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ABSTRACT: 

 

Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research 

and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and 

stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients 

becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive 

remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to 

access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users’ 

private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, 

while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is 

built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In 

the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write 

scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython 

kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM 

virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes 

the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology 

provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing 

remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design 

their own data processing algorithm. 
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1. INTRODUCTION 

With fast development of geospatial data generating 

technologies, vast quantities of geospatial data are accumulated 

in an enhanced way, especially the remote sensing data which 

are taken by sensors on satellites. Nowadays, thousands of man-

made satellites are orbiting the earth (Martinussen et al., 2014), 

and images generated from those satellites have more bands and 

higher resolution. At the same time, a growing number of 

geospatial portal makes data retrieval, ordering and 

downloading possible for everyone, such as USGS Earth 

Explorer, European's Space Agency(ESA), Canada's Open Data 

portal, and GSCloud (Wang et al., 2015) etc. These work have 

benefited geoscientists tremendously and are transforming 

geosciences as well (Vitolo et al., 2015).  

 

In traditional way, scientists use commercial or free software to 

analyze remote sensing data in their workstations. At first, 

scientists need to download or copy remote sensing data into 

their workstation, and then use related analysis tools or write 

scripts to process these data. It usually takes a lot of time. The 

dramatic increase in the volume of geospatial data availability 

has created many challenges. First, the fact that remote sensing 

data are inherently large significantly increases the complexity 

of corresponding technologies related to data management and 

data analysis work. Moreover, many research fields require 

large time span and spatial coverage to do related work, 

especially environmental science. The sheer quantity of data 

poses technical difficulties for obtaining and processing. Thus, 

time-consuming and data intensive is steadily becoming the 

dominant challenge of geospatial data computing nowadays 

(Bryant et al., 2008). Second, with the computing demands 

increasing in massive geospatial data computing, a scientist’s 

personal computer or workstation will quickly be overwhelmed 

for its low computing speed. On the one hand, purchasing high-

performance computing infrastructure is generally not cost-

effective in aspects of money, power, space, people, and so on. 

On the other hand, all the computing infrastructure will quickly 

become outdated. So the resource deficiency greatly hinders the 

advancements of geospatial science and applications (Yang et 

al., 2011). Third, facing the large scale of massive geospatial 

data that beyond which the researchers have previously 

encountered, the traditional process method would not work. 

Researchers may have to design software architectures to 

accommodate the large volume of data (Li et al., 2010). As most 

work are under specific scientists, there is a chance that they do 

not have enough computing expertise. Thus, in the absence of 

suitable expertise and infrastructure, an apparently simple task 
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may become an information discovery and management 

nightmare (Foster et al., 2012). 

 

The emergence of cloud computing greatly enhances the 

advancement of processing massive geospatial data in the Cloud 

(Cui et al., 2010, Huang et al., 2010). However, these 

applications are mainly concentrated in the interactive online 

visualization and batch processing analysis. For the most 

popular base maps (e.g., Google Maps, Bing Maps), remote 

sensing imagery is pre-processed and mosaicked at various 

zoom levels and cached into tiles that serve as background 

images. Another example in batch processing analysis is the 

global 30m map of forest cover and change from 2000-2012 

(Hansen et al., 2013).  Based upon analyses of massive 

quantities of Landsat data co-located in cloud storage, it 

quantifies forest dynamics related to fires, tornadoes, disease 

and logging, worldwide. The analyses required over one million 

hours of CPU and would have taken more than fifteen years to 

complete on a single computer. But because the analyses were 

run on 10,000 CPUs in parallel in the Google cloud 

infrastructure, they were completed in less than four days. As 

cloud computing technology continues to evolve, placing 

remote sensing data into the cloud, and providing online 

interactive analysis services become more feasible. Amazon 

Web Services just opened up Landsat on AWS, a publicly 

available archive of Landsat 8 imagery hosted on their reliable 

and accessible infrastructure, so that anyone can use Amazon’s 

computing resources (EC2 instances or EMR clusters) on-

demand to perform analysis and create new products without 

worrying about the cost of storing Landsat data or the time 

required to download it (http://aws.amazon.com/cn/public-data-

sets/landsat/). Although currently demo applications relies on 

these Landsat data mainly focused on the interactive online 

visualization, more interactive scientific analysis may be 

available in the future. These efforts greatly facilitates scientists 

to use these data for scientific analysis.  

 

Remote sensing data is a typical geoscience data, the processing 

for these data has the following typical characteristics: data 

intensity, computing intensity, concurrent intensity and 

spatiotemporal intensity. In most cases, geoscience phenomena 

are complex processes and geoscience applications often take a 

variety of data types as input in a long and complex workflow 

(Yang et al., 2011).  How to decompose and express these 

complex workflow in the cloud environment is a major 

challenge. General scientific workflow technology is usually 

considered to be a good solution for the expression of complex 

scientific model, and it has been widely used in many scientific 

research. By scientific workflow, scientists can model, design, 

execute, debug, re-configure and re-run their analysis and 

visualization pipelines (Goecks et al., 2010). Another solution 

for complex scientific problem is programming. Programming is 

more flexible and robust than scientific workflow, and it is able 

to solve more complex scientific computing. With the advent of 

the era of mobile office, an increasing number of scientific 

application migrate to the browser. How to implement the 

complex process of scientific data analysis in browser is a 

meaningful thing.  

 

In this paper, a new scalable, interactive, web-based massive 

data processing environment based on Docker, IPython and 

some open source geosciences tools is proposed. It offers safer 

and much more convenient way for the end-user to access 

massive data resources in the cloud. Users can write data 

processing code on the web directly, so they can design their 

own data processing algorithm. The remainder of this paper is 

structured as follows. Section 2 discusses the related works 

about spatiotemporal cloud computing, server virtualization and 

cloud-based scientific workflow system.  Section 3 gives an 

overview of the methodology and system architecture. In 

section 4, we introduce the system implementation. Section 5 

introduces experiments and performance analysis. In section 7 

we conclude our work with discussions and discussed our future 

work. 

 

2. RELATED WORK 

Cloud computing is developed mainly by big internet-based 

companies such as Amazon, Google and Microsoft which make 

great investment in ‘mega-scale’ computational clusters and 

advanced, large-scale data storage systems (Schadt et al., 2010). 

Though these commercial cloud computing platforms are 

perceived for “business applications”, such as Amazon’s Elastic 

Compute Cloud, Google App Engine, and Microsoft’s 

Windows Azure, as they has the potential to eliminate or 

significantly lower many resource barriers and data barriers that 

have been existing for a long time in geoscience domain, they 

provide a cost-effective, highly scalable and flexible solution 

for those large-scale, compute- and data- intensive geoscience 

researches (Li et al., 2010). 

 

Amazon’s management console – which can be accessed from 

any web browser – provides a simple and intuitive interface for 

several uses: moving data and applications into and out of the 

Amazon S3 storage system; creating instances in Amazon EC2; 

and running data-processing programs on those instances, 

including the analysis of big data sets using MapReduce-based 

algorithms. In EC2, users can customize the environment for 

their particular application by installing particular software or 

by purchasing particular machine images (Schadt et al., 2010). 

Windows Azure Cloud computing platform hides data 

complexities and subsequent data processing and transformation 

form end users, and it is highly flexible and extensible to 

accommodate different science data processing tasks, and can 

be dynamically scaled to fulfil scientists’ various computational 

requirements in a cost-efficient way. Li implemented a 

particular instance of a MODIS satellite data re-projection and 

reduction pipeline in the Windows Azure Cloud computing 

platform, and the experiment results show that using the cloud 

computing platform, the speed of large-scale science data 

processing can be 90 times faster than that on a high-end 

desktop machine (Li et al., 2010). The first global assessment of 

forest change at pixel scale has been completed under Google 

cloud environment in 2013(Hansen et al., 2013). It contains 

spatially and temporally detailed information on forest change 

based on Landsat data at a spatial resolution of 30m from 2000 

to 2012. As it is definitely data- and compute- intensive 

application, personal computers or workstation cannot afford 

this computation work. Key to the project was collaboration 

with team members from Google Earth Engine, who reproduced 

in the Google Cloud the models developed at the University of 

Maryland for processing and characterizing the Landsat data 

(http://www.nasa.gov/audience/ forstudents/k-4/stories/what-is-

a-satellite-k4.html). As a professional geoscience software, 

ENVI has also developed its first cloud-based remote sensing 

system, the ENVI and IDL Service Engine, on Amazon’s EC2 

platform. It is an enterprise-enabled processing engine that 

provides remote users access to the power of ENVI image 

analysis and IDL applications form a web or mobile client 

interface (O’Connor et al., 2012).  
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Except all those commercial corporations, many scientists are 

putting more emphasis on how to apply cloud computing into 

geosciences. Cary try to combine cloud computing with spatial 

data storage and processing and solve two key problems by 

using MapReduce framework, an R-Tree index for all kinds of 

spatial data and remote sensing image quality evaluations  (Cary 

et al., 2009). Blower implement a web map service on Google 

App Engine and describe the difficulties in developing GIS 

systems on the public cloud (Blower, 2010). Karimi study 

distributed algorithms for geospatial data processing on clouds 

and compared their experimentation with an existing cloud 

platform to evaluate its performance for real-time geoprocessing. 

(Karimi et al., 2011). Cloud computing has brought great 

breakthrough and innovation to the geosciences. 

 

The essence of cloud computing is to provide users with 

computing resource. Resource management is critical in cloud 

computing. There are kinds of resources in the large-scale 

computing infrastructure need to be managed, CPU load, 

network bandwidth, storage quota, and even type of operating 

systems. In order to limit, isolate and measure the use of 

computing resources for each user, server virtualization is 

widely used to manage the resource in data centers. 

Virtualization is the key technology in cloud computing which 

allows systems to behave like a true physical computer, while 

with flexible specification of details such as number of 

processors, memory and disk size, and operating system (Schadt 

et al., 2010). All IT resources are turned into a service that 

customers can rent based on their practical need and team work 

through the internet. And cloud computing provides easy-to-use 

interfaces to domain specialists without advanced technical 

knowledge (i.e. meteorologists, geography specialists, 

hydrologists, etc.) to process massive geospatial data. In 

addition, it provides elastic and on-demand access to massively 

pooled, instantiable and affordable computing resources as well 

(Cui et al., 2010, Huang et al., 2010). 

 

 
Figure 1. The difference between hypervisor and container 

architecture 

 

Currently there have two wildly used virtualization technology: 

VM hypervisors and container (Figure 1). The key difference 

between containers and VMs is that while the hypervisor 

abstracts an entire device, containers just abstract the operating 

system kernel. VM hypervisors, such as Hyper-V, KVM, and 

Xen, are all based on emulating virtual hardware. That means 

they’re fat in terms of system requirements.  

 

Docker, a new open-source container technology, is hotter than 

hot because it makes it possible to get far more apps running on 

the same old servers and it also makes it very easy to package 

and ship programs. Docker uses LXC, cgroups and Linux’s own 

kernel. Compared with traditional virtual machine, a Docker 

container does not contain a single operating system, but runs 

based on the functionality provided by operating system in the 

existing infrastructure. Docker's core is Linux cgroups (control 

group) which provides methods that compute and limit the 

resources of CPU, memory, network, and disk that containers 

can use. Different from virtualized application which includes 

not only the application – which may be only 10s of MB – and 

the necessary binaries and libraries, but also an entire guest 

operating system – which may weigh 10s of GB, the Docker 

Engine container comprises just the application and its 

dependencies. Docker runs as an isolated process in user-space 

on the host operating system, sharing the kernel with other 

containers. Thus, it enjoys the resource isolation and allocation 

benefits of VMs but is much more portable and efficient. 

 

3. METHODOLOGY & SYSTEM ARCHITECTURE 

To provide interactive online analysis for remote sensing data, 

the overall system architecture of the cloud system needs to 

meet the following typical characteristics. First, a unified 

interactive data analysis interface is essential to implement long 

and complex spatiotemporal workflow. Second, a geospatial 

analysis toolkits deployed in the cloud environment provides 

abundant predefined and customized data analysis functions. 

Third, a lightweight cloud computing container performs 

execution of these spatiotemporal analysis tasks. Four, an 

efficient cloud storage environment stores public remote 

sensing data and user’s private data, and provides detailed 

access control. The architecture is depicted in Figure 2.  

 

 

Figure 2. Overall system architecture 

 

3.1 A Flexible User Interface 

Geoscience applications often take a variety of data types as 

input with a long and complex workflow. Programming is more 

flexible and robust than traditional scientific workflow, and it is 

able to solve more complex scientific computing. As roots in 

academic scientific computing, IPython has become the most 

popular tool for maintaining, sharing, and replicating long 

science data workflows (Helen et al., 2014). IPython Notebook 

is a web-based interactive computational environment 

connecting to IPython kernel. IPython Nodebook allows 

customization and the flexibility of executing code in a live 

Python environment. Through this way, many complex 

scientific calculation, scientific drawing, parallel computing, 

and even Linux system shell call, can be realized by way of 

interacting on the network. In this paper, IPython Notebook was 

used as interactive analysis environment. Users write processing 
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scripts in the IPython Notebook, and interactively call 

geospatial analysis toolkits and system resources for remote 

sensing data analysis.  

 

3.2 Geospatial Analysis Toolkits  

Geospatial analysis toolkits include a variety of popular open-

source spatiotemporal software, such as GDAL, Grass GIS, and 

scientific python distributions, such as NumPy and SciPy. The 

IPython kernel is the core component, which manages these 

software and provides public interface to IPython Notebook. 

These third-party software and python distributions can be used 

in two ways respectively to interact with IPython Kernel. One is 

that the python distributions can be directly imported as Python 

module into IPython project. The second way is that for the 

third-party software, IPython project can invoke system call to 

execute these external programs.  

 

GDAL is a universal library for reading and writing raster and 

vector geospatial data formats. It provides a variety of useful 

command-line utilities for data translation and processing. With 

these GDAL utilities and IPython Notebook, users can perform 

some basic remote sensing processing and analysis, such as 

projection transformation, cutting and mosaic of remote sensing 

images. GDAL also provides python interface to directly access 

both raster and vector data. Grass GIS is an open source 

geographical information system capable of handling raster, 

topological vector, and image processing and graphic data. It 

also provides python interface to connect with IPython kernel. 

 

3.3 An Lightweight Cloud Container 

Previous studies (Huang et al., 2013) has shown that the generic 

cloud computing platforms, such as Amazon EC2 and Windows 

azure et al., cannot meet the requirements of complex geospatial 

cloud computing. To provide efficient and secure cloud 

computing environment to perform spatial analysis task, a 

lightweight cloud container Docker was used in this research. It 

runs as an isolated process in user-space on the host operating 

system, sharing the kernel with other containers. The IPython 

kernel and other geospatial analysis toolkits was packaged 

inside Docker’s virtual file system. Each Docker instance 

execute a single IPython kernel, which is responsible for 

receiving and processing requests from IPython Notebook.  

 

3.4 An Secure and Stable Cloud Storage 

Our system needs a stable and secure cloud storage file system 

to store public remote sensing data and the user’s private data. 

The data resources within the cloud storage can be accessed by 

IPython kernel inside Docker container. The cloud storage file 

system should have strict access control. For public data, it 

provides read-only privilege. Meanwhile, for user’s private data, 

it provides read/write privilege.  

 

Table 1. The comparison of distributed file systems 
 Fault 

tolerance 

Quota Web 

GUI 

Meta Data 

Server 

Status 

Ceph Yes Yes No Need Developing 

Gluster Yes No Yes Not need Stable 

MooseFS Yes Yes Yes Need Stable 

 

Currently, distributed file system is the best cloud storage 

architecture to achieve these goals. The comparison between 

three famous open-source distributed file systems is listed in 

table 1. Quota control, high performance and stable are the key 

features of our system.  

 

 
Figure 3. The aggregation IO speed comparison of three 

distributed file systems 

 

In order to select an appropriate distributed file system, we 

tested the aggregation IO speed of three different distributed file 

system. The configuration of the test environment is listed in 

section 4. From the comparison of aggregation IO speed (Figure 

3), we can find that MooseFS has higher aggregation IO speed, 

and it meets the requirements of cloud storage. 

 

4. SYSTEM IMPLIMENTATIONS 

The system is developed on the basis of open-source systems 

and software, such as Linux operating system (Fedora v21), 

MooseFS (v2.0), Docker (v1.3), IPython (v2.3), GDAL (v1.10) 

and Nginx (v1.7). The test environment includes 10 physical 

servers. These servers are connected through local area 

networks (LANs with 10Gbps). Each server has 32 GB memory, 

two Xeon E5-2620 six-core processors with a clock frequency 

of 2.00 GHz and 12*6TB SATA hard drivers.  

 

4.1 Implementation of Cloud Storage  

The cloud storage file system is constructed by MooseFS, and 

all data is stored in this file system. There have two types of 

data: public data and private data, which are stored under the 

directories of /public and /private respectively. The access 

permission of private data is read/write, while public data are 

restricted to read-only. For each user, the private data is stored 

in a separate folder under the /private directory. So all users’ 

private data storage space constitute a set of subdirectories 

under the /private directory in the cloud storage file system. 

  

 
Figure 4. Data mapping mechanism  

 

All the public data and private data are mounted to the Docker 

server through MooseFS mount client, under the directories of 

/mnt/public and /mnt/private respectively. When creating and 
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using a Docker container, a user can map the public directories 

and the private directories to corresponding Docker container 

through Docker management command. For example, the 

private data directory of user.1 in MoosFS is /private/user.1. 

The mapped directory in the container will be 

/mnt/private/user.1. The mapping mechanism is depicted in 

Figure 4. 

 

4.2 Management of Docker Containers 

The creation process of Docker containers is depicted in Figure 

5. When the system receives a new request to create new 

Docker container, the system automatically creates a private 

directory to store user’s private data. Before starting Docker 

container, we need to prepare a Docker image in advance. This 

Docker image is created base on the host server. In our test 

environment, the host server is installed with Fedora V21 Linux 

operate system. All the required software and toolkits, such as 

GDAL, Grass GIS, and IPython kernel etc., are pre-installed. 

We can create and launch Docker container through the 

following Docker command.  

docker run -v /mnt/public:/mnt/public -v 

/mnt/private/subdirectory.1:/mnt/private -p 9001 -p 8888 -m 2g 

-c 100  -d 26c ipython notebook --profile=nbserver 

 

After the command execution is complete, a Docker container is 

automatically created and IPython kernel and Notebook server 

is also started up. At the same time, the public and private data 

storage are mounted to corresponding cloud storage directory. 

And also the assigned port 8888 of IPython kernel server inside 

Docker container is also mapped to the corresponding port of 

the host server. This command also specifies the maximum 

amount of 2GB memory available to Docker container, and the 

relative maximum CPU utilization to 100.  

  

  
Figure 5. The management process of Docker containers 

 

The restriction of the container’s disk IO is implemented by 

changing the system attribute value, which is 

BlockIOReadBandwidth/BlockIOWriteBandwidth of the 

location where container’s file system are mounted in the host. 

For example, if we want to restrict the write speed to 10M, the 

command can be wrote as:  

 

systemctl set-property --runtime docker-ID.scope 

"BlockIOWriteBandwidth=/dev/mapper/docker-ID 10M" 

 

4.3 Access IPython Instances 

When Docker container starts, the IPython kernel automatically 

start providing services on the binding port. The IPython 

binding port is mapped to the host server port which connects 

with two Nginx servers. Each IPython binding port are 

associated with a unique URL through reverse proxy in Nginx. 

The Route of access IPython instances is depicted in Figure 6. 

Just by logging in to dedicated IPython Notebook web page 

using user-specific URL in the web browser, users can access 

all the computing and data resources, upload and perform 

procedures, and view the results on line.  

  

 
Figure 6. Route of access IPython instances 

 

5. EXPERIMENTS AND ANALYSIS  

5.1 Experiment Design 

An experiment about long time series of monthly average land 

surface temperature of a given region from 2000 to 2014 are 

conducted to test the performance and reliability of this system, 

The region is defined by the mask data users upload. The 

monthly average land surface temperature is computed using 

MOD11A1, which is a kind of MODIS LST data products. The 

MOD11A1 product comprises the following Science Data Set 

(SDS) layers for day time and night time observations: LSTs, 

quality control assessments, observation times, view zenith 

angles, clear sky coverage, and bands 31 and 32 emissivity from 

land cover types (https://lpdaac.usgs.gov/products/modis_ 

products_table/mod11a1). In this experiment, only the LSTs 

data set are used as input parameter. The whole data process 

workflow is depicted as figure 4. Though the algorithm of 

computing monthly average temperature of a given region from 

MOD11A1 is simple, a lot of computing work are needed when 

managing and processing all of the data due to the long time 

period. During the whole process, MOD11A1 data are stored in 

public storage, while all the intermediate results data are stored 

in the user’s private storage space. The data process workflow 

includes 2 separate loop computations. 

 

1) Daily average temperature computation 

To compute the average land surface temperature of a region, 

users firstly have to upload the polygon data of the region, 

which is called mask polygon in this procedure. The projection 

of the mask polygon is WGS 84, and it can be in a shapefile or 

KML format. The central coordinate (x, y) is then obtained, 

which is used to perform intersection spatial queries to find 

those MOD11A1 images that contains the coordinate. In this 

experiment, the time period starts from 2000/01/01 to 

2014/12/31. The MOD11A1 data are processed in units of days 

chronologically. Determine the number of those images that 
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cover the mask polygon every day. If there are more than one 

images, then mosaic is firstly operated, and then is the 

projection transformation which transforms the original 

sinusoidal projection into WGS 84. If there is only one 

MOD11A1 image covering the mask polygon, then only 

projection transformation is executed. Then the mask polygon is 

used to clip the mosaic or single MOD11A1 data. All of these 

calculations include cutting, mosaic, projection transformation 

could be done with a GDAL utilities named gdalwarp. When 

computing the daily average temperature for the study region, 

the Kelvin unit of temperature is firstly transformed into 

Degrees Celsius for ease of use according to the following 

formula: 0.02*value - 273.15. The daily average land surface 

temperature can be obtained by performing this simple formula 

in Python.  

 

2) Monthly average temperature computation 

After the daily average temperature are obtained, monthly 

average temperature are computed as well. And the monthly 

average temperature for each month from 2000 to 2014 is 

plotted as a line graph using the Python package PyPlot in the 

end. All the process can be implemented in the system 

introduced above using IPython with the user’s interaction.  

 

 
Figure 7. The data process workflow 

 

5.2 Performance Analysis  

To test the performance of this system architecture in terms of 

system load and response efficiency, the core computing 

process of the aforementioned experiments were carried out in 

Docker, KVM and Physical machine respectively. Docker and 

KVM are installed in the same physical machine environment 

with configuration of that mentioned in section 4. Multi-task 

processes are executed concurrently when testing the physical 

environment. And different number of virtual machines are 

started on the physical machine at the same time when testing 

the KVM environment. The memory of each virtual machine is 

2GB, and each virtual machine has one computing task running 

inside. As to the Docker environment test, different number of 

Docker are started in the physical machine, and each has one 

computing task running inside. Test indicators include the 

average time it takes to execute different concurrent tasks, 

memory consumption of physical machine, and CPU usage. 

Tests are performed under different concurrent tasks, and the 

results are shown in Figure 8, 9, and 10. 

 

 
Figure 8. Average execution time of different concurrent tasks 

 

Figure 9. Host memory usage of different concurrent tasks 

 

Figure 10. Host CPU usage of different concurrent tasks 
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From the figures 8, 9, and 10, we can see that Docker and Host 

machine have little difference in terms of performance, as 

Docker containers share the resources of the physical machine 

environment. From the aspect of time-consuming, the average 

execution time increases with the increasing number of 

concurrent tasks, and the rate of increase is especially 

significant under KVM environment. In the host memory 

consumption aspect, the usage of memory and CPU increase 

with increasing number of concurrent tasks. Because each KVM 

virtual machine requires 2GB memory exclusively, the host 

memory will not be adequate when the number of virtual 

machine reaches 16. Since geosciences has the characteristics of 

computing-intensive, the CPU usage under the three tests do not 

differ greatly. To sum up, from the performance tests, we can 

see that the cloud environment based on Docker can maximize 

the utilization of the system resources, and thus can handle 

more concurrent spatial-temporal computing tasks. 

 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a new scalable, interactive and web-

based cloud computing solution for massive remote sensing 

data analysis. The lightweight cloud storage system used to 

store public data and users’ private data is constructed based on 

open source distributed file system. In it, massive remote 

sensing data are stored as public data, while the intermediate 

and input data are stored as private data. The elastic, scalable, 

and flexible cloud computing environment is built using Docker, 

which is a technology of open-source lightweight cloud 

computing container in the Linux operating system. In the 

Docker container, open-source software such as IPython, 

GDAL, and Grass GIS etc., are deployed. The cloud storage 

space is mounted inside the container, which makes it possible 

to access public and private data of the platform by IPython. 

Users can write scripts in the IPython Notebook page through 

the web browser to process data, and the code will be submitted 

to IPython kernel to be executed. Thus, massive remote sensing 

data processing in the Internet has been achieved.  

 

By comparing the performance of remote sensing data analysis 

tasks executed in Docker container, KVM virtual machines and 

physical machines respectively, we can conclude that the cloud 

computing environment built by Docker makes the greatest use 

of the host system resources, and can handle more concurrent 

spatial-temporal computing tasks. Docker technology provides 

resource isolation mechanism in aspects of IO, CPU, and 

memory etc., which offers security guarantee when processing 

remote sensing data in the IPython Notebook. 

 

In this paper, remote sensing data are processed based on 

IPython Notebook, which requires the users to be proficient in 

Python. However, this is a great obstacle for those scientists 

who has never used this language. So how to combine scientific 

workflow with IPython will be the focus of future work. Thus, 

user can drag and drop workflow controls on the web page to 

construct scientific workflow, then, the system will parse the 

workflow into IPython scripts automatically and the scripts will 

be submitted to IPython kernel to be executed. Remote sensing 

data processing is a typical data- and computing- intensive work. 

How to integrate parallel computing, multi-core technology, and 

clustering technology to improve data processing efficiency in 

IPython is a subject need to be studied in the future.  
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