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ABSTRACT:

The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil
between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental
changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems.
This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data
from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation.
The simplest model’s stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naive model,
against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or
spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the
predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time
models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find
the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best
stochastic spatio-temporal model increases predictive accuracy, compared to the naive model, of 33.3%, 36.2% and 32.5% on average

across the three error metrics at the key sites for a one-year hold out period.

1. INTRODUCTION AND BACKGROUND

The Arctic is experiencing an unprecedented rate of environmen-
tal and climate change (Hinzman et al., 2005). Vast areas of the
Arctic are underlain by permafrost, defined as earth materials that
remain at or below 0°C' continuously for two or more years. The
permafrost regions occupy nearly a quarter of the Earth’s terres-
trial surface (Zhang et al., 1999).

The active layer is the uppermost layer of soil or other earth ma-
terial above permafrost that experiences seasonal freezing and
thawing. The thickness of the active layer (ALT) plays an im-
portant role in the ecology, hydrology and geomorphology of
cold environments. Knowledge about the spatial-temporal vari-
ability of ALT is crucial for engineering applications and con-
struction in northern regions (Streletskiy et al., 2012). Permafrost
degradation reported in the Arctic has the potential to influence
the balance of greenhouse gases and may pose significant haz-
ards to local infrastructure, especially in permafrost ice-rich areas
where extensive landscape changes result in subsidence and the
development of irregular surfaces over extensive areas, known as
thermokarst terrain (Streletskiy et al., 2015). Consequently, un-
derstanding the dynamics that contribute to shifts in ALT is of
interest at both local and global scales.

The thickness of the active layer varies from centimeters to sev-
eral meters along the latitudinal bioclimatic gradient, and is present
everywhere where there is permafrost. Its calculation is often ap-
proximated analytically using the Stefan Solution e.g., (Jumikis,
1978), given in one of its most basic forms by:

X = [2Xs(nDDT) 0
pwL

where X is the annual depth of thaw (m), A is the thermal con-

ductivity of the substrate (W/m°C), DDT is the degrees days of
thaw, a time-temperature integral representing cumulative sum-
mer warmth at the surface (°C days), s is a scale factor (s/day),
p is the dry density of the substrate (kg/m?), w is water content
expressed as a proportion of dry weight, and L is the latent heat
of fusion (J/kg).

Calculation of ALT over extensive areas is a challenging under-
taking owing to the high variability and unavailability of detailed
subsurface information. Accordingly, many studies have assumed
that subsurface characteristics are constant over geographic space,
and used even more simplified versions of the Stefan relation.
Compounding this situation is the fact that few spatial time series
of active-layer thickness (ALT) existed prior to about 1990. For
this reason, the Circumpolar Active Layer Monitoring (CALM)
program was implemented in the 1990s. The CALM program
maintains a network of more than 250 permafrost observatories
that monitor active layer and near-surface permafrost responses to
climate change over multi-decadal time scales. CALM has pro-
duced a large number of publications, many of which address spa-
tial time series using relatively simple statistical strategies (Shik-
lomanov et al., 2012).

Despite growing awareness of permafrost’s potential impact on
global temperature and that of active-layer thickness on environ-
mental processes and economic activities (Schaefer et al., 2012),
observational data are relatively sparse, a reflection primarily of
logistical and economic constraints. High costs and difficulties of
access severely limit the number of monitoring sites in the Arctic
regions (Biskaborn et al., 2015). An additional problem is that
many ALT records are of limited duration, as most of the active-
layer monitoring sites were established prior to the early 1990s in
support of short-term engineering and ecological investigations
(Brown et al., 2000). Given these limitations, not all sites can
be visited on an annual basis, making it necessary to use alterna-
tive methods for characterizing the spatial and temporal dynam-
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ics of ALT. Process-oriented analytical and numerical models,
of varying complexity, have been developed to explain changes
in ALT. Similarly, several statistical procedures have been used
to map and analyze the spatial variability of ALT, including re-
gression modeling (Nelson et al., 1997), kriging (Shiklomanov
and Nelson, 2003), nested sampling and analysis (Nelson et al.,
1999), and spatial autocorrelation analysis (Nelson et al., 1998).
Some of this literature has been summarized in (Brown et al.,
2000), (Nelson et al., 2008), and (Mishra et al., 2013) , and a
comparative study of various models was published by (Shiklo-
manov et al., 2007). However, the literature concerned with mod-
eling space-time variability using continuous parameters (Qian
and Apanasovich, 2014) is small. This study is concerned with
developing a methodological framework for modeling ALT us-
ing Gaussian random fields with non-separable space-time co-
variance structures. The primary points addressed are: (a) data
availability at eight site locations in northern Alaska; (b) theory
about spatial-temporal covariance structures; (c) specification of
stochastic spatial and spatio-temporal models; (d) introduction of
four geostatistical ALT models formulated as the sum of a deter-
ministic trend and a stochastic component; (e) differentiation be-
tween the models, based on specification of their stochastic com-
ponents.

2. DATA AVAILABILITY

The data used to model ALT were drawn from the CALM database.

CALM data are available publicly, and can be accessed online at
the CALM website (www.gwu.edu/~calm). Eight sites located
in the North Slope of Alaska were selected to develop the model.
The sites were selected based on data availability and proxim-
ity to settlements in hope that the developed methodology can
be used for societal benefits in these settlements. Basic infor-
mation about the sites is shown in 1. These sites were selected
for analysis because of the availability of high-quality data, their
contrasting topography, and their proximity to indigenous popu-
lations (Barrow, Atkasuk), a major operating oil field (West Dock
- Purdhoe Bay), and environmental organizations (University of
Alaska’s Toolik Lake Long-Term Ecological Research station).
These characteristics impart social, commercial, and educational
relevance.

Active layer data were obtained at different scales, according to
one of two schemes, both employing a systematic spatial sam-
pling protocol. Under the first scheme an 11 x 11 grid of 121
stations was sampled over 100 m increments to form a 1x1 km
square array. In the second scheme data were sampled over a
100x 100 m square array with stakes separated every 10 m. Data
are recorded annually by manual probing during late August or
early September, when ALT is near its maximum annual value.
For computational purposes, the working assumption was made
that measurements occur at precisely annual intervals, so that
modeling procedures can be implemented using regular intervals.

Table 1 summarizes data availability and characteristics of the de-
sign. Although data are available at most sites between the years
1995-2014, there are missing values. This may be by design,
for example, at point locations with rocky substrates that do not
permit manual probing. Two sampling grids that contain a rela-
tively large number of such points are Imnavait Creek and Toolik
Lake. Accordingly, their sample design contains 49 and 74 sta-
tions, respectively. These are very sparse in comparison with the
remaining site locations, which each have at least 99 stations at
which ALT can be measured. For succinctness, we use site codes
to reference sampling locations in the remainder of this paper.

During exploratory data analysis, ALT was compared spatially
and cross-temporally. ALT points that vary substantially from

Latitude

Longitude

Figure 1. Site Locations

others may be an artifact of terrain characteristics or the result
of an unseasonably warm summer. For example, the Ul site
is bisected by a gravel-rich beach-ridge, for which readings in
that sampling locale are significantly higher than neighboring val-
ues. Using Anselin’s local Moran I statistic (Anselin, 1995), ALT
readings that are significantly different from their neighbors were
identified and removed.

3. MODEL

3.1 Geostatistical Modelling

Geophysical processes are variable over both space and time.

Geostatistical approaches typically model continuous spatio-temporal

observations by the sum of a systematic trend and stochastic com-
ponents:

seESCRYte T CR,

(@)
where m(s,t) = E{X (s, t)}, the mean function or global trend,
is smooth and deterministic, £(s, t) is a Gaussian field of spatially
and temporally uncorrelated mean zero errors, and Z(s,t) is a
mean-zero Gaussian random function. The error process £(s, t)
has covariance function:

X(s,t) =m(s, t)+E&(s, t)+Z (s, t),

2 h= —
Cov{£<s,t),£(s+h’t+u)}—{3 bzonzo O

whereas Z (s, t) is fully characterized by its covariance function
and explains space-time variability not captured by the mean func-
tion or error process i.e. the microscale variation. The covariance
function of X (s, t) is defined as:

Cx{(s,s+h),(t,t +u)}:=Cov{X(s,t),X(s+h,t +u);0},
4)

where s,s +h € S;t,t +u € 7,0 € © and O is the parameter
space. In general, some assumptions were made with respect to
the stochastic space-time process Z(s, t). Two common working
assumptions are isotropy and separability. When the data support
the two assumptions, model complexity and computational inten-
sity are reduced.

In the context of covariance functions, when Z (s, t) is both trans-
lation and rotation invariant, it is said to be isotropic:

Cov{Z(s,t), Z(s+h,t+u)} = Cz{||h||,|u|} heR* uecR,
©)
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where || - || is the Euclidean distance.
A process Z(s,t) is said to be separable if the covariance func-
tion can be factored into purely spatial and temporal components:

Cov{Z(s,t), Z(s+h,t+u)} = Cs{s,s+h}Cr{t,t+u} (6)

wheres+h € S and ¢ + u € T. Separable models do not allow
for space-time interaction and consequently do not adequately
model physical processes when interaction is present. Accord-
ingly, non-separable models generally have better predictive per-
formance than separable models. When Z (s, t) is isotropic and
separable its covariance function can be written as:

Cov{Z(s,t), Z(s + h,t +u)} = Cs{|h][}Cr{|u]}  (7)
where h € R? and u € R.
3.2 Stochastic Spatial and Spatio-Temporal Models

We consider two spatial covariance functions C's{||h||}. The
first is the Matérn covariance:

h e R?

o o | \” [[h]]
CS{h’o}_rﬂr(u) <7> Ky (7) 0= (02, ¢,v)
®)

where ¢ > 0, v > 0 and K, is the modified Bessel function
of the second kind. The Matérn is selected due to its flexibility
modeling different degrees of smoothness. A second commonly
used spatial covariance function is the powered-exponential co-
variance, which has a closed parametric form and does not rely
on the Bessel function, easing subsequent parameter estimation:

n||\? ¢
Cs{h; 0} = o%exp (— (%) ) " :h(f"’]is;,p)

where ¢ > 0,0 <p < 2.
A popular choice for expressing temporal dependency is the gen-
eralized Cauchy covariance function (Gneiting et al., 2006):

®

o? u € R

(1+ (=) 0 = (0% o B, é7)

where o2 > 0, € (0,2],8 > 0and ¢r > 0. Spatial and tem-
poral processes can be combined through the separable model.
When the spatial process’s covariance is Matérn and the tempo-
ral process’s covariance matrix is Cauchy the resulting separable
function is proportional to the product of the covariances:

Cr{u;0} = (10)

2
g

(&)
(v (2 (29).

whereh € R, u € Rand 8 = (02, a, 8, 7, ¢s, V). A similar,
separable space-time process obtains when the spatial process’s
covariance matrix is a powered exponential whereas the temporal
process follows a Cauchy:

- W" (%)) o

where ¢s > 0,¢7 > 0, € (0,2], 8> 0,7 > 0and o* > 0.

Cov{h,u;0} =

Cov{h,u;0}

A non-separable space-time version of equation (12) used in the
literature (Gneiting et al., 2006), because of its tractability, is
Gneiting’s powered exponential-Cauchy model with covariance

function:
2
Cov{h,u;0} =
+ 6
CHhH h € RY,

X exp ‘u‘ 57 v uer U3
where 8 = ( qbs,qb:r,oz B,7),¢s > 0,67 > 0,a € (0,2],y €
(0,1],8 € [O 1] > &4 and 02 > 0. The parameter (3 controls

space-time interaction and when 8 = 0 the covariance function
is proportional to the separable model. Similarly, for v = 0,
Z(s,t) reduces to a temporal process with Cauchy covariance
(Cr) whereas when 0 = 0, Z(s,t) reduces to a purely spatial
process with powered-exponential covariance (C's).

3.3 Modeling Active Layer Thickness

Four models are considered. The first, naive, model assumes no
stochastic spatio-temporal variability, Z (s, t), so that:

m(s,t) +&(s, 1),

where m(s, t) is the mean function and £(s, t) is the error pro-
cess. The spatial and temporal trends do not interact so the mean
function is defined as the sum of spatial and temporal trends:

X(s,t) = seS,teT. (14

m(s,t) = ms(s;v) + mr(t; ), (15)

where v = {vi}iez, A = {)\;};es are unknown parameters
with index sets Z, J and the functions ms(s; v) and mr(t; A)
are known up to the value of their parameters .

When there are a small number of parameters, as in polynomial
regression, the microscale variation is not captured by the mean
function hence it is not flexible enough to capture all space-time
variation. Accordingly, we add a stochastic component to ac-
count for the microscale variation. The remaining models include
a global trend and stochastic space-time component:

X(s,t) =

m(s,t) +&(s,t) + Z(s,t), s€S,teT (16)

where m(s, t),£(s,t) and Z(s, t) were previously defined. It is
possible that microscale variation occurs only in space and here
we consider the reduced model. For a fixed ¢t € T, Model 2’s
covariance does not depend on time and is given by:

Cs{lm[l} uw=0

0 u # 0. an

Cov{Z(s,t), Z(s+h,t +u)} = {

When Z (s, t)’s microscale variation is both in space and time,
we refer to it as Model 3, whereas when it is non-separable it is
referred to as Model 4.

3.4 Fitting Models to Data

Following the convention of (Zimmerman and Michael, 2010),
we assume the naive model’s spatial trend is modeled by at most,
a second order polynomial:

ms(s;v) = vo + vis1 + v2st +vzs2 +vass  (18)

where s = (s1,52) € S are coordinates in R? and {v;}{_, are
their corresponding unknown parameters. We assume the tem-
poral trend follows, at most, a second order polynomial equation
with Fourier frequency cos(wt):

mr(t; A) = Ao 4+ A1 cos(w(t + A2)) + Azt + Mt (19)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-11-4-W2-199-2015 201



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13-15 July 2015, Fairfax, Virginia, USA

where ¢ € 7 C R and {\;}{—, are the corresponding unknown
parameters. The parameters of the spatial and temporal trends are
estimated using non-linear least squares.

With respect to models 2-4, once the global trend is fit, the param-
eters of the covariance function of the residuals Z (s, t) (Cz (-, -; 0))
are estimated. When maximum likelihood criteria are used, ex-
act schemes rely on repeated formation and inversion of the co-
variance matrix and evaluation of its determinant which can be
computationally demanding. Rather, composite likelihood, an
approximate likelihood method, is used to estimate the covari-
ance parameters. Using composite likelihood, a pseudolikelihood
function is constructed from the marginal densities of all pair-
wise differences among the observations and maximized. Using
a spatio-temporal version of the scheme proposed by (Curriero
and Lele, 1999), we find the parameters 6 € © that maximize the
spatio-temporal composite likelihood function:

n n

argmax Z Z ( _1 log (Cz(si —sj,ti —t5;0)  (20)
0@z =1 j>i 2
((si,ti) = 2(s5,£5))”
2CZ(Si - Sj,ti - tj; 0) ’

where n is the number of observations, £(s;, t;) is the value of
the residual at location s; and time ¢;, § € ©z C © and

Jr

@n

Cz{Si —8j,ti — tj;e} = COV{Z(S-;,ti)7 Z(Sj,tj);e}. 22)

Models are fit in R using the CompRandF1d package (Padoan and
Bevilacqua, 2015).

3.5 Prediction

For separable and non-separable spatio-temporal models the sim-
ple point forecast at location sp € S and time to € 7T is given
by:

fi(so0, to) = 1(s0, to) + CjoC, ' %(s, t) (23)

where c;o is the vector of covariances between the residuals,

(z(s,t) = {4(si, t;) }i,jes,7) and predicted variables (z(so, to) =

{z(si,t0) }ies), Cz is the variance-covariance matrix of Z(s, t)
and Z(s, t) is the vector of residuals.

The predicted value for Model 1 at locations sp € S and time
to € T is similarly given by:

fi(so, to) = 1 (so, to) 24

which is the global trend predicted at values so and ¢o.

4. MODEL COMPARISON
4.1 Model Comparison Test

In the absence of temporal correlation the spatio-temporal mod-
els, Model 3 and Model 4, reduce to the stochastic spatial model,
Model 2, with Matérn and powered exponential covariances, re-
spectively. Model 2 has four estimable parameters whereas Model
3 has seven and Model 4 has eight. We compare the fitted nested
spatial models and saturated spatio-temporal models to one an-
other at the eight sites using likelihood ratio tests. We test whether
there is a significant difference between spatial Matérn and spatio-
temporal Matérn-Cauchy models as well as the spatial powered

exponential and spatio-temporal powered exponential-Cauchy mod-

els.
4.2 Time-Forward Prediction

To assess the predictive performance of increasingly complex
models we use time-forward predictions of the ALT during the

test period based on fitted models in the training period. In par-
ticular, one-year ahead spatio-temporal predictions for ALT mea-
sures are made at each of the stations for the four models. A
one-year hold out set, the year 2014, was used to rank model
fits based on several metrics. Predicted root mean squared er-
ror (PRMSE), predicted mean absolute error (PMAE) and pre-
dicted mean percentage difference (PMPD) were used to assess
the quality of point forecasts. For year to € 7 and sites sg € S
the prediction metrics are defined as:

(S0, o) — z(s0, £0))2\
PRMSE = <Zsoe$(ﬂ(50’|§) z(so, to)) > (25)
(i to) — t
PMAE — Zsoes |:u(s()7|80‘) l’(S(]’ O)‘ ] (26)
. f(so, to) — z(so, to)
PMPD = OXE:S P 27

where {z(so, t0)}socs are the observed values for the one-year
hold out set and |S| is the cardinality of S.

5. RESULTS AND DISCUSSION

The methodological framework elaborated above was applied to
the ALT grids summarized in Table 1. We first applied the likeli-
hood ratio test to spatial and spatio-temporal models to assess fit.
Table 2 lists the log-likelihood for Models 2-4. Since all p-values
are close to zero the likelihood ratio tests indicate a significant
difference in model fit (p ~ 0) between spatio-temporal models
and their spatial counterparts for each of the eight sites.

We subsequently compared models based on the time-forward
error measures at the various sites. Tables 3-5 list the PRMSE,
PRMAE and PMPD of Models 1-4 for a one-year time forward
period; Table 6 summarizes the relative difference in performance
of the non-separable model to the other three.

The spatio-temporal models time-forward errors are lower than in
deterministic and spatial stochastic models at seven of the eight
sites. In particular, for all sites except at site U7A the non-separable
model has the lowest PRMSE, PMAE and PMPD.

Using a paired Wilcoxon non-parametric permutation test with
exact p-values we assessed whether systematic differences in pre-
dictive performance between sites existed for Models 3 and 4.
The test indicated the PRMSE, PMAE and PMPD for the Model
3 and Model 4 were not statistically significant as the p-values for
the PRMSE, PMAE, and PMPD were all p > 0.05. In contrast,
the test indicated a significant difference between spatio-temporal
models and Models 1 and 2. Their p-values are summarized in
Tables 7-8.

Two implications follow. First, the inclusion of a microscale
stochastic temporal component within the model explains vari-
ability not captured by deterministic models. The importance of
the stochastic temporal component can be seen when comparing
the point prediction errors of Models 1 and 2 to Models 3 and 4.
Prior to the inclusion of the temporal component, Models 1 and 2,
have similar prediction errors. Subsequent to the inclusion of the
stochastic temporal component the reduction in PRMSE, PMAE
and PMPD of the spatio-temporal models to naive and spatial
stochastic models becomes significant. To compare, the separa-
ble and non-separable stochastic spatio-temporal model are on
average within 14.2% and 13% of the one-year time forward true
values at the predicted eight sites whereas the deterministic, spa-
tial stochastic Matérn and spatial stochastic powered exponential
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models averages time-forward predictions across the eight sites
are within 19.3%, 20.0% and 20.4% of the true values. The non-
separable spatio-temporal model’s average PRMSE, PMAE and
PMPD across the eight sites are identified as the smallest among
the models. Relative to the naive model, the increase in aver-
age predictive accuracy across the eight sites for the three error
metrics is 33.3%, 36.2% and 32.5%.

Second, when spatio-temporal interaction is present, predictive
performance may increase. Table 9 lists the values of the interac-
tion parameter /3 for the eight sites. Atsites U3, U11A and U12A,
where spatio-temporal interaction is present, there are predictive
performance gains for the non-separable spatio-temporal model
relative to the separable spatio-temporal model. The most notice-
able decrease in predictive errors occur at sites U11A and U12A,
where the landscapes are homogeneous and the spatio-temporal
interaction is detectable. The relative decrease of the PRMSE,
PMAE and PMPD of the non-separable model to the separable
model are by 20.6%, 27.9% and 28.7%, respectively.

6. CONCLUSIONS

This study introduces a methodological framework for modeling
ALT, using four models that are the sum of a systematic trend and
stochastic component. The naive model, against which we com-
pare the other models, assumes ALT is completely determined
by the global trend, whereas the other models characterize mi-
croscale variability through either spatial or spatio-temporal de-
pendency. We assessed the models’ predictive accuracy at eight
sites which possess different degrees of sparsity for a one-year
forward period using root mean squared error, mean absolute er-
ror, and mean performance difference.

The spatio-temporal models significantly reduce the time-forward
errors metrics when compared to both deterministic and spatial
stochastic models. The temporal stochastic component subse-
quently plays a role characterizing active layer thickness dynam-
ics and decreasing prediction point errors.

Despite grid sparsity the spatio-temporal model was able to cap-
ture the residual variability through its temporal component, and
generate predictions superior to those of the deterministic and
spatially stochastic models. The implication for researchers is
that complete grids may not be necessary to characterize ALT
dynamics, possibly resulting in decreased setup and operational
costs. When landscapes are homogeneous and interaction is de-
tectable measurement error is further reduced.

The largest limitation in the current approach is that a non-separable
Gneiting Cauchy-Matérn could not be implemented in the analy-
sis given the limitations of the package CompRandF1d. Had the
option for a non-separable Gneiting Cauchy-Matérn been avail-
able the analysis would have allowed comparison of nested spa-
tial, separable and non-separable models.

A future route of research is to develop a full stochastic model
that considers not only ALT, but other variables such as tempera-
ture, snow coverage, relative humidity and solar radiation across
space simultaneously. Some of the multivariate spatial models
currently of interest in the statistics community may also be use-
ful to this end (Apanasovich and Genton, 2010, Apanasovich et
al., 2012).
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7. APPENDIX
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Site Name Site Code  Years Sampling Design Coordinates # Measurements
Barrow Ul 20 1x1km 71° 19°N, 156° 36’'W 116
Atkasuk U3 20 1x1km 70° 27°N, 157° 24°'W 102

West Dock U4 19 100x100m 70° 22°N, 148° 33°W 121

West Dock us 19 1x1km 70° 22°N, 148° 33°W 103

Betty Pingo U7A 19 I1x1km 70° 17°N, 148° 52’W 99

Happy Valley U9B 19 100x 100 m 69° 10°N, 148° 50°W 112
Imnavait Creek Ul1A 20 1x1km 68° 30°N, 149° 30'W 49
Toolik UI12A 20 1x1km 68° 37°N, 149° 36’'W 74

Table 1. Site Locations and Features

Site Model 2 Model 3 Model 3 Model 4
Matérn Matérn-Cauchy || Powered Exponential ~ Gneiting

Ul -6024376 -6018046 -5589312 -5585464
U3 -6884152 -6860606 -7045597 -6860593
U4 -8784495 -8766294 -6555215 -6553003
Us -11149585 -10813754 -14623955 -11377347
U7A -6881255 -6881216 -6894816 -6881192
U9B -7240268 -7227548 -7122015 -7108969
UllA | -1929512 -1926401 -1927920 -1926425
Ul2A | -1157276 -1073743 -1261506 -1095846

Table 2. Log-likelihood of Models 2-4

Site Model 1 Model 2 Model 2 Model 3 Model 4

(Naive Model)  Matérn  Powered Exponential ~ Matérn-Cauchy  Gneiting
Ul 8.36 8.28 8.26 6.98 6.79
u3 19.98 18.78 18.78 11.20 10.80
U4 6.17 6.82 6.76 6.01 5.94
Us 13.10 16.38 16.4 7.97 7.61
U7A 16.45 8.82 9.68 7.83 8.05
Uo% 7.14 8.28 8.29 7.19 6.67
Ul1A 7.92 9.63 9.85 6.74 5.64
Ul12A 8.70 10.04 10.05 8.30 6.23
Average 10.81 11.07 11.20 7.78 7.22

Table 3. PRMSE for Models 1-4

Site Model 1 Model 2 Model 2 Model 3 Model 4

(Naive Model)  Matérn  Powered Exponential ~ Matérn-Cauchy  Gneiting
Ul 5.78 8.12 8.11 591 5.72
u3 13.58 14.39 14.39 7.12 6.51
u4 4.62 5.23 5.18 4.50 442
Us 10.79 16.59 16.6 6.35 6.10
U7A 13.92 7.07 8.28 6.43 6.65
U9B 5.77 6.74 6.74 5.80 5.20
Ul1A 6.07 7.40 7.58 5.39 4.25
Ul2A 6.48 7.43 7.42 6.00 3.92
Average 8.34 9.12 9.29 5.94 5.35

Table 4. PMAE for Models 1-4
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Site Model 1 Model 2 Model 2 Model 3 Model 4

(Naive Model)  Matérn  Powered Exponential ~ Matérn-Cauchy  Gneiting
Ul 20.2% 22.9% 22.9% 20.1% 19.4%
U3 23.7% 28.4% 28.4% 13.4% 12.5%
U4 14.2% 16.4% 16.3% 14.2% 13.9%
us 24.7% 30.1% 30.1% 13.8% 13.6%
U7A 32.3% 16.1% 18.7% 14.7% 15.3%
U9B 14.0% 16.3% 16.3% 14.2% 13.0%
Ul1A 12.5% 15.3% 15.7% 11.5% 9.0%
Ul2A 12.6% 14.5% 14.5% 11.5% 7.4%
Average 19.3% 20.0% 20.4% 14.2% 13.0%

Table 5. PMPD for Models 1-4

Site Model 1 Model 2 Model 2 Model 3
(Naive Model) Matérn  Powered Exponential ~ Matérn-Cauchy
PRMSE 33.3% 33.1% 35.6% 7.22%
PMAE 36.2% 41.4% 42.4% 9.96%
PMPD 32.5% 34.9% 36.1% 8.20%

Table 6. Average Performance of Models 1-3 to Model 4

Metric Model 1 Model 2 Model 2
(Naive Model)  Matérn ~ Powered Exponential
PRMSE 0.0078 0.027 0.027
PMAE 0.0039 0.0039 0.0039
PMPD 0.0039 0.0039 0.0039

Table 7. Model 3 - p-values for paired Wilcoxon test

Metric Model 1 Model 2 Model 2
(Naive Model) Matérn  Powered Exponential

PRMSE 0.0039 0.0039 0.0039

PMAE 0.0039 0.0039 0.039

PMPD 0.0039 0.0039 0.039

Table 8. Model 4 - p-values for paired Wilcoxon test

Site Ul U3 U4 Us U7A U9B UlIA 12A
Interaction parameter | 0.00 0.05 0.00 0.00 0.00 0.00 1.00 1.00

Table 9. Interaction Parameter of Model 4 at Different Sites
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