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ABSTRACT: 

 

Spatiotemporal modelling of land use/cover change (LUCC) has become increasingly important in recent years, especially for 

environmental change and regional planning. There have been many approaches and software packages for modelling LUCC, but 

developing a model for a specific region is still a difficult task, because it requires large volume of data input and elaborate model 

adjustment. Fuxian Lake watershed is one of the most important ecological protection area in China and located in southeast of 

Kunming city, Yunnan province. In this paper, the CA-Markov model is used to analyse the spatiotemporal LUCC and project its 

course into the future. Specifically, the model uses high resolution remote sensing images of 2006 and 2009 as input data, and then 

makes prediction for 2014. A quantitative comparison with remote sensing images of 2014 suggests an overall accuracy of 88%. This 

spatiotemporal modelling method is expected to facilitate the research of many land cover and use applications modelling. 
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1. INTRODUCTION  

Since LUCC has direct and indirect impact on a number of 

factors of ecological environment, as well as the regional and 

global sustainable development, the land change modelling has 

attracted increasing attention in the context global climate 

change (Li, 1996; Wijesekara et al., 2012). The continuous 

evolution and transformation of land surface has resulted in 

serious consequence to the physical system at multiple scales, 

and raised a number of change in the ecological processes, such 

as surface runoff, soil erosion and agricultural non-point source 

pollution (Wijesekara et al., 2012; Li et al., 2010; Ouyang et al., 

2010). Analysing the characteristics of the LUCC, exploring 

changes at different spatiotemporal scale and predicting future 

scenarios contribute is of significance for providing decision-

making basis for the regional ecological protection and 

sustainable development.  

 

At present, mainstream LUCC models include modelling system 

dynamics model, Clue-S model, Multi-agent model and Markov 

model (Duan et al., 2004; Wang  et al., 2012; Xiao  et al., 2012; 

Yang et al., 2007; Qin et al., 2009; Hou et al., 2004). None of 

them are perfect. The efficiency of Clue-S model is not 

satisfactory and it has to rely on results from other auxiliary 

software. The Markov model can quantitatively predict the 

dynamic changes of landscape pattern, while it can't deal with 

the spatial pattern of landscape change (Balzter et al., 1998). In 

contrast, the cellular automata (CA) model is able to predict the 

spatial distribution of the landscape pattern ， but it cannot 

predict the change in time dimension (Cheng et al., 2013). In 

this context, researchers have turned to integrating different 

methods to study dynamic modelling of LUCC (Qin et al., 

2009). 

 

Among them, CA-Markov that combines CA with Markov 

integrates the advantages of both methods. Since it is able to 

model the spatiotemporal dynamic change of land cover change, 

the model is widely applied in many scientific communities. 

Balzter et al. (1998) simulated the spatial dynamic change 

process of vegetation in Giessen University in German from 

1993 to1996. Liu and Andersson (2004) simulated the 

evolution of the settlement pattern of two cities. Jenerette and 

Wu (2001) analysed and simulated land use change situation of 

Phoenix district in Arizona in the United States, the results 

show that land use change is closely related to the urban 

expansion and population increase in the past 83 years.  

 

Although the research of using CA model to simulate LUCC 

mainly focuses on applied research, the sensitivity of the model 

with different parameters is also needed to be analysed. Berling 

and Wu (2004）used multi-scale testing method to calibrate 

and validate the model of Phoenix town development, and it is 

concluded that the higher spatial resolution of the input data 

was, the higher accuracy of modelling using the CA model 

would be. Menard and Marceau (2005) studied the sensitivity of 

CA model between the neighbour structure and the spatial 

resolution in 2005. Mondal et al. (2012) revealed that the 5x5 
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contiguity filters produced most geospatially distributed 

effective results based on a comparison with different contiguity 

filters i.e. 3 x 3, 5 x 5 and 7 x 7 contiguity filters. Liu et al. 

(2004) explored impact from the time interval the on urban 

development model based on CA. Verda et al. (2006) discussed 

the sensitivity of the neighbour structure to the model. 

 

Taking urban growth model of Changsha city as an example, 

Yin et al. (2008) studied the problem of the modelling scale 

using CA model, and presented that city growth model with CA 

has higher modelling accuracy only in certain scale, and the 

model has a certain sensitivity to the scale(Li and Liu, 2007). 

Ke et al. (2010) has looked into the influence of cellular size to 

cellular automata model. The research mentioned above is 

focused on the sensitivity of a single scale, such as cellular size 

and scope of neighbourhood. A lot of work about the scale’s 

relationship with itself and the optimal combination of various 

scale for higher modelling precision remained to be done. 

 

To address these challenges, taking Fuxian Lake watershed as 

study area, the relationship between cellular size and 

neighbourhood range is analysed. In addition, its impact on 

prediction accuracy in a predetermined time interval is 

discussed.  

 

2. DATA AND STUDY AREA  

2.1 Study Area  

Fuxian Lake is located in the centre of Yunnan province, and it 

is the second deepest fresh water lake in China. It is not only an 

important resource for the sustainable development of social 

economy in the Yunnan province, but also supply for the 

strategic water resources for pan-pearl river delta regional. 

 

Because of environmental change and human activities, the land 

cover around Fuxian lake watershed has been changed 

dramatically and increasing attention has been paid to the land 

change modelling of this area. Modelling accurate is pivotal 

because the results can serve as the basic data and scientific 

evidence to the sustainable development of Fuxian watershed’s 

ecosystem and the improvement of the water quality. In the 

meanwhile, it can also provide the macro decision-making 

support to the government and the related departments on the 

protection of the vegetation, and the development and 

management of tourism resources in Fuxian lake watershed. 

 

 
 

Figure 1. Location of study area 

2.2 Data  

We used high resolution remote sensing images of SPOT-5, 

QuickBird, and WorldView-2 in the study area. Images of 2006 

and 2009 are used for model establishment, and image of 2014 

is used for validation. Details about data is shown Table 1. 

Other geographic data such as DEM with 10m grid size, 

1:10000 digital vector data (roads, drainage, transportation, 

residents) renewed in 2014 and the planning data for Fuxian 

Lake protection and development from Administration of 

Fuxian Lake protection are also selected. 

 

 

Table 1. Details of satellite data 

 

After classification, all pixels are classified into ten classes 

including Cultivated Land (CL), Woodland(WL), Garden(G), 

Grass Land(GL), Building Region(BR), Road(R), Structure(S), 

Artificial Piling and Digging Land(APDL), Water(W), Desert 

and Bare surface(DB). The aspect and slope data is derived 

from 10m grid DEM The suitability map which represents the 

suitability maps for each land-use classes of study area is 

generated by considering multiple factors such as DEM, roads, 

drainage, transportation, residents and the census data such as 

administrative boundary, core area, and protection area of 

Fuxian Lake. 

2.3 Methodology  

2.3.1 CA-Markov Model: The Markov model can 

quantitatively predict the dynamic changes of landscape pattern, 

while it is not good at dealing with the spatial pattern of 

landscape change. On the other hand, Cellular Automata (CA) 

has the ability to predict any transition among any number of 

categories (GIL et al., 2005). Combining the advantages of 

Cellular Automata theory and the space layout forecast of 

Markov theory, CA-Markov model performs better in modelling 

land cover change in both time and spatial dimension. At 

present, IDRISI software is one of the best platforms to conduct 

CA-Markov model, which is developed by Clark Labs in the 

U.S.  
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Figure 2. A flow chart of modeling process 

 

We explored the trends and driving forces of LUCC in the 

Fuxian lake watershed, by using socioeconomic and census data 

of the Fuxian lake watershed. ArcGIS v10.1 and IDRISI, Andes, 

V15.0 software are used in this research to generate land cover 

transition matrix and transition probability of Fuxian lake 

watershed in 2006 and 2014. Land cover pattern in 2014 based 

on different scale combination by using CA-Markov module. 

Compared with the land cover truth in 2014, the precision of the 

modelling has been tested and the optimal scale is established. 

Land use grid map, suitability atlas and the matrix of land cover 

types are input into CA - Markov module to build model which 

is then used to predict the land cover pattern in 2022. Flowchart 

of the modelling process is shown in Figure 2. It consists of the 

following steps: 

 

1) Establishing transition matrix. Overlay the land cover maps 

of 2006 and 2014 (Figure 3). Set the time interval between two 

maps to be nine years, the ratio error to 0.15, and calculate the 

transition probability matrix of land-use (Table 2) and the 

transformation matrix of land change. 

 

 
 

Figure 3. The map of land use type ((a) 2006, (b) 2014, (c) 2022 

 

2014 

2006 

CL G WL GL BR R S APDL DBS 

 

W 

CL 73.87 1.83 8.05 7.76 1.51 0.78 3.58 2.11 0.19 0.32 

G 8.57 70.98 5.4 2.95 7.11 0.58 1.24 2.07 0.61 0.5 

WL 6.62 0.17 79.79 8.49 0.47 0.57 0.32 2.19 1.3 0.08 

GL 8.08 0.29 13.77 71.84 0.75 0.39 0.67 3.48 0.25 0.48 

BR 2.26 0.44 6.12 1.35 82.44 1.19 3.73 1.95 0.4 0.12 

R 0.68 0.03 1.73 1.03 0.48 95.11 0.26 0.23 0.42 0.03 

S 3.19 0.15 7.55 0.84 0.56 0.19 86.55 0.65 0.28 0.04 

APDL 9.32 3.78 8.56 13.05 6.65 4.23 3.07 50.49 0 0.86 

DBS 4.27 0.09 28.79 13.44 0.82 0.73 1.91 1.54 43.86 4.54 

W 4.43 0.05 1.5 3.68 0.22 0.14 1.06 0.26 4.58 84.08 

 

Table 2.  Transition probability of land use type between 2006 and 2014（unit: /%）

From Table 2, we can see that desert and bare surface, artificial 

piling and digging land, garden land, grassland, woodland 

transition probability is higher, roads and structures.  

 

Water and building transition probability is lower between 2006 

and 2014. 

 

Types 

years 

CL G WL GL BR R S APDL DBS 

 

W 

2006 153.79  3.27  219.84  49.26  13.21  8.57  4.18  2.18  1.15  219.83  

2014 143.75  5.35  217.69  54.42  14.94  7.41  5.81  5.53  2.42  217.96  

2022 149.07  7.52  199.91  73.63  15.85  6.99  11.50  10.33  13.82  186.82  

Area 

Changes  

2014-2022 

5.32  2.17  -17.79  19.22  0.91  -0.42  5.69  4.80  11.39  -31.14  

Area 

Changes 

2006-2022 

-4.72  4.25  -19.93  24.37  2.64  -1.58  7.33  8.15  12.67  -33.01  

 

Table 3. The area statistics of land use type (Unit: /square kilometers) 

From Table 3, we can see that the variation of water’s area is the 

largest, the grassland, forest land, desert and the bare land are 

changed a little. Among them, water, woodland, desert and bare 

surface are showed a decreasing trend, and the desert and bare 

surface increased. 

 

2) Setting the Cellular size. Define each pixel in raster data as 1 

unit. Considering spatial resolution, the minimum area of each 

type in referencing data (2014), and the computing time，the 

cellular size is divided into a number of  sizes including 1m x 

1m, 5m x 5m, 10m x 10m, 15m x 15m, 20m x20m, 25m x25m, 

and 30m x 30m. 

 

3) Defining the CA filter. To define the neighbor with the 
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default N x N filter, namely N x N unit has a significant 

influence on their surrounding unit. Filter is respectively set as 

3 x 3, 5 x 5, 7 x 7, 9 x 9, and 11 x 11. 

 

4) Creating the suitability map. The transition rules are set up 

using a multi-criteria evaluation (MCE) and fuzzy membership 

function suitability maps for each simulated land cover class 

(Eastman, 2006). The core of CA is the evolution rules which 

are defined by MCE and the suitable map generated by 

COLLETION EDIT module in the IDRISI software. And then 

we can know the cellular status in the next time. In order to  

 

improve ecological environment and promote socioeconomic 

sustainable development in the watershed, suitability map 

(Figure 4) are created by following the constraints such as 

distance, the current land use and combined the impacts of all 

those seven factors(towns, waters, roads, gradient, slope, 

construction land and limit development zone) on the land use 

types. Those factors were then unified and quantified one 

suitability map based on certain weights, and map value was 

standardized to [0, 255] as the CA transition parameters, with 

higher values indicating greater suitability. Figure 4 shows the 

suitability maps for each land-use classes of study area.  

 
 

Figure 4. Suitability map used to predict future LUCC 
 

 
5) CA-Markov sensitivity test. The effects on modelling 

accuracy for different sizes of units and the scope of 

neighborhood are analyzed in the definite transformation rules 

and time interval. The sensitivity is analyzed by comparing the 

Kappa value of different modelling combination (Figure 5).  

 

2.3.2 Analysis Results of LUCC Modelling in the 

Watershed: Most researchers use Kappa coefficient to evaluate 

modelling modeling accuracy of CA-Markov model. It 

quantitatively reflects the modelling accuracy. For appropriate 

validation, the map of recent real LUCC used for validation 

should not be used in calibration (Pontius and Schneider, 2001).  

 

In order to validatethe reliability of KAPPA consistency 

coefficient to evaluation results, KAPPA value and Cramer’s V 

value are obtained by comparing modelling map and the ground 

truth, and the result is shown in Figure 5.. 

 

 
 

Figure 5. The graph of KAPPA and Cramer 's V value  

 

In the graph, the combination 30-9-8 means: cellular size is 30 

m, neighborhood is 9 x 9, and time interval is 8 years. We can 

see from the graph as follows: 

 

 1) KAPPA value and Cramer’s V curve trend is consistent, 

which proves that you can use the KAPPA consistency 

coefficient to evaluate the result of the modelling. 

 

 2) There is not obvious linear relationship between the cellular 
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size and KAPPA value, and the KAPPA value does not change 

with the increase of cellular size. The maximum KAPPA value 

is obtained in the combination of 20m cellular size, 5 x 5  

neighborhood.  

 

3) Time interval has different effects on the modelling based on 

the different cellular size and neighborhood scale. The 

combination of 20-5-8 has obtained the highest modelling 

accuracy. The KAPPA coefficient value is 0.8891.  

 

By using 8-year interval, 400 m2 cellular size, 5 x 5 

neighborhood as optimized combination for CA-Markov model 

to simulate the land use in the 2022, the modelling results are 

shown in Figure 3-c. The area of Water, grassland, woodland 

and desert and bare land area variation is changed greatly 

especially the water’s area. Among them, the water, cultivated 

land, woodland have a decrease trend, and the water’s area 

reduces to 33 km2, while desert and bare land, artificial pile and 

digging, structures showed increasing trend, and the area of 

desert and bare surface increases up to 12.67 km2. As you can 

see from Figure 2-c. Desert and bare land, artificial piling and 

digging are mostly distributed along the lake shore. 

3. CONCLUSIONS AND DISCUSSIONS 

Based on our experiment, we found that the modelling accuracy 

is influenced by the cellular size, neighbourhood size and time 

interval. The modelling accuracy with different scale 

combinations varies and it turns out that 8-year interval, 400 m2 

cellular size, 5 x 5 neighbourhood is the best scale combination.  

This research, taking advantage of CA - Markov model, GIS 

and RS technology, analyzes the characteristics and trend of 

land cover change of Fuxian lake watershed from 2006 to 2014 

and predicts the land use spatial pattern of Fuxian watershed in 

2022, which can provide scientific evidence for decision-

making on regional land use planning and protection of 

ecological environment. 

 

The dynamic changes of area shows that from 2006-2022 the 

area of water, woodland, cultivated land continues to reduce; 

the area of building region, artificial piling and digging land 

mounts up; the grass land increases quickly and these change 

happens all across the area; the water area reduces drastically; 

desert, bare surface, artificial piling and digging land area 

shows an increasing trend and mainly distributes along the lake; 

garden and roads just change a little. Although the water, forest, 

cultivated land has decreased, but it is still the main land cover 

type in the Fuxian lake watershed. The modelling result shows 

the land use change is dramatic and the land degradation 

is quite server, and the restoration and reconstruction of Fuxian 

lake watershed’s ecological environment is facing a serious 

challenge.  
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