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ABSTRACT: 

 

The burst of large-scale spatial terrain data due to the proliferation of data acquisition devices like 3D laser scanners poses 

challenges to spatial data analysis and computation. Among many spatial analyses and computations, polygon retrieval is a 

fundamental operation which is often performed under real-time constraints. However, existing sequential algorithms fail to meet 

this demand for larger sizes of terrain data. Motivated by the MapReduce programming model, a well-adopted large-scale parallel 

data processing technique, we present a MapReduce-based polygon retrieval algorithm designed with the objective of reducing the 

IO and CPU loads of spatial data processing. By indexing the data based on a quad-tree approach, a significant amount of unneeded 

data is filtered in the filtering stage and it reduces the IO overhead. The indexed data also facilitates querying the relationship 

between the terrain data and query area in shorter time. The results of the experiments performed in our Hadoop cluster demonstrate 

that our algorithm performs significantly better than the existing distributed algorithms. 
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1. INTRODUCTION 

Cloud computing is continually being improved for 

computational geometry, such as the operations commonly used 

in GIS. Of particular interest, and high demand, is the spatial 

analysis and computation that typically involves processing 

large volumes of spatial data. Some example applications 

include urban environment visualization, shadow analysis, 

visibility computation, and flood simulation. For these GIS 

applications, the polygon retrieval is a common operation 

where very large terrain data within a given polygon’s 

boundary for further analysis is retrieved (Mark de Berg, 2008; 

Willard, 1982). Willard (Willard, 1982) proposed the polygon 

retrieval problem and devised an algorithm with O( )  

time complexity in the worst-case. To speed up this time 

complexity, several efficient algorithms have been 

proposed; (Mark de Berg, 2008; Paterson and Frances Yao, 

1986; Sioutas et al., 2008; Tung and King, 2000) are among 

the most notable algorithms. However, with advanced large-

scale spatial data acquisition techniques and devices like 3D 

laser and satellite, terrain datasets in tens or even hundreds of 

gigabytes are currently available. Efficient processing of such 

large terrain datasets is beyond the capability of current 

algorithms that run on single machines and therefore a 

distributed solution is highly desired.  

 

Efficiently computing polygon retrieval is very crucial since it 

is a CPU-intensive operation, especially for very large spatial 

datasets. In this paper, we present a distributed polygon 

retrieval algorithm based on MapReduce. The challenges for 

processing polygon retrieval in a large terrain dataset include 

how to organize, partition and distribute very large spatial 

datasets across 10s or 100s of nodes in a cloud datacenter so 

that the applications can query and analyze the data very 

quickly and cost-effectively. To address these challenges, we 

first index the data based on a quad-tree, which is simpler 

compared with the R-tree index(Eldawy and Mokbel, 2013). 

This allows to efficiently filter the spatial data that are not 

relevant for the query, thereby improving the query 

performance and efficiency. We conduct two experiments on 

our cluster consisting of 20 nodes to validate the efficiency of 

our algorithm and the results show that our algorithm is 

efficient and reduces the job execution time significantly. 

 

The rest of the paper is organized as follows. Section 2 reviews 

the related work. Section 3 describes the idea of our 

MapReduce-based polygon retrieval algorithm. The 

experimental results are showed in Section 4. The conclusion of 

our work is discussed in Section 5. 

 

2. RELATED WORKS 

Polygon retrieval is a common operation needed in a diverse 

number of GIS applications. Willard (Willard, 1982) was the 

first one who defined the polygon retrieval problem formally 

and proposed a polygon retrieval algorithm with  time 

complexity. To speed up this performance, efficient algorithms 

have been proposed (Mark de Berg, 2008; Paterson and Frances 

Yao, 1986; Sioutas et al., 2008; Tung and King, 2000). These 

sequential algorithms work well under certain conditions, 

however, as the terrain datasets are increasingly becoming very 

large, these algorithms fail to meet the demand for real-time 

response.  As cloud computing has emerged to be an effective 

and promising solution for both compute- and data-intensive 

geo-computation, the work in (Karimi et al., 2011) explored the 

feasibility of using Google App Engine, the cloud computing 

technology by Google, to process terrain data, usually in 

triangulated irregular network (TIN) form.  

 

Considering Hadoop has become the defacto standard for 

distributed computation on a large scale, some recent works 

have developed several MapReduce-based algorithms for geo-
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computation. Puri et al. (Puri et al., 2013) proposed and 

implemented a MapReduce algorithm for distributed polygon 

overlay computation in Hadoop. Ji et al. (Ji et al., 2012) 

presented MapReduce-based approaches that construct inverted 

grid index and process kNN query over large spatial datasets. 

Akdogan et al. (Akdogan et al., 2010) created  a unique spatial 

index, Voronoi diagram, for given points in 2D space which 

enabled efficient processing of a wide range of geospatial 

queries such as RNN, MaxRNN and kNN, with the MapReduce 

programming model. Hadoop-GIS (Wang et al., 2011)  and 

Spatial-Hadoop (Eldawy et al., 2013) are two scalable and high-

performance spatial data processing systems for running large-

scale spatial queries in Hadoop. These systems provide support 

for some fundamental spatial queries like minimal bounding 

box query, but they do not directly support polygon retrieval 

operation addressed in this work. 

 

 

3. MAPREDUCE-BASED POLYGON RETRIEVAL 

ALGORITHM 

In this section, we discuss our proposed MapReduce-based 

distributed polygon retrieval algorithm. Our algorithm is 

composed of two parts: (1) using a quad-tree to index the terrain 

data and (2) organizing the terrain datasets based on the quad-

tree prefix to minimize the IO load. 

 

To accelerate the processing of terrain data, we first divide the 

entire space based on a complete quad-tree. Compared with 

other spatial indexing techniques, quad-tree has several 

advantages for polygon retrieval. One such advantage is that we 

can directly partition the space into four sub spaces recursively. 

In addition, with the quad-tree indexing, the topological relation 

among the terrain data and the query area can be inferred from 

the indices’ prefix directly. The key idea here is that if a grid 

cell is within a query area, then all its sub grids are also 

guaranteed to be within the query area.  In other words, if the 

prefix of one spatial object’s quad-tree index exists in the 

intersecting set, then that object is guaranteed to be within the 

query area. This property helps avoid the t ime -consuming  

point-in-polygon computation in the map phase enabling the 

MapReduce jobs to complete significantly faster. 

 

To further increase query efficiency, we use a prefix tree to 

organize the prefix of all the grid entries that interact with the 

query area so that the query time is reduced to  where k is 

the length of the index prefix. A prefix tree, also called radix 

tree or trie, is an ordered tree data structure that is used to store 

a dynamic set or associative array where the keys are usually 

strings(Wikipedia). The idea behind a prefix tree is that all 

strings that share a common prefix inherit a common node. 

Thus, with our prefix tree optimization, testing a prefix of a 

quad-tree index in a given dataset can be accomplished in just 

O(k) time. 

 

For implementation, in the pre-processing stage, we first 

consider the coarse-grained grid cells and recursively test 

whether they overlap with the query area. Once a  grid cell 

intersects the query area, we test the corresponding sub-grid 

cells unless we are at the deepest level of the quad-tree. If 

the grid cell is within the query area, we stop subdividing 

the grid cell and insert its index into the prefix tree. If the 

grid cell is outside the query area, we just ignore it. From the 

perspective of prefix tree, if the prefix of a quad-tree index 

(but not whole index) ends in a leaf node, it means that the 

corresponding spatial elements are within the query area.  

 

After the prefix tree is created in the pre-processing stage, it is 

effectively used in the map function. When each mapper 

receives a spatial element record, the relation between the 

spatial record and the query area is inferred based on the 

prefix tree created in the pre-processing phase. 

 

Finally, our quad-tree prefix-based spatial file filtering strategy 

tries to read in only the necessary spatial data rather than 

scanning the whole dataset stored in HDFS. Similar to the 

idea of using the prefix tree to organize the quad tree indices, 

we separate the spatial data files into fairly smaller files such 

that each file shares the same prefix. After we organize the 

terrain file in this manner, we use it in the file filtering stage 

which scans only the required records to filter those files that 

are outside the query area which results in the minimum 

amount of spatial data needed to be processed. 

 

4. EXPERIMENT 

In this section, we present the experimental evaluation of our 

distributed polygon retrieval algorithm. We first introduce the 

dataset and the computing environment used in the experiment. 

We then evaluate and compare the proposed approach with 

existing solutions.  

 

4.1 Dataset and Experiment Environment 

There are several data structures to represent the terrain surfaces, 

two common examples are digital elevation model (DEM) and 

TIN. The latter (TIN), which is based on vector model, is 

widely used in many applications. It consists of irregularly 

distributed nodes and lines arranged in a network of non-

overlapping triangles. In our experiment we used TIN datasets. 

TIN requires considerably a large storage capacity as it can 

be used to represent surfaces with much higher resolution 

and detail.  

 
For our experiments, we used the TIN data of Pittsburgh, 

which is originally divided into 5*5 equally sized grid cells 

and each grid cell represents a terrain of 10000 metes * 

10000 meters. There are 3 million points and 6 million 

triangles in each grid cell and the size of each grid’s TIN file 

is approximately 500 MB. We conducted our experiments on 

a cluster of 20 virtual machines created by OpenStack hosted 

on a 5-node experimental cluster. Each server in the cluster 

has an Intel Xeon 2.2GHz 4 Core with 16 GB RAM and 1 

TB hard drive at 7200 rpm. Each virtual machine in our setup 

has 1 VCPU with 2 GB RAM and 20 GB hard drive with 

Ubuntu Server 12.04 (32 bit). 
 

4.2 Algorithm Efficiency 

To demonstrate the time performance of the polygon 

retrieval algorithm in relation to the query area size, we 

generated a polygon area for each query randomly. We 

compared our results with the Spatial-Hadoop(Eldawy et al., 

2013) as the benchmark. Since Spatial-Hadoop does not provide 

support for polygon retrieval in the TIN data format directly, 

we have modified their interfaces and executed the polygon 

retrieval operation as suggested in the Spatial Hadoop 

tutorial(SpatialHadoop). Table 1  shows the relationship 

between the time performance of the algorithm and the 

polygon query area on our cluster. From the table, i t  c a n  
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b e  s e e n  that as the query area becomes larger, the time 

performance generally increases. This is due to the increased 

amount of TIN data that needs t o  b e  processed in the map 

and reduce phases, but the trend is not based on an strict 

increasing function since the query shape is irregular, and the 

spatial data are processed by the predefined unit of grid cell. 

From the result, we also infer that our algorithm on an average 

runs 25% faster than the existing technique. This is partly due to 

the fact that our algorithm significantly avoids the geometry 

floating point computation in the map phase, especially when 

the query area is not very large. Therefore, when the query 

area becomes larger, the I/O time dominates the CPU time 

and hence the CPU time savings become less significant. 

 

Query 

Area( ) 

Time(ms) – 

Proposed 

Algorithm 

Time(ms) - 

Spatial-

Hadoop 

(Benchmark) 

6.78e+5 14659 40996 

3.45e+6 34127 44302 

5.26e+6 37608 50487 

9.88e+6 37995 51276 

1.19e+7 38217 50569 

2.16e+7 39773 53906 

2.48e+7 37469 54612 

Table 1. The query time vs. query area 

 

4.3 Scalability 

We next evaluate the effectiveness of our polygon retrieval 

algorithm by varying the size of the Hadoop cluster in terms of 

the number of VMs such as 5, 10, 20. For this experiment, we 

used the random query shapes generated previously and ran 

queries on different cluster sizes. The result is in Table 2. From 

Table 2 we can find that overall our proposed technique scales 

well and showed a significant reduction in job execution time 

as the number of nodes in the Hadoop cluster increase. 

Query 

Area( ) 

Time(ms) – 

VM Size 5 

Time(ms) – 

VM Size 10 

Time(ms) – 

VM Size 20 

6.78e+5 19956 18552 14659 

3.45e+6 39776 37893 34127 

5.26e+6 44526 39248 37608 

9.88e+6 43099 40543 37995 

1.19e+7 44447 41854 38217 

2.16e+7 59872 43893 39773 

2.48e+7 58205 42098 37469 

Table 2. The query time under different query area and cluster 

size 

 

5. CONCLUSION 

In this paper we presented a distributed polygon retrieval 

algorithm based on MapReduce. We apply two optimization 

strategies to reduce the CPU and IO loads of polygon retrieval 

by using a quad-tree to index the terrain data and organizing the 

terrain data into small files based on the quad-tree prefix. The 

experiment results show that our approach achieves high 

efficiency and outperforms existing solutions.  
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