly sums. For the 25% penetration level, 

which is the only one that can be achieved with an only-wind 

system, the unfulfilled demand and the excess energy indicators 

are even worse than for the only-PV system configuration at the 

same penetration level. The amount of properly supplied energy 

only achieves 20% of the total energy demand and the only-wind 

no-dump system configuration utilizes only one of the fourteen 
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potential power plants. The LPSP improves compared to the 

only-PV system configuration but the number of hours with the 

supply higher than the highest demand, the required storage 

energy and power capacities are much higher. This suggests that 

wind energy generation has a very variable profile, what is 

confirmed by the variability indicator that is 37% higher than for 

the only-PV system configuration.  

 

The combined PV-wind system configurations, which are an 

important step towards planning municipality wide VPPs, 

provide improvements in most of the indicators when comparing 

against only-wind and only-PV system configurations. A 

comparison with the only-wind solution sets with a penetration 

rate beyond 35% is not possible, since this is the maximum wind 

power potential. However, it is not to expect that the indicators 

of the only-wind solutions could improve because it would 

require significant variations in the wind regime. These would be 

given only if we consider potential locations away from the study 

region. For the solution sets that can be compared the variability 

is lower in all cases for the combined PV and wind power 

solution set, but when the selected wind power installed capacity 

is notably higher than the selected PV installed capacity 

(PV&Wind-50).  

 

Moreover, the unfulfilled demand is always up to 20% lower for 

the PV and wind power solution sets. This is consistent with the 

amount of properly supplied energy, which is always higher for 

theses solution sets. Also the LPSP is better for higher 

penetration levels. For the 25% penetration level the LPSP is 

better for the only-wind configuration due to the higher amount 

of generation peaks, which is not really a positive result for the 

only-wind solution set. The number of over generation peaks is 

always lower and in the case of the number hours when the 

supply is higher than 1.5 times the highest demand in a 75% 

penetration level, the combined PV and wind power solution 

presents 70% less hours than the only-PV solution set 

counterpart. Concerning the storage energy and power capacity 

required for storing all the excess energy, the only-PV solution 

sets rate better for the penetration levels 25% and 50%, which is 

explained by the high amount of generation peaks introduced by 

the wind power in the other solution sets. Nevertheless, as soon 

as the share of wind and PV in the installed capacity starts to level 

up, the required storage energy capacity becomes lower for up to 

140% for the combined PV and wind power solution sets. The 

major drawback of the combined PV and wind power solution 

sets is the increased required total installed capacity but is 

overcompensated in most of the cases by, among others, the 

increased amount of properly supplied energy. 

 

Additionally, the relatively compact area of the municipality and 

the strong evidence of high complementarity between solar and 

wind power served to confirm the findings of Hoicka and 

Rowlands (2011) and Widen (2011). These authors stated that 

spatial dispersion is less important for the complementarity 

between wind and PV systems than for the smoothing of the 

output of only-PV or only-wind systems. 

  

Finally, the results of the methodology can be visualized with a 

GIS platform. The spatial distribution and installation size of the 

combined PV and wind system configuration to produce as much 

energy as the total yearly demand is presented in Figure 3. 
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PV-noDump 846 - 846 50 1 4.679 - 685 - - - - 

Wind-noDump - 225 225 21 1 5.145 - 219 - - - - 

PV&Wind-noDump 462 225 687 34 1 4,777 - 587 - - - - 

PV-25 1,654 - 1,654 98 0.95 4,108 75 1,257 0 39 2.867 0.402 

PV-50 3,357 - 3,357 196 0.836 3,452 766 1,913 257 741 11.435 1.439 

PV-75 5,086 - 5,086 292 0.757 3,109 1.772 2,256 740 1294 126.399 2.473 

PV-100 6,824 - 6,824 387 0.701 2,912 2.911 2,453 1070 1750 657.708 3.490 

Wind-25 - 1.575 1,575 135 0.931 4,272 237 1,093 0 238 18.694 0.974 

Wind-50 - 3.150 3,150 200 0.901 4,028 534 1,336 207 375 53.093 1.992 

Wind-75 - 3.150 3,150 200 0.901 4,028 534 1,336 207 375 53.093 1.992 

Wind-100 - 3.150 3,150 200 0.901 4,028 534 1,336 207 375 53.093 1.992 

PV&Wind-25 919 900 1,819 90 0.964 3,975 57 1,389 0 12 3.119 0.469 

PV&Wind-50 1,017 3.150 4,167 210 0.867 3,339 648 2,025 232 465 57.651 1.992 

PV&Wind-75 2,727 3.150 5,877 257 0.741 2,672 1.328 2,692 431 1099 65.182 2.582 

PV&Wind-100 4,445 3.150 7,595 328 0.661 2,384 2.390 2,981 977 1729 273.822 3.489 

Table 2. Indicators for all solution sets 
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Figure 3. Selected PV and wind power plants with an electric energy output equal to the total yearly demand (PV&Wind-100) 

 

 

5. CONCLUSIONS AND OUTLOOK 

The solely spatial analysis of RES availability is inadequate for 

providing any information about which technology should be 

preferred between PV and wind power or in which proportions 

they should be combined. The only information that can be 

obtained is the total amount of energy that could be produced in 

a year, and a classification of convenient locations based on its 

total yield. The spatiotemporal analysis goes beyond that, by 

simultaneously taking into account the spatial dispersion and the 

temporal variability of RES. This allows for the evaluation of 

complementarity between different RES, and the development of 

plans for conceiving a local distributed energy system as one 

single power plant, such as a virtual power plant. 

 

This paper presented a methodology for spatiotemporal analysis 

of the potential of photovoltaic and wind power for entire 

municipalities in the German context, from a technical point of 

view. The implementation in open source processing tools 

facilitates its replicability. Furthermore, the combination of CPU 

parallelization for the GIS-based analysis and the use of the in-

memory array processing environment of Python and Numpy 

allows to efficiently deal with massive amounts of data 

(compared with the merely spatial analysis), at low cost. The 

methodology was tested with data from the municipality of 

Waldthurn (Bavaria, Germany). The system configurations that 

combined Photovoltaic and wind power presented better results 

in the majority of the indicators than only-PV or only-wind 

system configurations. The results strongly support the idea of 

complementarity between PV and wind power. This even without 

wide geographical dispersion of the installations. 

 

The presented methodology can be enhanced in several ways. For 

example; (1) The modeling periods can be extended to be equal 

to the life expectancy of the power generation installations 

(photovoltaic panels and wind turbines) and/or sensitivity 

analysis can be performed to improve the robustness of the 

results. (2) Reanalysis data can be used as data source for the 

wind speeds at hub height. (3) GPU parallel computing can be 

used for speeding up the GIS-based procedures (4) The decision 

tree approach can be replaced by an improved optimization 

algorithm. However, the methodology in its actual form already 

contributes to improve the information basis for decision-making 

concerning the deployment of RES at municipal scale beyond 

well established GIS-based procedures.  
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