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ABSTRACT: 

 

As cell phone usage becomes a norm in our daily lives, analysis and application of the data has become part of various research fields. 

This study focuses on the application of cell phone usage data to disaster response management. Cell phones work as a communication 

link between emergency responders and victims during and after a major disaster. This study recognizes that there are two kinds of 

disasters, one with an advance warning, and one without an advance warning. Different movement distance between a day with a 

blizzard (advanced warning) and a normal weather day was identified.  In the scenario of a day with an extreme event without advanced 

warning (earthquake), factors that alter the phone users' movements were analyzed. Lastly, combining both cases, a conceptual model 

of human movement factors is proposed. Human movements consist of four factors that are push factors, movement-altering factors, 

derived attributes and constraint factors. Considering each category of factors in case of emergency, it should be necessary that we 

prepare different kinds of emergency response plans depending on the characteristics of a disaster. 

 

 

                                                                   
*  Corresponding author 

 

1. INTRODUCTION 

1.1 Background 

In 2014, 90 % of adults in the United States owned a cell phone 

(PewResearchCenter, 2014). It is becoming more common that 

many Americans own only cell phones and don't own the 

traditional landline phones (CDC, 2013). The more prevalent 

cell phones become, the more it is expected to be robust and 

reliable especially when the users need emergency assistance. 

 

However, following the 2011 Tohoku-oki Earthquake and 

Tsunami, cell phone service was disrupted for days because of 

provider-side infrastructure damage and power outages (Japan 

Ministry of Internal Affairs and Communications, 2011). We 

observe similar incidents around the world after major disasters 

in which people are trying to charge their cell phones by using 

portable generators to connect with their loved ones. 

 

This study was motivated to improve the effectiveness of 

response to such situations. To prepare for an event when cell 

phones, which are vital in locating victims, are not functional, 

can we use past-recorded cell phone usage data to delineate 

human movement patterns and apply this knowledge to locate 

victims? 

 

1.2 Literature Review 

Geography is not only about two-dimensional locations. People 

move and the movement involves a flow of time. Hägerstrand 

(1982) introduced the concept of 'path and projects' and analyzed 

how the movements of residents in a small town were determined 

by their status in the society and their daily projects. It's been 33 

years since his paper, 'DIORAMA, PATH AND PROJECT', was 

published. His paper paved the way for the field called 'time  

geography'. In recent years,  a massive volume of digital data 

('big data'), including cell phone usage data, has become part of 

important resource for the advancement of the field. 

 

Cell phone data research evolved from simply trying to identify a 

precise location from a GPS and network access data to 

visualization of mass data and trajectory analysis. Andrienko et 

al. (2011b) systematically summarized the elements of 

movement analysis (position records, trajectory, characteristics 

of  movement, spatio-temporal relations, dynamic attributes) and 

the steps of visualization (event extraction, determination of 

relevant places,  aggregation of events and trajectories, and 

analysis). Then they demonstrated the visualizations using GPS 

traffic data. 

 

Gonzalez et al. (2008) calculated a single spatial probability 

distribution from mobile phone data using a statistical approach 

and determined that 'inherent similarity in travel patterns could 

impact all phenomena driven by human mobility', indicating that 

there are underlying attributes for human movements and the 

movements might be predictable. Now the research has 

progressed to movement pattern analysis using such as people's 

work area profiles and time windows (Phithakkitnukoon et al., 

2012). 

 

Gonzalez et al. indicated in their paper that the similarity of 

people's movement is crucial for critical situations such as 

emergency response. This paper will go further and investigate 

the underlying attributes of the similarity as well as dissimilarity 

by dissecting cell phone usage data on a population level as well 

as an individual level.  
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2. OBJECTIVES OF THIS STUDY 

2.1 Identify or Predict People's Locations 

FEMA (Federal Emergency Management Agency) identifies 

three stages of activities (pre-incident, incident, post-incident) 

and five means (prevention, preparedness, response, recovery, 

mitigation) (FEMA, 2006). This study focuses on incident and 

response. 

 

The incident (at the time of a disaster) and response (the period 

immediately follows a disaster) phases are the crucial times for 

emergency response teams to save lives. For the response teams 

to provide necessary supplies, shelter and transportation systems 

to victims, communication systems must work to identify 

victims' locations. However, during and after Hurricane Sandy in 

2012, an average of 25 % of the cell sites in the area, which 

affected by Sandy, lost service and the reports issued by Verizon 

indicate that 300 central offices were affected (Kwasinski, 

2013).  

 

In the wake of the strong earthquake and tsunami, which hit 

northeast coast of Japan in 2011, about 15,000 cell phone base 

stations were interrupted. The day following the disaster, the 

peak of base station interruptions occurred and it took about ten 

days until the number of interrupted towers reduced to under 

2,000 (Japan Ministry of Internal Affairs and Communications, 

2011). 

 

The main objective of this study is to determine how we can 

apply our knowledge of people's movement patterns when 

communication systems are lost, or, the systems are not 

adequately working to identify or predict victims' locations 

during and after a disaster. 

 

2.2 Two Types of Disasters 

When we talk about 'disaster', we tend to omit the fact that there 

are two kinds of disasters: a disaster with a warning and a 

disaster without a warning. Weather events such as blizzards or 

extreme heat are examples of disasters with an advance warning. 

Earthquakes or nuclear accidents are examples of the disasters 

without an advance warning. In this study, we will examine what 

factors related to human movements need to be considered in 

each type of disaster. 

 

2.3 Individual and Population 

Emergency management imposes a unique challenge to human 

movement analysis. In analysis utilizing a large number of data 

(so called 'big data' including cell phone usage data), a popular 

method is that the data is analyzed as a whole, in other words, in 

its aggregated form. This is understandable considering that one 

of the strengths of big data is its massive volume.  

 

A challenge in emergency management is that one individual, 

one location point, does count as it represents a person who 

might need help. Investigating how individual cell phone data 

relates to population data is another objective of this study.  

 

2.4 Cell Phone Usage Data as Resource 

Disaster response has been identified as an area in which the GIS 

(Geographic Information Systems) as well as mobile phone data 

can contribute (Goodchild, 2008). The computation and 

visualization power of GIS, and, the rich data which cell phones 

provide, is a dream combination for these critical times when we 

need to know people's locations and movements.  

 

Despite the potential value of cell phone usage data, the data 

contains some drawbacks such as sparseness, inconsistency, and 

intervals (Andrienko and Andrienko,  2011c) that will be 

detailed in the following sections. Due to those characteristics, 

depending on the way we analyze the data, it could present 

different pictures of the movement patterns.  

 

So should we utilize big data only in aggregated form? Can we 

rely and trust the analysis of big data when, in fact, its base data 

is collected arbitrarily? This study will look at the potential ways 

to analyze and utilize cell phone usage data. 

 

 

3. DATA 

The cell phone usage data was provided by the PhoneLab: A 

Large Programmable Smartphone Testbed of the Computer and 

Engineering Department, the University at Buffalo 

(https://www.phone-lab.org/) in March 2014. The original data 

package includes the phone usage data of 256 users and the data 

collection time range spans from 2012 through February 2014.  

 

The PhoneLab is a smartphone platform testbed sponsored by 

the National Science Foundation and Sprint. Users, who signed 

up with the project, pay a small monthly fee and are provided 

with a Google Nexus 5 smartphone (Android OS). Users agree 

for their phone usage data to be collected and used for research 

purposes. Registered users are students or faculty of the 

University at Buffalo. This indicates that the user demography is 

skewed in terms of age, industry, destinations and so on. The 

user background is taken into consideration in the following 

analysis.  

 

The data includes location (latitude, longitude) and other 

attributes (Table 1). Personal information such as name, address, 

phone number, gender, age, workplace are not collected. Each 

phone device is identified by a random number. 

 

The original data consists of two separate collections of data, 

one is location data collected by Android API Location class, the 

other is battery data collected by Android API BatteryManager 

class. The reference geographic coordinate is WGS84.  

 

Since this is an ongoing project, this preliminary data and 

analysis only pertain to the Location class. Data and analysis 

derived from the BatteryManager class will not be reported in 

this paper. 

 

Data Classes Location class BatteryManager 

class 

Variables Device ID 

Timestamp 

Device ID 

Timestamp 

 Latitude  

Longitude 

Battery Level 

Plugged in or not 

 Elevation Charged or not 

 Connection type  

 Location accuracy  

Table 1. Data elements captured in each class (showing only the 

categories relevant to this study) 
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4. METHODS 

4.1 Dates and Time Window Selection 

As a first step, two days were selected for movement pattern 

comparison between a day with a disaster with an advance 

warning and a normal weather day. Since there was no actual 

disaster during the data capturing period, a severe weather day, 

Tuesday January 7th, 2014, was instead selected.  On January 

7th, 2014, the Buffalo area experienced a blizzard and a travel 

ban was issued by more than one town in the area (News 4 

WIVB Buffalo, 2014). The other date is Tuesday January 28th, 

2014 which was a typical winter day without extreme weather 

conditions.  

 

January 7th was during winter break and January 28th was the 

second day of spring semester. If the weather had been similar, 

this selection indicates underlying condition differences. 

However, considering that the blizzard was severe and schools 

would have closed, one may consider the fact that January 7th 

was during spring break didn't create an obstacle in comparison. 

 

For disaster without an advance warning, we compared only 

movement patterns on a normal weather day at four different 

times of day. Four time stamps: 7:30 a.m. (morning commute), 

11:00 a.m. (class/lunch time), 14:00 p.m. (class time) and 18:00 

p.m. (evening commute) were selected. One can assume that a 

major disaster such as a strong earthquake hit during one of the 

time windows.  

 

 

Figure 1. Methods flow description 

 

Out of the 256 user data, 72 users were found to have data 

readings on both January 7th and January 28th. The 72 users' 

captured data was screened next. Due to the sparse nature of cell 

phone usage data, some users were dropped due to limited hours 

of data reading. Among 72 users, 34 users' data was found to 

have been captured on both days throughout the days. This study 

utilizes the 34 users' data. 

 

Please note that the steps to narrow down the sample size 

decreased the data reading consistency. Comparison of the 

number of data readings of each user on January 7th and January 

28th resulted in Pearson's correlation coefficient 0.485 for 72 

users and 0.258 for 34 users.(1) For this study, we accepted the 

sparseness of the data as a characteristic of cell phone usage data 

to pursue our objective of examining the relationship of 

individual and population cell phone data. The total number of 

                                                                   
(1) Pearson's correlation coefficient ranges from -1(negative correlation) 

to +1(positive correlation) and 0 is not linearly related (Rogerson, 2010) . 

location points of the 34 users on January 7th is 14,371 points. 

The total number of location points of the 34 users on January 

28th is 24,786 points. 

 

Since cell phone usage data is not captured steadily like a clock, 

it is impossible to capture data of all users at the same exact 

timestamp. To solve this issue, the time window method was 

applied. Specifically, a location reading for each user with the 

closest timestamp to the set four timestamps was selected. 

 

Figure 2 describes the composition of cell phone usage data and 

the data extract windows along the population axis (population - 

individual) and the time window (range of time such as 'all day' - 

a point of time such as 'noon'). 

 

 

Figure 2. Windows of cell phone data analysis (Vertical axis: 

individual - population window. Horizontal axis: time window) 

 

4.2 Movement Attributes Calculation 

For the selected 34 users, movement distance was calculated 

from latitude and longitude of successive location readings. 

Speed and bearing were calculated from five latitude/longitude 

readings prior to each timestamp successively and the average 

values were calculated. People don't move in straight lines to 

their destinations; they turn at corners, stop at traffic lights, if 

they pass their destination they have to U-turn. That is the reason 

why average values were used instead of values from two 

latitude/longitude pairs. Using five points would allow us to 

include some direction adjustment points. 

 

The location class of Android API does capture bearing 

information that is generated from the direction to which the 

phone is facing at the time of data capture. However, a person's 

moving direction and the direction the person's phone is facing 

don't always coincide.  In this study, instead of using the phone 

facing bearing, bearing was calculated from successive 

latitude/longitude readings using the Haversine formula 

(Movable Type Ltd, 2014). This formula was used for 

calculating movement distance and speed as well.  

 

4.3 Movement Pattern Analysis 

4.3.1 A disaster with an advance warning: First, the 

population movement distance on the blizzard day (January 7th) 

and the normal weather day (January 28th) were compared. For 

this study, we assumed that most of the population were aware 

that a blizzard was going to hit on that day and it would have 

created a major alteration in their daily routines and movements. 

Linear movement distance and longest movement distance 
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(bounding diameter) were calculated from all location readings 

of each user throughout each day and summed as population 

movement distance. 

 

The result was examined to identify the factors that should be 

considered in response to a disaster with an advance warning.  

 

4.3.2 A disaster without an advance warning:  Next, 

locations, speed and bearings of the users in the four time 

windows on January 28th were extracted and mapped. The user 

locations and bearings in one of the time windows, 7:30 a.m., are 

shown in Figure 3.  

 

Assuming that all cell phone users lost their cell phone 

functionality at the time of disaster, Cell phone users, who were 

moving at the speed of 4 km (2.49 miles)/hour and above (faster 

than walking speed) were identified and their locations were 

moved (predicted) for 30 minutes based on their moving speeds 

and bearings. The moved points were compared with actual 

locations after about 30 minutes.  

 

The results were examined for accuracy and errors. Human 

movements are influenced by various factors and it was 

anticipated that the moved (predicted) points and actual locations 

wouldn't coincide. The errors would indicate the factors affecting 

human movements. 

 

 
Figure 3. 7:30 a.m. window showing user locations and bearings. 

The star is the U. at Buffalo campus location(2) 

 

4.4 Conceptual Modelling and Application 

The findings from 4.4 were used to construct a conceptual model 

of human movement factors that we ultimately will apply to 

emergency response. 

 

 

5. RESULTS 

5.1 A Disaster with an Advance Warning 

Before moving onto results, one has to point out the accuracy 

variance of the captured location data. Cell phones use more than 

one method to get and send out location data. The connection 

type of this study included GPS and network and accuracy of 

location data varied. Each connection (data reading) gives 

location accuracy information in meters. GPS returns a very 

accurate location (meter in single digit accuracy). Accuracy of 

                                                                   
(2) In this paper, boundaries and roads are removed from some of the 

maps for privacy protection. 

network connection varies from single digit to three digits in 

meters.  

 

Because of this issue, the numbers indicated below need to be 

considered as rough estimates with overall standard deviation 

about 200 meters. Still, magnitude of difference is obvious. 

 

On January 6th, 2014, NOAA issued a blizzard warning for Erie 

County, New York (includes Buffalo) and for several nearby 

counties at 5:23 p.m. effective through 6:00 p.m. on January 8th, 

2014. Expected snow accumulation on January 7th was two to 

four inches. Visibility was expected to be near zero with 

whiteout conditions at times. A travel ban was issued on January 

7th by more than one town in the Buffalo area and the travel 

bans were lifted in the evening on that day.  

 

Comparison of the phone users' total linear movement distance 

on January 7th and 28th showed that the total movement 

distance of the whole population on the 28th was about 200% 

longer compared with the 7th. 

 

Population Jan 7 

(blizzard) 

 

Jan 28  

(normal 

weather)  

% Change 

Total linear 

movement 

distance 

 

678.41 km 

 (421.54 mi)  

 

2,021.78 km 

(1,256.28 mi)  

 

198.02 %  

 

Longest 

movement 

58.84 km  

(36.56 mi)  

371.11 km  

(230.60 mi)  

530.71%  

 

distance    

 Table 2. Population total of linear movement distance 

 

Comparison of the phone users' longest movement distance per 

day on January 7th and 28th showed that the longest movement 

distance of the whole population was about 500% longer on the 

28th compared with the 7th. 

 

Despite the severe weather warning and the travel bans, five out 

of 34 cell phone users (12%) moved farther than 3 km (1.86 

miles).  

 

 
Figure 4. Longest movement distance (bounding diameter) 

shown as circles (Left: Jan 7th, Right: Jan 28th) 

 

5.2 A Disaster without an Advance Warning 

The cell phone user locations and bearings, which were extracted 

in 4.2 for four time windows, show that the users are converging 

from surrounding areas to the school/metro area in the morning 
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and dispersing in the evening (Figure 5). The demography of the 

users are limited to people related to the University at Buffalo, 

especially North Campus where the PhoneLab is located. 

However, the university is the fourth largest employer in the 

Buffalo area with about 7,000 employees (Erie County, New 

York, 2010) plus about 30,000 students (University at Buffalo, 

2015). So we can consider that the demography represents not a 

small portion of the movements of the residents.  

 

The locations of all users moving faster than 4 km (2.49 

miles)/hour in each time window were moved to predicted 

locations after 30 minutes. Figure 6 shows the result of this step 

for each window. Two lines extending from points in circles are 

indicating the difference of moved (predicted) points and actual 

locations at approximately 30 minutes later.  

 

 
Figure 5. Locations and bearings of users in four time windows  

(Top left: 7:30 a.m., Top right: 11:00 a.m.,  

Bottom left: 14:00 p.m., Bottom right: 18:00 p.m.) 

 

The comparison of linearly moved (predicted) points and actual 

locations revealed the overall direction of the points was in the 

same 180 degree plane. However, still a large degree/directional 

difference was observed. This difference tells us the factors 

which affect human movements - the movement which cannot be 

calculated from a linear mathematical calculation. Based on the 

examination of the errors, those factors were identified and they 

will be discussed in the DISCUSSION section. 

 

Examining the results of 5.2, two observations stood out. The 

first observation was that people were rather stationary. Even 

during the morning and evening commute time, the cell phone 

users, who were moving faster than walking speed, was a 

minority of the group.  

 

The other observation revealed was that the locations captured 

on cell phones were rather clustered. Heavy phone activities were 

captured in one area, then the heavy activity spot moved to the 

next spot as if jumping from island to island. Figure 7 shows the 

locations of four cell phone users throughout January 28th and 

their heavy phone activity spots. 

 

 
Figure 6. Moved points and actual points comparison example 

(Top left: 7:30 a.m., Top right: 11:00 a.m.,  

Bottom left: 14:00 p.m., Bottom right: 18:00 p.m.) 

 

It appears that people use their cell phones extensively at one 

location then move to another location. While they are moving 

(usually driving or using public transportation), the frequency of 

cell phone activity declines and their locations are captured less 

frequently. 

 

 
Figure 7. Locations of four cell phone users on Jan 28. Each 

symbol represents the same user locations. 

 

 

6. DISCUSSION 

6.1 Movement Distance 

In the case of January 7th blizzard, a weather warning was 

broadcast on TV, radio and the Internet. Although the timing of 

lifting travel bans among towns varied, overall, the weather 

conditions were not suited for driving throughout the day. It was 

in the best interest for residents as well as local governments that 

the residents limit their travel to avoid accidents and injuries on 

the roads and to conserve the emergency response recourses that 

would be used to attend to such incidents. 
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In this study, because of protections of privacy, we are not able 

to contact the five cell phone users, who moved farther than 3 

km (1.86 miles) on that day and ask them the reason why they 

were out on the roads. It is possible to consider that the user 

demography (college students who are active and sometimes 

reckless) is a special case and residents above 'college' age 

stayed at home. In any case, emergency management teams 

should anticipate that not all residents will comply with a travel 

ban. 

 

The fact that the longest movement distance was about 500% 

longer on a normal weather day compared with the blizzard day 

presents a couple of points for emergency management teams to 

consider. Residents staying at one location or moving about in 

nearby neighbourhoods during a blizzard is okey with respect to 

avoiding accidents. However, they are confined in their own 

locations and their movements don't overlap (Figure 4). The 

challenge is to find a sick or elderly person needing help if they 

are sheltered in their own space. Providing resources (food, fuel, 

etc.) door-to-door to residents takes time and is often impossible 

in severe weather. 

 

On the other hand, on a normal weather day, people move farther 

from one location to another, and usually farther away from their 

residence. People's movement overlaps on busy roads and in 

crowded areas (Figure 4). This pattern could be positive and 

negative if a disaster strikes without warning. A crowded place 

produces a large number of injured people or casualties in a 

small area. At the same time, there are many people and 

resources such as hospitals or fire stations around them which 

can rush to provide help. However, logistics for people far away 

from their residence will be challenging if transportation systems 

are interrupted and people require temporary shelter. 

 

6.2 Movement Altering Factors 

Based on examination of errors in Figure 6, some movement 

altering factors and their backgrounds are identified (Table 3). 

Please note that the list is not exhaustive. 

 

Factors Related backgrounds 

Purpose Demography, user characteristics 

Boundary of 

movements 

Land edge, end of interested zone  

 

Vacuum zone Business center, government district, 

shopping district 

Limited routes Road networks 

Stationarity Involvement in projects (work, school, 

leisure, appointments, etc.) 

Speed/Distance Distance from a start point to a 

vacuum point 

Time Season/day/time, start/end of activity 

time 

Table 3. Factors alter people's movements and their backgrounds  

 

The first movement-altering factor is purpose. Unless people 

have motivation to move somewhere for a certain purpose (eg., 

attending a class), they remain stationary. This factor governs 

whether people move or not in the first place. The next 

movement-altering factor is physical boundaries. The boundaries 

include land edge and the end of the interested zone. Land edge 

is an important factor in an area like Buffalo where the west side 

is facing Lake Erie.  

 

The end of interested zone indicates that there is a zone in which 

people stay for a certain purpose. If people are associated with a 

university, they remain in the zone with the school, classmates' 

apartments, dining spots, etc. Among various zones, a certain 

zone swallows a large number of the population in the area 

('vacuum' zone). The vacuum zone employs or attracts a large 

portion of the residents (although not all of them) for a certain 

purpose such as business, shopping, dining, study, leisure and so 

on. In case of this study, the University at Buffalo and the 

surrounding shopping and dining areas are the vacuum zone of 

the cell phone users (Figure 7).  

 

 

Figure 7. Vacuum zone, interested zones and points, and routes 

 

However, people are not able to take arbitrary routes to a 

vacuum zone. They follow limited road networks or walking 

paths to move to and from the vacuum zone. The speed on the 

routes is affected by the distance between a start point 

(residence) and a vacuum zone (or other purpose point). In the 

U.S. road system, the farther people have to move, the road types 

change from city roads with speed limits such as 35 miles per 

hour to a freeway with speed limits such as 65 miles per hour. 

The future change of speed is hard to predict from current or past 

moving speed unless we can determine how far the person is 

going to move. 

 

Another movement altering factor is stationarity that is 

mentioned above. Movement has a contrasting side of not 

moving or being still. If there is no reason to move, people would 

stay put. Once people reach the zones of their purpose, they 

engage in activities specific to the zone for a certain duration 

required for that activity.  Lastly, these factors are affected or 

regulated by time - in the morning, in the afternoon on a 

weekday, weekend, in which month (season) and so on.  

 

This study is ongoing and it is a little early to present a final, 

definite conceptual model. In the following paragraphs we 

present a possible model at this moment that can be applied to 

emergency management (Figure 8). 

 

 

7. APPLICATION 

As an example of application, we would like to demonstrate the 

thought process on each event.  
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On January 7th, 2014, a weather warning and travel ban didn't 

work for some cell phone users because they had push factors 

which made them decide to go out in the blizzard. Information 

such as weather, news and road conditions might have altered 

their usual routes but they didn't refrain from moving. So what 

pushed them? Was it job, taking care of family members, 

obtaining food, or just curiosity? How can we restrict such 

movement if it is really necessary? 

 

 
Figure 8. Human movement factors  

 

 

What if a strong earthquake hit on January 28th at 2:45 p.m.? 

The cell phone users who had push factors (school) are mostly in 

their interest zone (school) and are staying in the zone. The other 

users who didn't have push factors (no classes) are probably 

staying in their residence zone or going out due to other push 

factors (meeting friends, shopping, etc.). Those push factors 

would have moved them to non-school zones. However, it can be 

assumed that they are moving to a zone close to the school zone 

(meeting school friends) or to a vacuum zone (downtown, etc.).  

 

Figure 9 shows that in the 2:00 p.m. window on the 28th, user 

locations are clustered in school zones, residential areas close to 

the north campus and in the downtown area. However, if the 

earthquake hit during morning commute, the user locations 

display different patterns (Figure 5. Top left). 

 

 
Figure 9. Cell phone user locations in 2:00 pm window 

 

If cell phone users lost their communication functionality after 

the earthquake, depending on the regional demography and day 

and time, their locations would be first guessed by determining if 

the time is transit time or stationary time. If it's stationary time, 

their staying zones would be assumed by demography. If they are 

in transit time, on the way to or from a vacuum zone would be 

the highly populated route. Then other movement altering factors 

would be considered such as: 1) Is it possible that they receive 

information from other sources? 2) What physical boundaries or 

obstructions are constraining their movements? 3) If their 

movements are not constrained physically, how fast and how far 

can they move?  

 

 

8. CONCLUSION 

The first objective of this study was to determine how we can 

apply our knowledge of people's movement patterns to identify 

or predict victims' locations when communication systems are 

lost or not adequately working during a disaster. According to 

what we found so far, that it is very hard to predict people's 

exact locations using only numerical attributes. However, 

analyzing cell phone data gives us a glimpse of human 

movement patterns based on their purpose, movement altering 

factors and constraint factors. Once we understand those factors, 

this will help us design different patterns of emergency response 

according to the movement altering factors. 

 

The second objective was to examine two types of disasters, one 

with an advance warning and one without an advance warning. 

As seen in the previous sections, it is clear that the two scenarios 

impose different issues and require different strategies in 

emergency response. 

 

The third objective of this study was to analyze the relationship 

of individual cell phone data and population cell phone data. We 

found during this study, that trying to narrow down the number 

of samples based on set criteria decreases the correlation of data 

readings between users and between data readings on different 

days of the same user. However, to deduce factors that affect 

human movements, if we ignore the individual data, we might 

miss important factors affecting each individual's movement. In 

the case of big data, it is hard to inspect every individual data (in 

respect to time, technology, human resources and costs). So at 

this moment, we can only conclude that individual data is 

actually an important ingredient of big data and we might need to 

find a way that enables us to look at both big and small pictures 

within the data.  

 

The forth objective of this study was to determine the 

characteristics and potential of cell phone data for emergency 

response. As already mentioned, cell phone data has some 

imperfect data characteristics such as inconsistency and 

sparseness. However, the imperfectness or shortcomings of the 

data actually provides us insight into how our movements are 

affected by numerous factors in our lives. After all, our life 

doesn't consist of perfectly scheduled, repeated courses of action. 

 

Since this study is ongoing, one has to understand that some of 

the results, conclusion and the human movement factor concept 

in this paper require further analysis. Still, the results so far have 

given us important insight about cell phone data and human 

movements. More refined results in the near future are likely to 

will help improve the effectiveness of emergency response. 
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