
* Corresponding author

A HADOOP-BASED DISTRIBUTED FRAMEWORK FOR EFFICIENT MANAGING AND
PROCESSING BIG REMOTE SENSING IMAGES

C. Wanga,b

, F. Hub,*
,X. Hua

, S. Zhaoc
, W. Wena, C. Yangb

a Hainan Geomatic Center, National Administration of Surveying, Mapping and Geoinformation of China, HaiKou, HaiNan, 570203,
China – (cx8989, huxingshu)@163.com, 23327947@qq.com

b Department of Geography and GeoInformation Science and Center for Intelligent Spatial Computing, George Mason University,
Fairfax, VA, 22030-4444, USA – (fhu, cyang3)@gmu.edu

c The 4th Institute of Photogrammetry and Remote Sensing, National Administration of Surveying, Mapping and Geoinformation of
China, HaiKou, HaiNan, 570203, China - hnchj@sbsm.gov.cn

KEY WORDS: Remote Sensing, Image Processing, HDFS, MapReduce, GIS, Parallel Computing

ABSTRACT:

Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping,
environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage,
query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed
to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly
fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large
image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo
toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The
experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.

1.! INTRODUCTION

Big Data, referring to the enormous volume, velocity, and variety
of data (NIST Cloud/BigData Workshop, 2014), has become one
of the biggest technology shifts in in the 21st century
(Mayer-Schönberger and Cukier, 2013). Through remote sensing,
various sensors from airborne and satellite platforms are
producing huge volumes of remote sensing images for mapping,
environmental monitoring, disaster management, military
intelligence, and other applications. There are many mature
software developed to process RS images in personal computers,
such as Envi and Erdas. However, it is infeasible to process
huge volumes of RS images in a personal computer due to the
limitation of hardware resources and the tolerance of time
consuming.

To handle the data- and computing- intensive issues in
processing RS images, the techniques of parallel computing are
applied. High performance computing is a new technology to do
the parallel computing which make full use of the CPU’s
computing resource, but it is not suitable for the jobs with large
I/O consuming. The RS image processing reads these data into
memory first for further analysis, so the data I/O has become the
bottleneck for HPC to process RS images.

Hadoop is an open-source software framework for distributed
storage and distributed processing of very large data sets on
computer clusters built from commodity hardware. It is
composed of Hadoop Common, Hadoop Distributed File System,
Hadoop YARN and Hadoop MapReduce. HDFS is an open
source implementation of the Google file system (GFS).
Although it appears as an ordinary file system, its storage is
actually distributed among different data nodes in different
clusters. MapReduce, a parallel data processing framework
pioneered by Google, has been proven to be effective when it
comes to handling big data challenges. As an open source
implementation of MapReduce, Hadoop (White 2009) has

gained increasing popularity in handling big data issues over the
past several years.

There are many RS image processing libraries available on the
Internet for further development by users. Orfeo ToolBox (OTB)
is an open-source C++ library for remote sensing image
processing, which provides affluent image processing functions,
but it is targeted for a single PC, not for the parallel computing
on a cluster.

To address the challenges posed by processing big RS data, this
paper proposes a Hadoop-based distributed framework to
efficiently manage and process big RS image data. This
framework distributes RS images among the nodes in a cluster.
By integrating the functions in OTB libraries into MapReduce,
these RS images can be directly processed in parallel.

2.! RELATED WORKS

A variety of research have been recently conducted on
incorporating high-performance computing (HPC) techniques
and practices into remote sensing missions (Lee, Gasster et al.
2011). There is much more information hidden in the remote
sensing data than that can be seen, and extracting that
information turns out to be a major computational challenge. For
this purpose, HPC infrastructure such as clusters, distributed
networks or specialized hardware devices, for example, field
programmable gate arrays (FPGAs) and commodity graphic
processing units (GPUs)(Mather and Koch 2011; Plaza, Du et al.
2011), provide important architectural developments to
accelerate the computations related to information extraction in
remote sensing (Lee, Gasster et al. 2011).

Golpayegani and Halem proposed a parallel computing
framework that is well suited for a variety of service oriented
science applications, in particular for satellite data processing
(Golpayegani and Halem 2009). Lv, Z., et al. (Lv, Z., Y. Hu, et
al. 2010) used map/reduce architecture to implement parallel

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-63-2015

63

K-means clustering algorithm for remote sensing images (Lv, Hu
et al. 2010). Li Bo., et al (Li, B., H. Zhao, et al. 2010) proposed a
parallel ISODATA clustering algorithm on Map Reduce that is
easy to use (Li, Zhao et al. 2010). Almeer tested 7 functions
implemented in Java in Hadoop MapReduce environment
(Almeer 2012), but the images have to be resized before
processing to fit the Java heap size limitation. Kocakulak and
Temizel implemented a MapReduce solution using Hadoop for
ballistic image comparison (Kocakulak and Temizel 2011).

Other Researchers developed the parallel RS image processing
algorithms with MPI. Generally, writing programs in MPI
requires sophisticated skills for the users. With the increasing of
image data, the parallel algorithms conducted by MapReduce
exhibit superiority over a single machine implementation.
Moreover, by using higher performance hardware the superiority
of the MapReduce algorithm was better reflected. In the research
conducted on image processing in the Hadoop environment,
which is a relatively new field started for working on satellite
images, the number of successful approaches has been few
(Almeer 2012). Therefore, we decide to integrate OTB image
processing tools with MapReduce to achieve efficient distributed
storage and processing big RS image data.

3.! SYSTEM DESIGN

This proposed framework is composed of two parts: data
management and data processing as shown in Figure 1. In the
data management part, the data can be directly fetched from
other data platforms, and then stored in HDFS. In the data
processing part, the input RS images will be assigned to
reasonable number of Map tasks considering data locality and
workload balancing. The OTB functions are embedded into
MapReduce to directly process the data in each Map task. In the
Reduce time period, the status of each Map task is collected to
generate a log file. With the log file, we can monitor the status
of MapReduce jobs.

3.1 Data Management

In order to help users to transfer such big data into HDFS, a data
fetching module is developed. The data published in other data
platforms can be directly downloaded into HDFS with
customized configuration parameters, such as destination path,
block size, and replication factor.

Image1'Band1

Image1'Band2

...

Image1'BandN

Image2'Band1

Image2'Band2

...

Image2'BandN

ImageN'Band1

ImageN'Band2

...

ImageN'BandN

...

HDFS

Splited''Band

Mapper

OTB'Processing

Result'Band

Reducer
Image1'Band1

Image1'Band2

...

Image1'BandN

Image2'Band1

Image2'Band2

...

Image2'BandN

ImageN'Band1

ImageN'Band2

...

ImageN'BandN

...

Result'Images

Image1'

Image2

...

ImageN

Remote'sensing'
Images

Source'Data

Data'
Fetching

OutputInput

Figure 1 The architecture of the proposed framework

The traditional remote sensing data processing algorithms focus
on the image file level, seldom on pixel level. However, in
Hadoop computing architecture, structured image files, such as
geotiff files, will be split into multiple blocks and stored in
different data nodes by block size. It would lead to two
problems:1) part of the original files cannot be recognized

without the splitting metadata; 2) regrouping of the data
requires excessive disk and network load which will affect the
efficiency. Algorithms for reading and regrouping image binary
data are also needed, which will add the complexity of the
system development and finally affect the efficiency. To solve
these problems, we set the block size parameter in Hadoop as
big as the images when fetching data, which will keep each file
from being divided.

3.2 Data Processing

3.2.1 Data Partition Period: To achieve parallel computation
on input data, MapReduce partitions the whole dataset into
many logical splits, and then assigns these splits to
corresponding nodes to read and process the data in parallel.
How these splits are partitioned and assigned directly impacts
data locality, which makes a dramatic difference on the system
performance. Considering the data locality and workload
balancing, we customize FileInputFormat class. In
FileInputFormat class, each band image will create a logic split,
which will then be assigned to the computing node where the
file is stored on. When fetching data, these image files have
been evenly distributed among the cluster, so each computing
node will be assigned a similar number of splits, which keeps
the workload balanced among the cluster.

3.2.2 Map Period: After each computing node receives the
assigned splits, it will launch a Map task for each split. In the
Map task, we will first get the information delivered by the split,
such as input file path, the image processing operation required
by users and the file path for results. Then call the
corresponding functions provided by OTB library to process the
referred images. After the image processing, the result image
will be directly stored in HDFS according to the file path
referred by users. In addition, a status report for each image
processing task will be recorded, and delivered to the next
Reduce period.

3.2.3 Reduce Period: The Reduce task will collect all the status
reports from the Map period, then analysis which image
processing tasks succeed, and which fail. For the failed tasks, it
will launch a new MapReduce job.

4.! EVALUATION

4.1 Cluster Environment

A cluster with five high performance PCs has been setup for the
experiments. The cluster is equipped with Hadoop 2.6.0 and
consisted of a NameNode and four DataNodes. OTB package is
installed on each DataNode. Both NameNode and DataNode
use 8 CPU-cores (3.60GHz), 16 GB of RAM and 256 GB of
SSD storage. The Name Node and all DataNodes are connected
by 1 gigabit switch. Ubuntu 14.04, Hadoop 2.6 and Sun Java
8u45 are installed on both NameNode and DataNodes. Table 1
and Table 2 show the PC and cluster hardware configuration,
while Tables 3 shows the cluster software configurations,
respectively.

PC Number Details
Personal
Computer

1 8 CPU-cores (3.60GHz), 16
GB RAM, 1 Gigabit Ethernet

Table 1. Single machine configuration

Name Number Details
Name Node 1

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-63-2015

64

Data Node 4
Network - 1 Gigabytes Switch
CPU 1 8 CPU-cores (3.60GHz)
RAM 16 GB
Storage 256 SSD disk

Table 2. Cluster hardware configuration

Name Version Details
Hadoop 2.6 Installed on each node
Ubuntu
Server

14.04

Java SDK 8U45

OTB 5.0 Provides RS image processing
tools

Table 3. Cluster Software Configuration

4.2 Data Source

The experiment data are TM satellite images generated by
Landsat satellites, which are fetched from USGS website. They
are consisted of 260 image files, each of which has 8071 × 7021
pixels resolution in TIF format. The spatial resolution is 30.0
meters per pixel, and we divide the dataset into 7 groups, and
each group has 4, 8,16,32,64,128,256 image files (Table 4).
Then we choose the BandMath tool in the OTB to apply a
mathematical operation to the input image files to test the rum
time.

Table 4: Data Groups for Test
Group File Number File Size (MB)
G1 4 220

G2 8 440

G3 16 880

G4 32 1760

G5 64 3520

G6 128 7040

G7 256 14080

4.3 Experiment Results

To compare the performance of the parallel mode and the
sequence mode, two scenarios are designed. The first scenario is
to run the referred image processing algorithm on a single node.
The second scenario is to execute the referred algorithm on the
cluster. In each scenario, 7 different data sizes are used for testing.
To reduce the variability and measurement error, we conducted
the operation ten times and took the average values. The average
run-time for two scenarios are shown in Figure 2.

The figure shows that when the size of dataset is less than 1760
MB, the run-time for the PC is less than that for the cluster. That
is because Hadoop has its own overhead to run a MapReduce job,
such as launching Hadoop client, scheduling map tasks and so on.
However, when the dataset’s size is larger than 1760 MB, the
run-time for the cluster is obviously less than that for the PC.
Therefore, the proposed framework is better suited for large data
size than for small data size when a computing intensive
operation is required.

Figure 2. Time consumption for PC and cluster with

different image size

5.! CONCLUSION & DISCUSSION

In this paper, a Hadoop-based distributed framework is
proposed to efficiently manage and process big RS image data.
By integrating OTB RS image processing tools into MapReduce,
this framework provides various parallel image processing
operations. The experiment result shows that the proposed
framework can reduce the run time when dealing with big data
volume. In the near future, an algorithm for reading and
regrouping image binary block data will be developed to
support file split for addressing the special requirement for the
block size, and achieve a better parallelism.

ACKNOWLEDGEMENTS

This work is supported by NASA HEC and NCCS, and NSF
Spatiotemporal Innovation Center (IIP-1338925). The authors
are grateful to their colleagues for their constructive comments
and suggestions in writing this article.

REFERENCES

Almeer, M. H., 2012. Cloud hadoop map reduce for remote
sensing image analysis. Journal of Emerging Trends in
Computing and Information Sciences 3(4): 637-644.

Golpayegani, N. and M. Halem, 2009. Cloud computing for
satellite data processing on high end compute clusters. Cloud
Computing, 2009. CLOUD'09. IEEE International Conference
on, IEEE.

Kocakulak, H. and T. T. Temizel, 2011. A Hadoop solution for
ballistic image analysis and recognition. High Performance
Computing and Simulation (HPCS), 2011 International
Conference on, IEEE.

Lee, C., S. D. Gasster, et al., 2011. Recent developments in high
performance computing for remote sensing: A review. Selected
Topics in Applied Earth Observations and Remote Sensing,
IEEE Journal of 4(3): 508-527.

Li, B., H. Zhao, et al., 2010. Parallel ISODATA clustering of
remote sensing images based on MapReduce. Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC),
2010 International Conference on, IEEE.

Lv, Z., Y. Hu, et al., 2010. Parallel K-means clustering of
remote sensing images based on mapreduce. Web Information
Systems and Mining, Springer: 162-170.

0
200
400
600
800

1000

Ti
m

e (
S)

Image Size(MB)

The run-time for different data size

PC

Cluster

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-63-2015

65

Mather, P. and M. Koch, 2011. Computer processing of
remotely-sensed images: an introduction, John Wiley & Sons.

Mayer-Schönberger, V., & Cukier, K., 2013. Big data: A
revolution that will transform how we live, work, and think.
Houghton Mifflin Harcourt

Plaza, A., Q. Du, et al., 2011. High performance computing for
hyperspectral remote sensing. Selected Topics in Applied Earth
Observations and Remote Sensing, IEEE Journal of 4(3):
528-544.

Apache Hadoop, 2013, Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/wiki/Apache_Hadoop (15 June. 2015)

White, T., 2009. Hadoop: the definitive guide: the definitive
guide. O'Reilly Media, Inc., pp. 19-20

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-W2-63-2015

66

