ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13-15 July 2015, Fairfax, Virginia, USA

INTERESTING SPATIO-TEMPORAL REGION DISCOVERY COMPUTATIONS OVER
GPU AND MAPREDUCE PLATFORMS

Michael McDermott™? Sushil K. Prasad®, Shashi Shekhar®, and Xun Zhou?

*Department of Computer Science, Georgia State University, USA - mmcdermott2 @student.gsu.edu
*Department of Computer Science, Georgia State University, USA - sprasad@gsu.edu
“Department of Computer Science, University of Minnesota, USA - shekhar @cs.umn.edu
4Department of Management Sciences, University of Iowa, USA - xun-zhou@uiowa.edu

KEY WORDS: GPU, MapReduce, Hadoop, Parallelism, GIS, Spatial, Spatio-Temporal, Data Mining

ABSTRACT:

Discovery of interesting paths and regions in spatio-temporal data sets is important to many fields such as the earth and atmospheric
sciences, GIS, public safety and public health both as a goal and as a preliminary step in a larger series of computations. This discovery
is usually an exhaustive procedure that quickly becomes extremely time consuming to perform using traditional paradigms and hardware
and given the rapidly growing sizes of today’s data sets is quickly outpacing the speed at which computational capacity is growing. In
our previous work (Prasad et al., 2013a) we achieved a 50 times speedup over sequential using a single GPU. We were able to achieve
near linear speedup over this result on interesting path discovery by using Apache Hadoop to distribute the workload across multiple
GPU nodes. Leveraging the parallel architecture of GPUs we were able to drastically reduce the computation time of a 3-dimensional
spatio-temporal interest region search on a single tile of normalized difference vegetative index for Saudi Arabia. We were further able
to see an almost linear speedup in compute performance by distributing this workload across several GPUs with a simple MapReduce
model. This increases the speed of processing 10 fold over the comparable sequential while simultaneously increasing the amount of

data being processed by 384 fold. This allowed us to process the entirety of the selected data set instead of a constrained window.

1 INTRODUCTION

Interesting path and interesting spatio-temporal region discovery
are important filtering steps in many domains such as earth and
atmospheric sciences, GIS, public safety, public health and other
fields which deal with identifying and analyzing spatial data that
change over time. These are typically computationally expen-
sive steps and can take hours to days to complete. For instance
filtering non-interesting paths and regions is of particular inter-
est when predicting weather patterns, designing accurate ecolog-
ical models of climate shift and tracking ecotoneﬂ boundaries and
changes. Tracking these boundaries is a good way to study de-
sertification, deforestation, erosion and other shifts in geographic
areas which is of particular interest to GIS and environmental sci-
entists.

Finding interesting paths and spatio-temporal regions are exhaus-
tive operations. The reason for this is that the path or region does
not necessarily have a clearly defined limit. In other words the
interesting path or region could be as small as one item or as
large as the whole data set (Zhou et al., 2011} Zhou et al., 2013).
This leads to the less obvious, but important, consideration which
is that any given interesting region or path may be contained in
inside another larger region or path and this must be addressed
somehow (Zhou et al., 2011}, Zhou et al., 2013).

Data growth is also quickly outpacing our computational and
management abilities on traditional hardware and algorithm im-
plementations. More efficient ways of filtering and processing
this data are important to develop in order to complete the com-
putation in a reasonable time frame.

Parallel and distributed designs and implementations of these more
efficient algorithms are also therefore becoming increasingly im-

*Corresponding author
LEcotones are transitions between different ecologies such as the boundary be-
tween forest and grasslands (Zhou et al., 2011).

portant. Currently these sorts of big data calculations are limited
to large clusters and supercomputers which are capable of pro-
cessing the large volumes of data. Supercomputing environments
are however expensive in time and effort to setup, manage and
use. A much more accessible and economic approach is to equip
a workstation with one or more inexpensive yet high performance
GPU’s which would allow rapid testing and deployment of new
algorithms to solve problems in these domains. GPU hardware is
economical both in terms of price to performance and in terms of
power consumption to compute ability.

This paper’s contributions are :

e To leverage GPU hardware to speed up discover of spatio-
temporal regions of interest from an O(M?N?T"?) compu-
tation to an O(M NT?) computation.

e To use a MapReduce model to distribute discovery of spatio-
temporal regions of interest across multiple GPU devices
which provides linear speedup with respect to the number
of GPU devices used.

e To use Apache Hadoop to distribute interesting path discov-
ery across multiple GPU compute nodes which provides a
linear speedup over our previous work with respect to the
number of nodes used.

e Sequential algorithms have problems processing large sizes
of data (eg: the 4800 x 4800 map tiles discussed in Section
[B) and have to limit computation to a smaller subset (eg:
200 x 300) in order to complete computation (Zhou et al.,
2013). We have increased the size of the data that can be
processed to the full map tile while simultaneously increas-
ing performance for similar window sizes.

The remainder of this paper is organized as follows: In Section[2]
the problems are introduced and discussed in a traditional sequen-
tial environment and algorithms introduced in previous works are
outlined briefly. In Section 3] we briefly introduce and summarize
our previous work on interesting path detection and talk about

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-ll-4-W2-35-2015 35

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13-15 July 2015, Fairfax, Virginia, USA

related works. In Section[d] we give an overview of the most im-
portant GPU considerations for this work and give a general de-
sign overview of our implementations of Hadoop+GPU subpath
discovery, GPU ST-Region discovery and GPU MapReduce ST-
Region Discovery. In Section[5| we discuss the hardware environ-
ment used for our experiments. Section [6]shows our experimen-
tal results for Hadoop+GPU subpath discovery, GPU ST-Region
discovery and GPU MapReduce ST-Region Discovery. Section[7]
concludes the paper and gives some of our future research goals.

2 PROBLEM DESCRIPTION

In this work we are concerned with processing the large volumes
of spatio-temporal data produced by remote sensing technologies
frequently used in the study of climatology, oceanography, and
geology. This data is generally stored in either vector or raster
form. For our purposes we were interested in detecting paths
and spatio-temporal regions of rapid change in normalized differ-
ence vegetative index data (NDVI) sets which are stored in raster
image fornﬂ These are frequently pre-processing steps used to
limit the data being considered by much more costly computa-
tions and are also used to reveal interesting information in their
own right. These problems are themselves computationally ex-
pensive as they must exhaustively consider the entire data set.

2.1 Path Discovery

Discovering interesting paths is the problem of discovering one
dimensional longitudinal subpaths in a given raster data set that
show increases (or decreases) in average NDVI value greater than
a threshold value.

Path Discovery
Given:
e An array of elements .S
e A threshold ¢
e A score function F'
Find:
o All subpaths s € S where F'(s) > 6

The determination of interestingness is described by Equation

F(s) = Average value of unit subpath > 0

"~ Average value of all unit subpaths

as in (Zhou et al., 2011} |Prasad et al., 2013a).

Naively this test is trivial to implement but is computationally
expensive with a cost of O(N2M) for an N x M tile of data. As
we have to examine N — 1 subpaths for every IV items and we
must do this M times. This quickly becomes problematic with
today’s large data sets.

(Zhou et al., 2011) provides an SEP algorithm which reduces
computation by an order of magnitude over naive implementa-
tions through the construction of a lookup table in O(N) time.
This lookup table reduces an O(INV) scan operation to an O(1)
lookup, reducing the overall complexity to O(N) 4+ O(N?).

The SEP algorithm has three phases:

1. Build the lookup table
2. Discover all interesting sub paths

2For more information on NDVI and these datasets see Section

3. Eliminate paths which are subsets of longer paths

The lookup table is a simple columnar prefix sum of the data in
question. This can be done in O(M N) time for spatial data of
dimension Mx N (Zhou et al., 2011} |Prasad et al., 2013a)). Each
column for the purposes of the discovery is assumed independent.

The discovery phase then uses the lookup table to find subpaths
that pass the interestingness test. Longitudinal subpaths are pre-
ferred due to their being more likely to span ecotone boundaries
(Zhou et al., 2011). This test is performed for each possible sub-
path in a given column and for each column of data starting at the
largest possible subpath and examining each smaller subpath in
turn until one is found that is interesting.

The elimination phase examines all discovered sub-paths and elim-
inates any that are completely enclosed inside a longer subpath.

2.2 Spatio-temporal Region Discovery

Discovering interesting spatio-temporal subregions is the prob-
lem of finding a two dimensional subregion that exhibits average
change in NDVI value greater than a threshold value for a given
interval of time.

ST-Region Discovery

Given
o Asetof R of MxN regions organized by time
e A time interval to consider T°
e A threshold ©
e A score function F'

Find
e All sub-regions r that are interesting

The interestingness test is described by Equation 2}

__ Awerage change in value for the subregion

F(S
(9) time interval

(@3]

As in (Zhou et al., 2013) this average change in value is defined
as the value of the subregion at the beginning of the time interval
minus the value of subregion at the end of the interval divided by
the value of the beginning subregion. This is a measure of the
average decrease in NDVI value. These beginning and ending
values are determined by summing all the values in the subregion
being considered. This must be done for both the beginning and
the end of the interval being considered. This is illustrated in Fig-
ure[T] where the subregion at the beginning of the time interval is
shown in blue and the corresponding subregion at the end of the
time interval is shown in orange. The gray shaded region repre-
sents one of the possibly many intermediate subregions contained
in the spatio-temporal volume being considered. For Figure[]the
time interval being considered is n as it spans n + 1 parent re-
gions.

Naively this is also trivial to implement with the computational
complexity increasing to O(M*N*T?) in the worst case. This
is due to the need to exhaustively examine all possible spatio-
temporal volumes. For small windows this computation time may
be acceptable however in today’s big data environment the time
needed to perform this operation quickly becomes unacceptable
as M, N and T become large.

(Zhou et al., 2013) provides a PCW algorithm that mirrors the
SEP algorithm’s paradigms closely. The PCW algorithm reduces

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-ll-4-W2-35-2015 36

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13-15 July 2015, Fairfax, Virginia, USA

Figure 1. Subregion Discovery for to...t,

the worst case complexity to O(M?N?T?) by pre-computing a
lookup table. This lookup table takes O (M N) time and O(M N)
space in exchange for significantly reducing overall time com-
plexity in a similar way to the SEP algorithm.

This algorithm also has three phases:

1. Build the lookup table
2. Discover all interesting subregions
3. Eliminate all subregions which are within larger regions

The discovery phase is also similarly scaled up in dimensions.
The use of the lookup table is particularly important as it replaces
an O(NMT) scan for an O(1) lookup. The elimination phase is
also similarly scaled up and in this phase all PCW embedded in
larger PCW are removed from results.

3 PREVIOUS AND RELATED WORK
3.1 Previous Work

In our previous work on interesting path discovery, the GPU im-
plementation is straightforward due to the data independent na-
ture of the problem (Prasad et al., 2013a)). The lookup table is
embarrassingly parallel to implement by launching a thread for
every n € N. By coalescing memory access the GPU is used ef-
ficiently to compute this scan very quickly. It should be noted that
this is not truly a parallel scan but simply many smaller sequen-
tial scans launched in parallel. Due to the size of the data used for
this work the performance impact was deemed to be negligible.

The subpath discovery is sped up significantly due also to the
data independent nature of the problem. A worse case O(N?M)
problem is reduced in theoretical complexity to O(N M) through
parallelization on the GPU (Prasad et al., 2013a).

The elimination step here was accomplished two ways; implic-
itly and explicitly. Implicit elimination allows larger subpaths to
overwrite smaller ones when the data is visualized. Explicit elim-
ination programatically removes smaller subpaths that are com-
pletely embedded in larger subpaths. The complexity of explicit
elimination is the same as with discovery (Prasad et al., 2013a).

Overall this resulted in a good speedup and the ability to process
a single image in the data set in roughly 30ms. We were able to

process the entire data set quickly enough to generate real-time
visualizations of the algorithm’s output on a single GPU (Prasad
et al., 2013bl [Prasad et al., 2013a). We use this data set and GPU
implementation in Section[.1]

3.2 Related Work

MapReduce is a high level data centric model of distributed com-
puting that only requires two main phases; the map phase to dis-
tribute data and the reduce phase to perform computation and re-
turn results.

There are currently few related works dealing with MapReduce
and GPU. The first is Mars, a GPU MapReduce framework im-
plemented on GPUs in C/C++ and Cuda (He et al., 2008). This
uses a simplified version of MapReduce which only has two phases,
map and reduce. The second is GPMR, a GPU MapReduce li-
brary geared towards GPU clusters with scalability as a specific
concern (Stuart and Owens, 2011). Self contained and extensi-
ble, the GPU is still exposed to the user in contrast to Mars which
sought to obfuscate the GPU behind its own MapReduce inter-
face. The third, StreamMR, is a GPU MapReduce framework
based on OpenCL and designed for clusters of AMD GPUs (El-
teir et al., 2011).

There are two main works that deal specifically with MapRe-
duce and spatial data: Spatial-Hadoop and HadoopGIS. Spatial-
Hadoop is an extension of Hadoop that provides access to spa-
cial primitives and common spatial operations (Eldawy, 2014).
HadoopGlIS is a spatial data query system for performing spatial
queries in Hadoop (A1 et al., 2013). However, neither Spatial-
Hadoop nor HadoopGIS have built-in support for GPU integra-
tion currently.

4 DESIGN AND IMPLEMENTATION DETAILS

In order to achieve the best performance from the GPU hardware
some general guidelines and best practices must be followed.

CUDA General Guidelines

e Minimize branching

e Minimize global memory access

e Maximize global memory bandwidth utilization

Minimizing branching has to do with the GPU being a single in-
struction multiple data (SIMD) architecture. Threads in a block
are grouped together into warps of up to 32 threads with threads
within a warp ideally executing the same instruction. When there
is branching within a warp there is the potential to halve the per-
formance of the warp. With enough branching this can reduce
performance to near sequential time.

Minimizing global memory access and maximizing global mem-
ory bandwidth utilization are closely related. Global memory,
the large memory measured in gigabytes on the GPU device, has
very slow access time compared to the local thread memory and
shared block memory which are much smaller. When accessing
global memory, for maximum performance, it must be accessed
in a thread aligned way. This means that threads in the same warp
access contiguous portions of global memory in order to speed up
access and maximize throughput (NVIDIA, 2013).

The GPU implementation utilizes the ideas of the SEP and PCW
algorithm, however the algorithm implementations have been re-
engineered with the above considerations in mind.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-ll-4-W2-35-2015 37

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13-15 July 2015, Fairfax, Virginia, USA

4.1 GPU+Hadoop Path Discovery

Using the single GPU implementation from our previous work

(Prasad et al., 2013al), the Hadoop implementation is fairly straight-
forward. At the high level:

1. Raw raster data is read into a sequence file on and saved on
the HDFS.

2. Values are mapped from the sequence file.

3. GPU computation is performed on compute nodes in the re-
duce phase.

GPU kernels were written in CUDA and then launched by Hadoop
using the JCUDAE| Java bindings library. This allowed quick de-
ployment to Hadoop once the GPU code had been developed.

This also means that care must be taken in the map phase so that
the data is not subdivided incorrectly. We used a sequence file to
guarantee that this did not happen. This also allowed us to keep
the data in a binary format (White, 2009). Using the sequence file
allowed avoidance of the small files problem as we were able to
read in all the relatively small raster data files and combine them
into one large file of key, value pairs. For simplicity each raster
data file was read in as a single value in the sequence file.

The small file problem stems from how the HDFS maps files.
Each file in HDFS uses at least one HDFS block. For files larger
than this block size this is generally not an issue. When files
are smaller than the block size then space in the HDFS is wasted.
This can potentially result in decreased performance of the HDFS

as a whole by increasing file read and write (White, 2009).

4.2 GPU Spatio-temporal Region Discovery

The previous paradigm for building the looking table, while sim-
ple, is comparatively inefficient. A better strategy is a GPU im-
plementation of parallel prefix sum due to the size of the data set.
This algorithm is adapted from the segmented sums algorithm of
and is sketched briefly in Algorithm [T} This al-
gorithm suffers from the limitation that it cannot perform a prefix
sum on an array larger than the maximum threads allowed in a
block. In order to overcome this limitation a segmented sum is
used. The last element of each prefix summed block of threads is
used to populate a new array which is then prefix summed with
the same algorithm and limitations. This is done as a reduction
tree until a single block of threads can process the array. These
values are then back-propagated up through the reduction tree in
parallel. This back-propagation step can be seen in Figure[2]

Algorithm 1 : High Level View Of Scan (Nguyen, 2007)

1: procedure SCAN(data)

2 perform in parallel upsweep

3 perform in parallel downsweep

4 if block count # 0 then

5 lastItem < blockDim — 1

6 if threadld == lastItem then

7 last[blockId] < item[threadld]
8 end if

9: end if

10: end procedure

This scan is complex and requires multiple kernel invocations but
it leverages the strengths of the GPU extremely well. The overall
complexity for construction of the table is O(NlogM).

3For more information see http: //www. jcuda.org

| Initial Array of Arbitrary Values |

Scan Block 0 Scan Block 1 ScanBlock2 | Scan Block 3

‘Store Block Sum to Auxiliary Array m

Add Scanned Block Lo
Sumito All Values of o+

prr— H Mwman rnnnas
Scanned Blocki+1 | i 4
¥ L} .]

i i Final Array ﬁmi _ I |

Figure 2. Illustration of segmented scan propagation (Nguyen,|

2007)

The PCW algorithm is straightforward to parallelize due to the
relative independence of each subregion being considered. It is
performed in parallel with a thread for each starting position. This
reduces the complexity to a theoretical O(MNT?) computation
when M N threads are used. An O(1) lookup is performed in
order to retrieve the subregion values needed for Equation 2]

This lookup is described by Equation E[

Zsubregionvalue:ZXfZYfZZJrZU 3)

Where X, Y, Z, and U are the prefix sums at the locations shown
in Figure §]and we want the value associated with the subregion
described by the shaded portion of Figure[3]

Figure 3. Illustration of lookup table

This is an efficient operation and widely used in many computer
graphics domains (Crow, 1984, Zhou et al., 2013)).

The implementation details of the algorithm require significant
re-engineering in order to reduce branching to a minimum, max-
imize memory bandwidth, coalesce memory access and ensure
that blocks of threads never consider areas that are outside the
dimensions of the data set. The high level algorithm sketch for a
thread block is shown in Algorithm 2]

Each block of threads retrieves start locations and then iteratively
retrieves possible end locations and performs this discovery test.
When the discovery test is finished the block gets the next block
sized subset of end locations.

The elimination phase for ST-Region discovery is not included in
this paper and is left for future work due to time considerations.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-ll-4-W2-35-2015 38

http://www.jcuda.org

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13-15 July 2015, Fairfax, Virginia, USA

Algorithm 2 : High Level Block based discovery

1: procedure DISCOVERY (region)

2 copy global region U,X,Y,Z to shared U,X,Y,Z
3 regionsum=> X - > Y > Z+4+> U
4: do interestingness test (Equation [2)

5 copy results to global memory

6: end procedure

4.3 Multiple-GPU MapReduce Spatio-Temporal Region Dis-
covery

The multiple GPU MapReduce model is straightforward due to
the overall design of the GPU implementation being itself a Map-
Reduce model. Each time interval calculation is also independent
for the interestingness test and easily maps to a distinct GPU. For
instance the calculations needed for interval to...t; are indepen-
dent of those needed for interval %o...t;. Each GPU also has its
own unique device ID, making it easy to iterate through the time
intervals and assign an interval to a specific device. It is straight-
forward to do this assignment, computation, and memory trans-
fer asynchronously (NVIDIA, 2012), allowing the devices to run
independently of each other and the CPU. As each device fin-
ishes a time interval it reduces the output back to the CPU asyn-
chronously then it immediately starts on the next interval it has
been mapped.

Algorithm 3 : High Level View of Map Reduce for Multi-GPU

1: for i = 0 — intervalCount do
2 1d < 1%deviceCount

3 map interval[i] to device[id]

4 for j = intervalCount — i+ 1 do
5 map interval[j] to device[id]

6: compute PCW ()
7

8

9:

end for
reduce output to CPU
end for

5 DATA AND HARDWARE ENVIRONMENT

The datasets used are normalized difference vegetative index data
(NDVI); a measure of vegetative density. NDVI is computed
by measuring reflectance of specific wavelengths of light off the
surface of the earth through remote sensing (Weier and Herring,
2000).

5.1 GPU+Hadoop Path Discovery

GPU+Hadoop Path discovery was performed using a heteroge-
neous cluster environment and the same data set as in our previ-
ous work. This cluster consists of several nodes equipped with
NVIDIA GTX 480 and NVIDIA Tesla C2075 GPUs. The data
set used is the Global Inventory Modeling and Mapping Studies
(GIMMS) data set which consists of 20 years of NDVI resulting
in 611 images of Africa of size 1152 x 1152 (Tucker and Brown,
2004)). This data set was used in order to do a fair comparison be-
tween the GPU, Hadoop with GPU, and sequential environments.
Nodes are equiped with memory ranging from 8GB to 64GB of
memory and either dual Intel Xeon Quad Core 5410 or dual Intel
Xeon E5-2650 CPUs.

5.2 Spatio-Temporal Region discovery

Spatio-Temporal Region discovery was performed using NVIDIA
Tesla k20 GPUs. The data set used was a subset of NDVI data

taken from the Land Processes Distributed Active Archive Cen-
ter (LPDAAC) and consists of 12 years, 2000 through 2012, of
4800 x 4800 NDVI data selected from the NASA MODIS project
(NASA and USGS, 2015)). As stated in (Zhou et al., 2013)) the se-
quential discovery algorithm was limited to a small subsection of
this data set (200 x 300), however, on the GPU we processed the
entire 4800 x 4800 map tile. MapReduce was implemented on a
single compute node that housed four Tesla k20 GPUs. This node
is equipped with 64GB of memory and dual Intel Xeon E5-2650
CPUs.

6 EXPERIMENTAL RESULTS

Initial results are very promising and significant performance in-
creases were achieved by porting to GPU and Multi-GPU envi-
ronments.

6.1 GPU+Hadoop Path Discovery

The Hadoop implementation resulted in a nearly linear speedup
with the addition of more nodes as can be seen in Figure[]but also
made realizing real-time visualization impossible. There are di-
minishing returns as more nodes are added. It is expected that this
is because of the data size being relatively small at only roughly
300MB for the entire 611 NDVI images.

= 1 GPU Compute Node
2 GPU Compute Node
3 GPU Compute Node
— 4 GPU Compute Node

100

Time (s)

101 202 303 404 505 612

Numer of NDVI Images

Figure 4. Path Discovery Hadoop Scaling
6.2 Spatio-Temporal Region Discovery

Compute speeds increased 50 fold over naive sequential, which
was expected due to performance increases seen for the sequen-
tial SEP algorithm. Compute speeds increased 10 fold compared
to SEP algorithm. These speedups do not at first seem impressive
however it must be kept in mind that the largest PCW processed
sequentially in (Zhou et al., 2013)) was a 50 x 50 subregion on
a very limited subwindow of 200 x 300; no such artificial con-
straint on window size was enforced on the GPU implementation
and we processed the entire raster tile exhaustively.

This means the realized speedup is comparing computation on a
200 x 300 window to computation on a 4800 x 4800 window. In
other words we realized a good speedup and simultaneously were
able to increase the maximum potential window size by 384 fold.

Time interval size is held constant at 7" = 10 while window di-
mensions are increased in Figure 5] Starting with a window of
50 x 50 we processed the entire 4800 x 4800 MODIS map tile
data set in 193.83 seconds on a single GPU. Utilizing four GPUs
and a MapReduce model reduces this time to roughly 52.48 sec-
onds.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-ll-4-W2-35-2015 39

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13-15 July 2015, Fairfax, Virginia, USA

1000000

— MapReduce 4 GPU
MapReduce 3 GPU
MapReduce 2 GPU
100000 | — Single GPU
10000
%
o 1000
£
=
100
10
i . L L L)
50x50 T5xTS 150x150 300x300 B00x600 1200x1200

Changing window dimensions

Figure 5. ST-Region GPU MapReduce timing with varying win-
dow dimension (time interval 7' = 10)

1000 — MapReduce 4 GPU
MapReduce 3 GPU
MapReduce 2 GPU
— Single GPU
100
I
@
E
=
10
1
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

Chaning Time Interval Size

Figure 6. ST-Region GPU MapReduce with varying Time inter-
val size (fixed dimension = 75 X 75)

Holding the PCW dimensions fixed at 75 X 75 we can see the
effects here of varying the time interval in Figure [6]

Both plots demonstrate how scaling is affected by varying di-
mensions. Adding GPUs has diminishing returns for small query
sizes, however the scaling approaches linear for the larger queries.
This reduces total time taken by a factor equal to the number of
GPUs used.

7 CONCLUSION AND FUTURE WORK

This work explores an implementation of the SEP and PCW al-
gorithms from (Zhou et al., 2011} [Zhou et al., 2013) that clearly
show an increase not just in execution time but in the amount of
data that can be processed. While valuable in its own right this
is also a valuable consideration for what may be a preprocessing
step for a much larger and more intensive computational model.
Offloading this processing onto the GPU, while more time con-
suming in the development phase, is a viable technique to speed
up these calculations. This will become increasingly more im-
portant to achieve as big data considerations continue to become
more and more important to address.

Future works include a GPU and GPU+MapReduce model for
the elimination phase in the PCW algorithm as well as processing
multiple tiles.

REFERENCES

Aji, A., Wang, F.,, Vo, H., Lee, R., Liu, Q., Zhang, X. and Saltz, J.,
2013. Hadoop gis: A high performance spatial data warehousing

system over mapreduce. Proc. VLDB Endow. 6(11), pp. 1009—
1020.

Crow, F. C., 1984. Summed-area tables for texture mapping. SIG-
GRAPH Comput. Graph. 18(3), pp. 207-212.

Eldawy, A., 2014. Spatialhadoop: Towards flexible and scal-
able spatial processing using mapreduce. In: Proceedings of
the 2014 SIGMOD PhD Symposium, SIGMOD’14 PhD Sym-
posium, ACM, New York, NY, USA, pp. 46-50.

Elteir, M., Lin, H., Feng, W.-c. and Scogland, T., 2011.
Streammr: An optimized mapreduce framework for amd gpus.
In: Proceedings of the 2011 IEEE 17th International Conference
on Parallel and Distributed Systems, ICPADS ’11, IEEE Com-
puter Society, Washington, DC, USA, pp. 364-371.

He, B., Fang, W., Luo, Q., Govindaraju, N. K. and Wang, T,
2008. Mars: A mapreduce framework on graphics processors.
In: Proceedings of the 17th International Conference on Paral-
lel Architectures and Compilation Techniques, PACT 08, ACM,
New York, NY, USA, pp. 260-269.

NASA and USGS, 2015. http://lpdaac.usgs.gov/
products/modis_products_table/mod13ql.

Nguyen, H., 2007. Gpu Gems 3. First edn, Addison-Wesley
Professional.

NVIDIA, 2012. http://devblogs.nvidia.com/
parallelforall/how-overlap-data-transfers-cuda-
cc/.

NVIDIA, 2013. http://devblogs.nvidia.com/
parallelforall/how-access-global-memory-
efficiently-cuda-c-kernels/.

Prasad, S. K., Shekhar, S., McDermott, M., Zhou, X., Evans,
M. and Puri, S., 2013a. GPGPU-accelerated interesting inter-
val discovery and other computations on geospatial datasets: A
summary of results. In: Proceedings of the 2Nd ACM SIGSPA-
TIAL International Workshop on Analytics for Big Geospatial
Data, BigSpatial *13, ACM, New York, NY, USA, pp. 65-72.

Prasad, S., Shekhar, S., He, X., Puri, S., McDermott, M., Zhou,
X. and Evans, M., 2013b. Gpgpu-based data structures and al-
gorithms for geospatial computation a summary of results and
future roadmap (position paper). Proceedings of The All Hands
Meeting of the NSF CyberGIS project, Seattle.

Stuart, J. A. and Owens, J. D., 2011. Multi-gpu mapreduce on
gpu clusters. In: Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, IPDPS ’11, IEEE
Computer Society, Washington, DC, USA, pp. 1068-1079.

Tucker, C.J., J. P. and Brown, M., 2004. Global Inventory Mod-
eling and Mapping Studies, NA94apr15b.n11-VIg, 2.0. Global
Land Cover Facility, University of Maryland, College Park,
Maryland.

Weier, J. and Herring, D., 2000. Measuring vegetation (ndvi
& evi). http://earthobservatory.nasa.gov/Features/
MeasuringVegetation/|

White, T., 2009. Hadoop: The Definitive Guide. 1st edn, O’Reilly
Media, Inc.

Zhou, X., Shekhar, S. and Oliver, D., 2013. Discovering persis-
tent change windows in spatiotemporal datasets: A summary of
results. In: Proceedings of the 2nd ACM SIGSPATIAL Interna-
tional Workshop on Analytics for Big Geospatial Data, BigSpa-
tial *13, ACM, New York, NY, USA, pp. 37-46.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-ll-4-W2-35-2015 40

http://lpdaac.usgs.gov/products/modis_products_table/mod13q1
http://lpdaac.usgs.gov/products/modis_products_table/mod13q1
http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
http://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
http://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
http://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
http://earthobservatory.nasa.gov/Features/MeasuringVegetation/
http://earthobservatory.nasa.gov/Features/MeasuringVegetation/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13-15 July 2015, Fairfax, Virginia, USA

Zhou, X., Shekhar, S., Mohan, P, Liess, S. and Snyder,
P. K., 2011. Discovering interesting sub-paths in spatiotem-
poral datasets: A summary of results. In: Proceedings of the
19th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, GIS 11, ACM, New York,
NY, USA, pp. 44-53.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-ll-4-W2-35-2015 41

	Introduction
	Problem Description
	Path Discovery
	Spatio-temporal Region Discovery

	Previous and Related Work
	Previous Work
	Related Work

	Design and Implementation Details
	GPU+Hadoop Path Discovery
	GPU Spatio-temporal Region Discovery
	Multiple-GPU MapReduce Spatio-Temporal Region Discovery

	Data and Hardware Environment
	GPU+Hadoop Path Discovery
	Spatio-Temporal Region discovery

	Experimental Results
	GPU+Hadoop Path Discovery
	Spatio-Temporal Region Discovery

	Conclusion and Future Work

