
A Distributed Polygon Retrieval Algorithm using MapReduce

Q. Guo , B. Palanisamy, H. A. Karimi*

 Geoinformatics Laboratory, School of Information Sciences, University of Pittsburgh

- (qiulei, bpalan, hkarimi)@pitt.edu

KEY WORDS: Hadoop, Polygon Retrieval, Distributed Algorithm, GIS

ABSTRACT:

The burst of large-scale spatial terrain data due to the proliferation of data acquisition devices like 3D laser scanners poses

challenges to spatial data analysis and computation. Among many spatial analyses and computations, polygon retrieval is a

fundamental operation which is often performed under real-time constraints. However, existing sequential algorithms fail to meet

this demand for larger sizes of terrain data. Motivated by the MapReduce programming model, a well-adopted large-scale parallel

data processing technique, we present a MapReduce-based polygon retrieval algorithm designed with the objective of reducing the

IO and CPU loads of spatial data processing. By indexing the data based on a quad-tree approach, a significant amount of unneeded

data is filtered in the filtering stage and it reduces the IO overhead. The indexed data also facilitates querying the relationship

between the terrain data and query area in shorter time. The results of the experiments performed in our Hadoop cluster demonstrate

that our algorithm performs significantly better than the existing distributed algorithms.

* Corresponding author

1. INTRODUCTION

Cloud computing is continually being improved for

computational geometry, such as the operations commonly used

in GIS. Of particular interest, and high demand, is the spatial

analysis and computation that typically involves processing

large volumes of spatial data. Some example applications

include urban environment visualization, shadow analysis,

visibility computation, and flood simulation. For these GIS

applications, the polygon retrieval is a common operation

where very large terrain data within a given polygon’s

boundary for further analysis is retrieved (Mark de Berg, 2008;

Willard, 1982). Willard (Willard, 1982) proposed the polygon

retrieval problem and devised an algorithm with O()

time complexity in the worst-case. To speed up this time

complexity, several efficient algorithms have been

proposed; (Mark de Berg, 2008; Paterson and Frances Yao,

1986; Sioutas et al., 2008; Tung and King, 2000) are among

the most notable algorithms. However, with advanced large-

scale spatial data acquisition techniques and devices like 3D

laser and satellite, terrain datasets in tens or even hundreds of

gigabytes are currently available. Efficient processing of such

large terrain datasets is beyond the capability of current

algorithms that run on single machines and therefore a

distributed solution is highly desired.

Efficiently computing polygon retrieval is very crucial since it

is a CPU-intensive operation, especially for very large spatial

datasets. In this paper, we present a distributed polygon

retrieval algorithm based on MapReduce. The challenges for

processing polygon retrieval in a large terrain dataset include

how to organize, partition and distribute very large spatial

datasets across 10s or 100s of nodes in a cloud datacenter so

that the applications can query and analyze the data very

quickly and cost-effectively. To address these challenges, we

first index the data based on a quad-tree, which is simpler

compared with the R-tree index(Eldawy and Mokbel, 2013).

This allows to efficiently filter the spatial data that are not

relevant for the query, thereby improving the query

performance and efficiency. We conduct two experiments on

our cluster consisting of 20 nodes to validate the efficiency of

our algorithm and the results show that our algorithm is

efficient and reduces the job execution time significantly.

The rest of the paper is organized as follows. Section 2 reviews

the related work. Section 3 describes the idea of our

MapReduce-based polygon retrieval algorithm. The

experimental results are showed in Section 4. The conclusion of

our work is discussed in Section 5.

2. RELATED WORKS

Polygon retrieval is a common operation needed in a diverse

number of GIS applications. Willard (Willard, 1982) was the

first one who defined the polygon retrieval problem formally

and proposed a polygon retrieval algorithm with time

complexity. To speed up this performance, efficient algorithms

have been proposed (Mark de Berg, 2008; Paterson and Frances

Yao, 1986; Sioutas et al., 2008; Tung and King, 2000). These

sequential algorithms work well under certain conditions,

however, as the terrain datasets are increasingly becoming very

large, these algorithms fail to meet the demand for real-time

response. As cloud computing has emerged to be an effective

and promising solution for both compute- and data-intensive

geo-computation, the work in (Karimi et al., 2011) explored the

feasibility of using Google App Engine, the cloud computing

technology by Google, to process terrain data, usually in

triangulated irregular network (TIN) form.

Considering Hadoop has become the defacto standard for

distributed computation on a large scale, some recent works

have developed several MapReduce-based algorithms for geo-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-51-2015

51

computation. Puri et al. (Puri et al., 2013) proposed and

implemented a MapReduce algorithm for distributed polygon

overlay computation in Hadoop. Ji et al. (Ji et al., 2012)

presented MapReduce-based approaches that construct inverted

grid index and process kNN query over large spatial datasets.

Akdogan et al. (Akdogan et al., 2010) created a unique spatial

index, Voronoi diagram, for given points in 2D space which

enabled efficient processing of a wide range of geospatial

queries such as RNN, MaxRNN and kNN, with the MapReduce

programming model. Hadoop-GIS (Wang et al., 2011) and

Spatial-Hadoop (Eldawy et al., 2013) are two scalable and high-

performance spatial data processing systems for running large-

scale spatial queries in Hadoop. These systems provide support

for some fundamental spatial queries like minimal bounding

box query, but they do not directly support polygon retrieval

operation addressed in this work.

3. MAPREDUCE-BASED POLYGON RETRIEVAL

ALGORITHM

In this section, we discuss our proposed MapReduce-based

distributed polygon retrieval algorithm. Our algorithm is

composed of two parts: (1) using a quad-tree to index the terrain

data and (2) organizing the terrain datasets based on the quad-

tree prefix to minimize the IO load.

To accelerate the processing of terrain data, we first divide the

entire space based on a complete quad-tree. Compared with

other spatial indexing techniques, quad-tree has several

advantages for polygon retrieval. One such advantage is that we

can directly partition the space into four sub spaces recursively.

In addition, with the quad-tree indexing, the topological relation

among the terrain data and the query area can be inferred from

the indices’ prefix directly. The key idea here is that if a grid

cell is within a query area, then all its sub grids are also

guaranteed to be within the query area. In other words, if the

prefix of one spatial object’s quad-tree index exists in the

intersecting set, then that object is guaranteed to be within the

query area. This property helps avoid the t ime -consuming

point-in-polygon computation in the map phase enabling the

MapReduce jobs to complete significantly faster.

To further increase query efficiency, we use a prefix tree to

organize the prefix of all the grid entries that interact with the

query area so that the query time is reduced to where k is

the length of the index prefix. A prefix tree, also called radix

tree or trie, is an ordered tree data structure that is used to store

a dynamic set or associative array where the keys are usually

strings(Wikipedia). The idea behind a prefix tree is that all

strings that share a common prefix inherit a common node.

Thus, with our prefix tree optimization, testing a prefix of a

quad-tree index in a given dataset can be accomplished in just

O(k) time.

For implementation, in the pre-processing stage, we first

consider the coarse-grained grid cells and recursively test

whether they overlap with the query area. Once a grid cell

intersects the query area, we test the corresponding sub-grid

cells unless we are at the deepest level of the quad-tree. If

the grid cell is within the query area, we stop subdividing

the grid cell and insert its index into the prefix tree. If the

grid cell is outside the query area, we just ignore it. From the

perspective of prefix tree, if the prefix of a quad-tree index

(but not whole index) ends in a leaf node, it means that the

corresponding spatial elements are within the query area.

After the prefix tree is created in the pre-processing stage, it is

effectively used in the map function. When each mapper

receives a spatial element record, the relation between the

spatial record and the query area is inferred based on the

prefix tree created in the pre-processing phase.

Finally, our quad-tree prefix-based spatial file filtering strategy

tries to read in only the necessary spatial data rather than

scanning the whole dataset stored in HDFS. Similar to the

idea of using the prefix tree to organize the quad tree indices,

we separate the spatial data files into fairly smaller files such

that each file shares the same prefix. After we organize the

terrain file in this manner, we use it in the file filtering stage

which scans only the required records to filter those files that

are outside the query area which results in the minimum

amount of spatial data needed to be processed.

4. EXPERIMENT

In this section, we present the experimental evaluation of our

distributed polygon retrieval algorithm. We first introduce the

dataset and the computing environment used in the experiment.

We then evaluate and compare the proposed approach with

existing solutions.

4.1 Dataset and Experiment Environment

There are several data structures to represent the terrain surfaces,

two common examples are digital elevation model (DEM) and

TIN. The latter (TIN), which is based on vector model, is

widely used in many applications. It consists of irregularly

distributed nodes and lines arranged in a network of non-

overlapping triangles. In our experiment we used TIN datasets.

TIN requires considerably a large storage capacity as it can

be used to represent surfaces with much higher resolution

and detail.

For our experiments, we used the TIN data of Pittsburgh,

which is originally divided into 5*5 equally sized grid cells

and each grid cell represents a terrain of 10000 metes *

10000 meters. There are 3 million points and 6 million

triangles in each grid cell and the size of each grid’s TIN file

is approximately 500 MB. We conducted our experiments on

a cluster of 20 virtual machines created by OpenStack hosted

on a 5-node experimental cluster. Each server in the cluster

has an Intel Xeon 2.2GHz 4 Core with 16 GB RAM and 1

TB hard drive at 7200 rpm. Each virtual machine in our setup

has 1 VCPU with 2 GB RAM and 20 GB hard drive with

Ubuntu Server 12.04 (32 bit).

4.2 Algorithm Efficiency

To demonstrate the time performance of the polygon

retrieval algorithm in relation to the query area size, we

generated a polygon area for each query randomly. We

compared our results with the Spatial-Hadoop(Eldawy et al.,

2013) as the benchmark. Since Spatial-Hadoop does not provide

support for polygon retrieval in the TIN data format directly,

we have modified their interfaces and executed the polygon

retrieval operation as suggested in the Spatial Hadoop

tutorial(SpatialHadoop). Table 1 shows the relationship

between the time performance of the algorithm and the

polygon query area on our cluster. From the table, i t c a n

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-51-2015

52

b e s e e n that as the query area becomes larger, the time

performance generally increases. This is due to the increased

amount of TIN data that needs t o b e processed in the map

and reduce phases, but the trend is not based on an strict

increasing function since the query shape is irregular, and the

spatial data are processed by the predefined unit of grid cell.

From the result, we also infer that our algorithm on an average

runs 25% faster than the existing technique. This is partly due to

the fact that our algorithm significantly avoids the geometry

floating point computation in the map phase, especially when

the query area is not very large. Therefore, when the query

area becomes larger, the I/O time dominates the CPU time

and hence the CPU time savings become less significant.

Query

Area()

Time(ms) –

Proposed

Algorithm

Time(ms) -

Spatial-

Hadoop

(Benchmark)

6.78e+5 14659 40996

3.45e+6 34127 44302

5.26e+6 37608 50487

9.88e+6 37995 51276

1.19e+7 38217 50569

2.16e+7 39773 53906

2.48e+7 37469 54612

Table 1. The query time vs. query area

4.3 Scalability

We next evaluate the effectiveness of our polygon retrieval

algorithm by varying the size of the Hadoop cluster in terms of

the number of VMs such as 5, 10, 20. For this experiment, we

used the random query shapes generated previously and ran

queries on different cluster sizes. The result is in Table 2. From

Table 2 we can find that overall our proposed technique scales

well and showed a significant reduction in job execution time

as the number of nodes in the Hadoop cluster increase.

Query

Area()

Time(ms) –

VM Size 5

Time(ms) –

VM Size 10

Time(ms) –

VM Size 20

6.78e+5 19956 18552 14659

3.45e+6 39776 37893 34127

5.26e+6 44526 39248 37608

9.88e+6 43099 40543 37995

1.19e+7 44447 41854 38217

2.16e+7 59872 43893 39773

2.48e+7 58205 42098 37469

Table 2. The query time under different query area and cluster

size

5. CONCLUSION

In this paper we presented a distributed polygon retrieval

algorithm based on MapReduce. We apply two optimization

strategies to reduce the CPU and IO loads of polygon retrieval

by using a quad-tree to index the terrain data and organizing the

terrain data into small files based on the quad-tree prefix. The

experiment results show that our approach achieves high

efficiency and outperforms existing solutions.

REFERENCES

Akdogan, A., Demiryurek, U., Banaei-Kashani, F., Shahabi, C.,

2010. Voronoi-based geospatial query processing with

mapreduce, Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International Conference on.

IEEE, pp. 9-16.

Eldawy, A., Li, Y., Mokbel, M.F., Janardan, R., 2013.

CG_Hadoop: computational geometry in MapReduce,

Proceedings of the 21st ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems.

ACM, pp. 284-293.

Eldawy, A., Mokbel, M.F., 2013. A demonstration of

SpatialHadoop: an efficient mapreduce framework for spatial

data. Proceedings of the VLDB Endowment 6, 1230-1233.

Ji, C., Dong, T., Li, Y., Shen, Y., Li, K., Qiu, W., Qu, W., Guo,

M., 2012. Inverted grid-based knn query processing with

mapreduce, ChinaGrid Annual Conference (ChinaGrid), 2012

Seventh. IEEE, pp. 25-32.

Karimi, H.A., Roongpiboonsopit, D., Wang, H., 2011.

Exploring Real‐Time Geoprocessing in Cloud Computing:

Navigation Services Case Study. Transactions in GIS 15, 613-

633.

Mark de Berg, O.C., Marc van Kreveld, Mark Overmars, 2008.

Simplex Range Searching, Computational Geometry, 3 ed.

Springer Berlin Heidelberg, pp. 335-353.

Paterson, M.S., Frances Yao, F., 1986. Point retrieval for

polygons. Journal of Algorithms 7, 441-447.

Puri, S., Agarwal, D., He, X., Prasad, S.K., 2013. MapReduce

algorithms for GIS polygonal overlay processing, Parallel and

Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2013 IEEE 27th International. IEEE, pp. 1009-

1016.

Sioutas, S., Sofotassios, D., Tsichlas, K., Sotiropoulos, D.,

Vlamos, P., 2008. Canonical polygon queries on the plane: A

new approach. arXiv preprint arXiv:0805.2681.

SpatialHadoop, SpatialHadoop, Extensible operations.

Tung, L.H., King, I., 2000. A two-stage framework for polygon

retrieval. Multimedia Tools and Applications 11, 235-255.

Wang, F., Lee, R., Liu, Q., Aji, A., Zhang, X., Saltz, J., 2011.

Hadoop-gis: A high performance query system for analytical

medical imaging with mapreduce. Technical report, Emory

University.

Wikipedia, Trie.

Willard, D.E., 1982. Polygon retrieval. SIAM Journal on

Computing 11, 149-165.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-51-2015

53

