
AN INTERACTIVE WEB-BASED ANALYSIS FRAMEWORK FOR REMOTE SENSING

CLOUD COMPUTING

X. Z. Wang a1, H. M. Zhanga1, J. H. Zhao a, Q. H. Lin a, Y. C. Zhou a, J. H. Li a *

a Computer Network Information Center, Chinese Academy of Sciences, Beijing, China -

(wxz, hai, zjh, lqh, zyc, lijh)@cnic.cn

KEY WORDS: Spatiotemporal Cloud Computing, Distributed File System, Lightweight Container, IPython Notebook, Remote

Sensing Data Analysis

ABSTRACT:

Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research

and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and

stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients

becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive

remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to

access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users’

private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data,

while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is

built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In

the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write

scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython

kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM

virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes

the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology

provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing

remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design

their own data processing algorithm.

* Corresponding author at: Computer Network Information Center, Chinese Academy of Sciences (CNIC, CAS), 4,4th South Street, Zhongguancun,

P.O. Box 349, Haidian District, Beijing 100190, China. Tel.: +86 010 5881 2518.

E-mail address: lijh@cnic.cn (J. Li).

1 These authors contributed equally to this work.

1. INTRODUCTION

With fast development of geospatial data generating

technologies, vast quantities of geospatial data are accumulated

in an enhanced way, especially the remote sensing data which

are taken by sensors on satellites. Nowadays, thousands of man-

made satellites are orbiting the earth (Martinussen et al., 2014),

and images generated from those satellites have more bands and

higher resolution. At the same time, a growing number of

geospatial portal makes data retrieval, ordering and

downloading possible for everyone, such as USGS Earth

Explorer, European's Space Agency(ESA), Canada's Open Data

portal, and GSCloud (Wang et al., 2015) etc. These work have

benefited geoscientists tremendously and are transforming

geosciences as well (Vitolo et al., 2015).

In traditional way, scientists use commercial or free software to

analyze remote sensing data in their workstations. At first,

scientists need to download or copy remote sensing data into

their workstation, and then use related analysis tools or write

scripts to process these data. It usually takes a lot of time. The

dramatic increase in the volume of geospatial data availability

has created many challenges. First, the fact that remote sensing

data are inherently large significantly increases the complexity

of corresponding technologies related to data management and

data analysis work. Moreover, many research fields require

large time span and spatial coverage to do related work,

especially environmental science. The sheer quantity of data

poses technical difficulties for obtaining and processing. Thus,

time-consuming and data intensive is steadily becoming the

dominant challenge of geospatial data computing nowadays

(Bryant et al., 2008). Second, with the computing demands

increasing in massive geospatial data computing, a scientist’s

personal computer or workstation will quickly be overwhelmed

for its low computing speed. On the one hand, purchasing high-

performance computing infrastructure is generally not cost-

effective in aspects of money, power, space, people, and so on.

On the other hand, all the computing infrastructure will quickly

become outdated. So the resource deficiency greatly hinders the

advancements of geospatial science and applications (Yang et

al., 2011). Third, facing the large scale of massive geospatial

data that beyond which the researchers have previously

encountered, the traditional process method would not work.

Researchers may have to design software architectures to

accommodate the large volume of data (Li et al., 2010). As most

work are under specific scientists, there is a chance that they do

not have enough computing expertise. Thus, in the absence of

suitable expertise and infrastructure, an apparently simple task

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-43-2015

43

may become an information discovery and management

nightmare (Foster et al., 2012).

The emergence of cloud computing greatly enhances the

advancement of processing massive geospatial data in the Cloud

(Cui et al., 2010, Huang et al., 2010). However, these

applications are mainly concentrated in the interactive online

visualization and batch processing analysis. For the most

popular base maps (e.g., Google Maps, Bing Maps), remote

sensing imagery is pre-processed and mosaicked at various

zoom levels and cached into tiles that serve as background

images. Another example in batch processing analysis is the

global 30m map of forest cover and change from 2000-2012

(Hansen et al., 2013). Based upon analyses of massive

quantities of Landsat data co-located in cloud storage, it

quantifies forest dynamics related to fires, tornadoes, disease

and logging, worldwide. The analyses required over one million

hours of CPU and would have taken more than fifteen years to

complete on a single computer. But because the analyses were

run on 10,000 CPUs in parallel in the Google cloud

infrastructure, they were completed in less than four days. As

cloud computing technology continues to evolve, placing

remote sensing data into the cloud, and providing online

interactive analysis services become more feasible. Amazon

Web Services just opened up Landsat on AWS, a publicly

available archive of Landsat 8 imagery hosted on their reliable

and accessible infrastructure, so that anyone can use Amazon’s

computing resources (EC2 instances or EMR clusters) on-

demand to perform analysis and create new products without

worrying about the cost of storing Landsat data or the time

required to download it (http://aws.amazon.com/cn/public-data-

sets/landsat/). Although currently demo applications relies on

these Landsat data mainly focused on the interactive online

visualization, more interactive scientific analysis may be

available in the future. These efforts greatly facilitates scientists

to use these data for scientific analysis.

Remote sensing data is a typical geoscience data, the processing

for these data has the following typical characteristics: data

intensity, computing intensity, concurrent intensity and

spatiotemporal intensity. In most cases, geoscience phenomena

are complex processes and geoscience applications often take a

variety of data types as input in a long and complex workflow

(Yang et al., 2011). How to decompose and express these

complex workflow in the cloud environment is a major

challenge. General scientific workflow technology is usually

considered to be a good solution for the expression of complex

scientific model, and it has been widely used in many scientific

research. By scientific workflow, scientists can model, design,

execute, debug, re-configure and re-run their analysis and

visualization pipelines (Goecks et al., 2010). Another solution

for complex scientific problem is programming. Programming is

more flexible and robust than scientific workflow, and it is able

to solve more complex scientific computing. With the advent of

the era of mobile office, an increasing number of scientific

application migrate to the browser. How to implement the

complex process of scientific data analysis in browser is a

meaningful thing.

In this paper, a new scalable, interactive, web-based massive

data processing environment based on Docker, IPython and

some open source geosciences tools is proposed. It offers safer

and much more convenient way for the end-user to access

massive data resources in the cloud. Users can write data

processing code on the web directly, so they can design their

own data processing algorithm. The remainder of this paper is

structured as follows. Section 2 discusses the related works

about spatiotemporal cloud computing, server virtualization and

cloud-based scientific workflow system. Section 3 gives an

overview of the methodology and system architecture. In

section 4, we introduce the system implementation. Section 5

introduces experiments and performance analysis. In section 7

we conclude our work with discussions and discussed our future

work.

2. RELATED WORK

Cloud computing is developed mainly by big internet-based

companies such as Amazon, Google and Microsoft which make

great investment in ‘mega-scale’ computational clusters and

advanced, large-scale data storage systems (Schadt et al., 2010).

Though these commercial cloud computing platforms are

perceived for “business applications”, such as Amazon’s Elastic

Compute Cloud, Google App Engine, and Microsoft’s

Windows Azure, as they has the potential to eliminate or

significantly lower many resource barriers and data barriers that

have been existing for a long time in geoscience domain, they

provide a cost-effective, highly scalable and flexible solution

for those large-scale, compute- and data- intensive geoscience

researches (Li et al., 2010).

Amazon’s management console – which can be accessed from

any web browser – provides a simple and intuitive interface for

several uses: moving data and applications into and out of the

Amazon S3 storage system; creating instances in Amazon EC2;

and running data-processing programs on those instances,

including the analysis of big data sets using MapReduce-based

algorithms. In EC2, users can customize the environment for

their particular application by installing particular software or

by purchasing particular machine images (Schadt et al., 2010).

Windows Azure Cloud computing platform hides data

complexities and subsequent data processing and transformation

form end users, and it is highly flexible and extensible to

accommodate different science data processing tasks, and can

be dynamically scaled to fulfil scientists’ various computational

requirements in a cost-efficient way. Li implemented a

particular instance of a MODIS satellite data re-projection and

reduction pipeline in the Windows Azure Cloud computing

platform, and the experiment results show that using the cloud

computing platform, the speed of large-scale science data

processing can be 90 times faster than that on a high-end

desktop machine (Li et al., 2010). The first global assessment of

forest change at pixel scale has been completed under Google

cloud environment in 2013(Hansen et al., 2013). It contains

spatially and temporally detailed information on forest change

based on Landsat data at a spatial resolution of 30m from 2000

to 2012. As it is definitely data- and compute- intensive

application, personal computers or workstation cannot afford

this computation work. Key to the project was collaboration

with team members from Google Earth Engine, who reproduced

in the Google Cloud the models developed at the University of

Maryland for processing and characterizing the Landsat data

(http://www.nasa.gov/audience/ forstudents/k-4/stories/what-is-

a-satellite-k4.html). As a professional geoscience software,

ENVI has also developed its first cloud-based remote sensing

system, the ENVI and IDL Service Engine, on Amazon’s EC2

platform. It is an enterprise-enabled processing engine that

provides remote users access to the power of ENVI image

analysis and IDL applications form a web or mobile client

interface (O’Connor et al., 2012).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-43-2015

44

Except all those commercial corporations, many scientists are

putting more emphasis on how to apply cloud computing into

geosciences. Cary try to combine cloud computing with spatial

data storage and processing and solve two key problems by

using MapReduce framework, an R-Tree index for all kinds of

spatial data and remote sensing image quality evaluations (Cary

et al., 2009). Blower implement a web map service on Google

App Engine and describe the difficulties in developing GIS

systems on the public cloud (Blower, 2010). Karimi study

distributed algorithms for geospatial data processing on clouds

and compared their experimentation with an existing cloud

platform to evaluate its performance for real-time geoprocessing.

(Karimi et al., 2011). Cloud computing has brought great

breakthrough and innovation to the geosciences.

The essence of cloud computing is to provide users with

computing resource. Resource management is critical in cloud

computing. There are kinds of resources in the large-scale

computing infrastructure need to be managed, CPU load,

network bandwidth, storage quota, and even type of operating

systems. In order to limit, isolate and measure the use of

computing resources for each user, server virtualization is

widely used to manage the resource in data centers.

Virtualization is the key technology in cloud computing which

allows systems to behave like a true physical computer, while

with flexible specification of details such as number of

processors, memory and disk size, and operating system (Schadt

et al., 2010). All IT resources are turned into a service that

customers can rent based on their practical need and team work

through the internet. And cloud computing provides easy-to-use

interfaces to domain specialists without advanced technical

knowledge (i.e. meteorologists, geography specialists,

hydrologists, etc.) to process massive geospatial data. In

addition, it provides elastic and on-demand access to massively

pooled, instantiable and affordable computing resources as well

(Cui et al., 2010, Huang et al., 2010).

Figure 1. The difference between hypervisor and container

architecture

Currently there have two wildly used virtualization technology:

VM hypervisors and container (Figure 1). The key difference

between containers and VMs is that while the hypervisor

abstracts an entire device, containers just abstract the operating

system kernel. VM hypervisors, such as Hyper-V, KVM, and

Xen, are all based on emulating virtual hardware. That means

they’re fat in terms of system requirements.

Docker, a new open-source container technology, is hotter than

hot because it makes it possible to get far more apps running on

the same old servers and it also makes it very easy to package

and ship programs. Docker uses LXC, cgroups and Linux’s own

kernel. Compared with traditional virtual machine, a Docker

container does not contain a single operating system, but runs

based on the functionality provided by operating system in the

existing infrastructure. Docker's core is Linux cgroups (control

group) which provides methods that compute and limit the

resources of CPU, memory, network, and disk that containers

can use. Different from virtualized application which includes

not only the application – which may be only 10s of MB – and

the necessary binaries and libraries, but also an entire guest

operating system – which may weigh 10s of GB, the Docker

Engine container comprises just the application and its

dependencies. Docker runs as an isolated process in user-space

on the host operating system, sharing the kernel with other

containers. Thus, it enjoys the resource isolation and allocation

benefits of VMs but is much more portable and efficient.

3. METHODOLOGY & SYSTEM ARCHITECTURE

To provide interactive online analysis for remote sensing data,

the overall system architecture of the cloud system needs to

meet the following typical characteristics. First, a unified

interactive data analysis interface is essential to implement long

and complex spatiotemporal workflow. Second, a geospatial

analysis toolkits deployed in the cloud environment provides

abundant predefined and customized data analysis functions.

Third, a lightweight cloud computing container performs

execution of these spatiotemporal analysis tasks. Four, an

efficient cloud storage environment stores public remote

sensing data and user’s private data, and provides detailed

access control. The architecture is depicted in Figure 2.

Figure 2. Overall system architecture

3.1 A Flexible User Interface

Geoscience applications often take a variety of data types as

input with a long and complex workflow. Programming is more

flexible and robust than traditional scientific workflow, and it is

able to solve more complex scientific computing. As roots in

academic scientific computing, IPython has become the most

popular tool for maintaining, sharing, and replicating long

science data workflows (Helen et al., 2014). IPython Notebook

is a web-based interactive computational environment

connecting to IPython kernel. IPython Nodebook allows

customization and the flexibility of executing code in a live

Python environment. Through this way, many complex

scientific calculation, scientific drawing, parallel computing,

and even Linux system shell call, can be realized by way of

interacting on the network. In this paper, IPython Notebook was

used as interactive analysis environment. Users write processing

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-43-2015

45

scripts in the IPython Notebook, and interactively call

geospatial analysis toolkits and system resources for remote

sensing data analysis.

3.2 Geospatial Analysis Toolkits

Geospatial analysis toolkits include a variety of popular open-

source spatiotemporal software, such as GDAL, Grass GIS, and

scientific python distributions, such as NumPy and SciPy. The

IPython kernel is the core component, which manages these

software and provides public interface to IPython Notebook.

These third-party software and python distributions can be used

in two ways respectively to interact with IPython Kernel. One is

that the python distributions can be directly imported as Python

module into IPython project. The second way is that for the

third-party software, IPython project can invoke system call to

execute these external programs.

GDAL is a universal library for reading and writing raster and

vector geospatial data formats. It provides a variety of useful

command-line utilities for data translation and processing. With

these GDAL utilities and IPython Notebook, users can perform

some basic remote sensing processing and analysis, such as

projection transformation, cutting and mosaic of remote sensing

images. GDAL also provides python interface to directly access

both raster and vector data. Grass GIS is an open source

geographical information system capable of handling raster,

topological vector, and image processing and graphic data. It

also provides python interface to connect with IPython kernel.

3.3 An Lightweight Cloud Container

Previous studies (Huang et al., 2013) has shown that the generic

cloud computing platforms, such as Amazon EC2 and Windows

azure et al., cannot meet the requirements of complex geospatial

cloud computing. To provide efficient and secure cloud

computing environment to perform spatial analysis task, a

lightweight cloud container Docker was used in this research. It

runs as an isolated process in user-space on the host operating

system, sharing the kernel with other containers. The IPython

kernel and other geospatial analysis toolkits was packaged

inside Docker’s virtual file system. Each Docker instance

execute a single IPython kernel, which is responsible for

receiving and processing requests from IPython Notebook.

3.4 An Secure and Stable Cloud Storage

Our system needs a stable and secure cloud storage file system

to store public remote sensing data and the user’s private data.

The data resources within the cloud storage can be accessed by

IPython kernel inside Docker container. The cloud storage file

system should have strict access control. For public data, it

provides read-only privilege. Meanwhile, for user’s private data,

it provides read/write privilege.

Table 1. The comparison of distributed file systems
 Fault

tolerance

Quota Web

GUI

Meta Data

Server

Status

Ceph Yes Yes No Need Developing

Gluster Yes No Yes Not need Stable

MooseFS Yes Yes Yes Need Stable

Currently, distributed file system is the best cloud storage

architecture to achieve these goals. The comparison between

three famous open-source distributed file systems is listed in

table 1. Quota control, high performance and stable are the key

features of our system.

Figure 3. The aggregation IO speed comparison of three

distributed file systems

In order to select an appropriate distributed file system, we

tested the aggregation IO speed of three different distributed file

system. The configuration of the test environment is listed in

section 4. From the comparison of aggregation IO speed (Figure

3), we can find that MooseFS has higher aggregation IO speed,

and it meets the requirements of cloud storage.

4. SYSTEM IMPLIMENTATIONS

The system is developed on the basis of open-source systems

and software, such as Linux operating system (Fedora v21),

MooseFS (v2.0), Docker (v1.3), IPython (v2.3), GDAL (v1.10)

and Nginx (v1.7). The test environment includes 10 physical

servers. These servers are connected through local area

networks (LANs with 10Gbps). Each server has 32 GB memory,

two Xeon E5-2620 six-core processors with a clock frequency

of 2.00 GHz and 12*6TB SATA hard drivers.

4.1 Implementation of Cloud Storage

The cloud storage file system is constructed by MooseFS, and

all data is stored in this file system. There have two types of

data: public data and private data, which are stored under the

directories of /public and /private respectively. The access

permission of private data is read/write, while public data are

restricted to read-only. For each user, the private data is stored

in a separate folder under the /private directory. So all users’

private data storage space constitute a set of subdirectories

under the /private directory in the cloud storage file system.

Figure 4. Data mapping mechanism

All the public data and private data are mounted to the Docker

server through MooseFS mount client, under the directories of

/mnt/public and /mnt/private respectively. When creating and

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-43-2015

46

using a Docker container, a user can map the public directories

and the private directories to corresponding Docker container

through Docker management command. For example, the

private data directory of user.1 in MoosFS is /private/user.1.

The mapped directory in the container will be

/mnt/private/user.1. The mapping mechanism is depicted in

Figure 4.

4.2 Management of Docker Containers

The creation process of Docker containers is depicted in Figure

5. When the system receives a new request to create new

Docker container, the system automatically creates a private

directory to store user’s private data. Before starting Docker

container, we need to prepare a Docker image in advance. This

Docker image is created base on the host server. In our test

environment, the host server is installed with Fedora V21 Linux

operate system. All the required software and toolkits, such as

GDAL, Grass GIS, and IPython kernel etc., are pre-installed.

We can create and launch Docker container through the

following Docker command.

docker run -v /mnt/public:/mnt/public -v

/mnt/private/subdirectory.1:/mnt/private -p 9001 -p 8888 -m 2g

-c 100 -d 26c ipython notebook --profile=nbserver

After the command execution is complete, a Docker container is

automatically created and IPython kernel and Notebook server

is also started up. At the same time, the public and private data

storage are mounted to corresponding cloud storage directory.

And also the assigned port 8888 of IPython kernel server inside

Docker container is also mapped to the corresponding port of

the host server. This command also specifies the maximum

amount of 2GB memory available to Docker container, and the

relative maximum CPU utilization to 100.

Figure 5. The management process of Docker containers

The restriction of the container’s disk IO is implemented by

changing the system attribute value, which is

BlockIOReadBandwidth/BlockIOWriteBandwidth of the

location where container’s file system are mounted in the host.

For example, if we want to restrict the write speed to 10M, the

command can be wrote as:

systemctl set-property --runtime docker-ID.scope

"BlockIOWriteBandwidth=/dev/mapper/docker-ID 10M"

4.3 Access IPython Instances

When Docker container starts, the IPython kernel automatically

start providing services on the binding port. The IPython

binding port is mapped to the host server port which connects

with two Nginx servers. Each IPython binding port are

associated with a unique URL through reverse proxy in Nginx.

The Route of access IPython instances is depicted in Figure 6.

Just by logging in to dedicated IPython Notebook web page

using user-specific URL in the web browser, users can access

all the computing and data resources, upload and perform

procedures, and view the results on line.

Figure 6. Route of access IPython instances

5. EXPERIMENTS AND ANALYSIS

5.1 Experiment Design

An experiment about long time series of monthly average land

surface temperature of a given region from 2000 to 2014 are

conducted to test the performance and reliability of this system,

The region is defined by the mask data users upload. The

monthly average land surface temperature is computed using

MOD11A1, which is a kind of MODIS LST data products. The

MOD11A1 product comprises the following Science Data Set

(SDS) layers for day time and night time observations: LSTs,

quality control assessments, observation times, view zenith

angles, clear sky coverage, and bands 31 and 32 emissivity from

land cover types (https://lpdaac.usgs.gov/products/modis_

products_table/mod11a1). In this experiment, only the LSTs

data set are used as input parameter. The whole data process

workflow is depicted as figure 4. Though the algorithm of

computing monthly average temperature of a given region from

MOD11A1 is simple, a lot of computing work are needed when

managing and processing all of the data due to the long time

period. During the whole process, MOD11A1 data are stored in

public storage, while all the intermediate results data are stored

in the user’s private storage space. The data process workflow

includes 2 separate loop computations.

1) Daily average temperature computation

To compute the average land surface temperature of a region,

users firstly have to upload the polygon data of the region,

which is called mask polygon in this procedure. The projection

of the mask polygon is WGS 84, and it can be in a shapefile or

KML format. The central coordinate (x, y) is then obtained,

which is used to perform intersection spatial queries to find

those MOD11A1 images that contains the coordinate. In this

experiment, the time period starts from 2000/01/01 to

2014/12/31. The MOD11A1 data are processed in units of days

chronologically. Determine the number of those images that

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-43-2015

47

cover the mask polygon every day. If there are more than one

images, then mosaic is firstly operated, and then is the

projection transformation which transforms the original

sinusoidal projection into WGS 84. If there is only one

MOD11A1 image covering the mask polygon, then only

projection transformation is executed. Then the mask polygon is

used to clip the mosaic or single MOD11A1 data. All of these

calculations include cutting, mosaic, projection transformation

could be done with a GDAL utilities named gdalwarp. When

computing the daily average temperature for the study region,

the Kelvin unit of temperature is firstly transformed into

Degrees Celsius for ease of use according to the following

formula: 0.02*value - 273.15. The daily average land surface

temperature can be obtained by performing this simple formula

in Python.

2) Monthly average temperature computation

After the daily average temperature are obtained, monthly

average temperature are computed as well. And the monthly

average temperature for each month from 2000 to 2014 is

plotted as a line graph using the Python package PyPlot in the

end. All the process can be implemented in the system

introduced above using IPython with the user’s interaction.

Figure 7. The data process workflow

5.2 Performance Analysis

To test the performance of this system architecture in terms of

system load and response efficiency, the core computing

process of the aforementioned experiments were carried out in

Docker, KVM and Physical machine respectively. Docker and

KVM are installed in the same physical machine environment

with configuration of that mentioned in section 4. Multi-task

processes are executed concurrently when testing the physical

environment. And different number of virtual machines are

started on the physical machine at the same time when testing

the KVM environment. The memory of each virtual machine is

2GB, and each virtual machine has one computing task running

inside. As to the Docker environment test, different number of

Docker are started in the physical machine, and each has one

computing task running inside. Test indicators include the

average time it takes to execute different concurrent tasks,

memory consumption of physical machine, and CPU usage.

Tests are performed under different concurrent tasks, and the

results are shown in Figure 8, 9, and 10.

Figure 8. Average execution time of different concurrent tasks

Figure 9. Host memory usage of different concurrent tasks

Figure 10. Host CPU usage of different concurrent tasks

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-43-2015

48

From the figures 8, 9, and 10, we can see that Docker and Host

machine have little difference in terms of performance, as

Docker containers share the resources of the physical machine

environment. From the aspect of time-consuming, the average

execution time increases with the increasing number of

concurrent tasks, and the rate of increase is especially

significant under KVM environment. In the host memory

consumption aspect, the usage of memory and CPU increase

with increasing number of concurrent tasks. Because each KVM

virtual machine requires 2GB memory exclusively, the host

memory will not be adequate when the number of virtual

machine reaches 16. Since geosciences has the characteristics of

computing-intensive, the CPU usage under the three tests do not

differ greatly. To sum up, from the performance tests, we can

see that the cloud environment based on Docker can maximize

the utilization of the system resources, and thus can handle

more concurrent spatial-temporal computing tasks.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new scalable, interactive and web-

based cloud computing solution for massive remote sensing

data analysis. The lightweight cloud storage system used to

store public data and users’ private data is constructed based on

open source distributed file system. In it, massive remote

sensing data are stored as public data, while the intermediate

and input data are stored as private data. The elastic, scalable,

and flexible cloud computing environment is built using Docker,

which is a technology of open-source lightweight cloud

computing container in the Linux operating system. In the

Docker container, open-source software such as IPython,

GDAL, and Grass GIS etc., are deployed. The cloud storage

space is mounted inside the container, which makes it possible

to access public and private data of the platform by IPython.

Users can write scripts in the IPython Notebook page through

the web browser to process data, and the code will be submitted

to IPython kernel to be executed. Thus, massive remote sensing

data processing in the Internet has been achieved.

By comparing the performance of remote sensing data analysis

tasks executed in Docker container, KVM virtual machines and

physical machines respectively, we can conclude that the cloud

computing environment built by Docker makes the greatest use

of the host system resources, and can handle more concurrent

spatial-temporal computing tasks. Docker technology provides

resource isolation mechanism in aspects of IO, CPU, and

memory etc., which offers security guarantee when processing

remote sensing data in the IPython Notebook.

In this paper, remote sensing data are processed based on

IPython Notebook, which requires the users to be proficient in

Python. However, this is a great obstacle for those scientists

who has never used this language. So how to combine scientific

workflow with IPython will be the focus of future work. Thus,

user can drag and drop workflow controls on the web page to

construct scientific workflow, then, the system will parse the

workflow into IPython scripts automatically and the scripts will

be submitted to IPython kernel to be executed. Remote sensing

data processing is a typical data- and computing- intensive work.

How to integrate parallel computing, multi-core technology, and

clustering technology to improve data processing efficiency in

IPython is a subject need to be studied in the future.

ACKNOWLEDGEMENTS

This work is supported by “Twelfth Five-Year” Plan for

Science & Technology Support under Grant No.

2012BAK17B01 and 2013BAD15B02, the Natural Science

Foundation of China (NSFC) under Grant No.91224006,

61003138 and 41371386, the Strategic Priority Research

Program of the Chinese Academy of Sciences under Grant No.

XDA06010202 and XDA05050601, and Youth Innovation

Promotion Association of CAS (2014144).

REFERENCES

Blower, J. D., 2010. GIS in the cloud: implementing a Web

Map Service on Google App Engine. In Proceedings of the 1st

International Conference and Exhibition on Computing for

Geospatial Research & Application, ACM, pp 34.

Bryant, R., Katz, R. H., & Lazowska, E. D., 2008. Big-data

computing: creating revolutionary breakthroughs in commerce,

science and society, 1-15.

Cary, A., Sun, Z., Hristidis, V., & Rishe, N., 2009. Experiences

on processing spatial data with mapreduce. In Scientific and

Statistical Database Management, Springer: Berlin Heidelberg,

pp 302-319.

Cui, D., Wu, Y., & Zhang, Q., 2010. Massive spatial data

processing model based on cloud computing model. In 2010

Third International Joint Conference on Computational Science

and Optimization (CSO) 2, IEEE, pp 347-350.

Deelman, E., Singh, G., Livny, M., Berriman, B., & Good, J.,

2008. The cost of doing science on the cloud: the montage

example. In Proceedings of the 2008 ACM/IEEE conference on

Supercomputing (p. 50). IEEE Press.

Foster, I., Katz, D., Malik, T., & Fox, P., 2012. Wagging the

long tail of earth science: Why we need an earth science data

web, and how to build it.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M.,

Turubanova, S. A., Tyukavina, A., & Townshend, J. R. G.,

2013. High-resolution global maps of 21st-century forest cover

change. Science, 342(6160), 850-853.

Shen H., 2014. Interactive notebooks: Sharing the code. Nature,

515 (7525): 151–152.

Huang, Q., Yang, C., Nebert, D., Liu, K., & Wu, H., 2010.

Cloud computing for geosciences: deployment of GEOSS

clearinghouse on Amazon's EC2. In Proceedings of the ACM

SIGSPATIAL International Workshop on High Performance

and Distributed Geographic Information Systems, pp 35-38.

Karimi, H. A., Roongpiboonsopit, D., & Wang, H., 2011.

Exploring Real‐Time Geoprocessing in Cloud Computing:

Navigation Services Case Study. Transactions in GIS, 15(5),

613-633.

Li, J., Humphrey, M., Agarwal, D., Jackson, K., van Ingen, C.,

& Ryu, Y., 2010. escience in the cloud: A modis satellite data

reprojection and reduction pipeline in the windows azure

platform. In Parallel & Distributed Processing (IPDPS), 2010

IEEE International Symposium on. IEEE. Pp 1-10

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-43-2015

49

Martinussen, E. S., Knutsen, J., & Arnall, T., 2014. Satellite

lamps. Inventio.

O’Connor, A., Lausten, K., Okubo, B., & Harris, T., 2012.

ENVI Services Engine: Earth and planetary image processing

for the cloud. American Geophysical Union, Poster IN21C-

1490.

Huang Q., Yang C., Benedict K., Chen S., Rezgui A. and Xie J.,

2013. Utilize cloud computing to support dust storm forecasting.

International Journal of Digital Earth, 6(4), pp. 338-355.

Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L., & Nolan,

G. P., 2010. Computational solutions to large-scale data

management and analysis. Nature Reviews Genetics, 11(9),

647-657.

Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C. J., &

Buytaert, W., 2015. Web technologies for environmental Big

Data. Environmental Modelling & Software, 63, 185-198.

Wang X., Zhao J., Zhou Y., & Li J., 2014. The Geospatial Data

Cloud: An Implementation of Applying Cloud Computing in

Geosciences. CODATA: Data Science Journal. 13: 254-264

Yang, C., M. Goodchild, Q. Huang, D. Nebert, R. Raskin, Y.

Xu, M. Bambacus, and D. Fay., 2011. Spatial Cloud Computing:

How Could Geospatial Sciences Use and Help to Shape Cloud

Computing. International Journal on Digital Earth, 4 (4): 305-

329.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-43-2015

50

