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ABSTRACT:  
 
Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, 
environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, 
query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed 
to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly 
fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large 
image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo 
toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The 
experiment results show that the proposed framework can efficiently manage and process such big remote sensing data. 
 
 
 

1.! INTRODUCTION 
 
Big Data, referring to the enormous volume, velocity, and variety 
of data (NIST Cloud/BigData Workshop, 2014), has become one 
of the biggest technology shifts in in the 21st century 
(Mayer-Schönberger and Cukier, 2013). Through remote sensing, 
various sensors from airborne and satellite platforms are 
producing huge volumes of remote sensing images for mapping, 
environmental monitoring, disaster management, military 
intelligence, and other applications. There are many mature 
software developed to process RS images in personal computers, 
such as Envi and Erdas. However, it is infeasible to process 
huge volumes of RS images in a personal computer due to the 
limitation of hardware resources and the tolerance of time 
consuming.  
 
To handle the data- and computing- intensive issues in 
processing RS images, the techniques of parallel computing are 
applied. High performance computing is a new technology to do 
the parallel computing which make full use of the CPU’s 
computing resource, but it is not suitable for the jobs with large 
I/O consuming. The RS image processing reads these data into 
memory first for further analysis, so the data I/O has become the 
bottleneck for HPC to process RS images.  
 
Hadoop is an open-source software framework for distributed 
storage and distributed processing of very large data sets on 
computer clusters built from commodity hardware. It is 
composed of Hadoop Common, Hadoop Distributed File System, 
Hadoop YARN and Hadoop MapReduce. HDFS is an open 
source implementation of the Google file system (GFS). 
Although it appears as an ordinary file system, its storage is 
actually distributed among different data nodes in different 
clusters. MapReduce, a parallel data processing framework 
pioneered by Google, has been proven to be effective when it 
comes to handling big data challenges. As an open source 
implementation of MapReduce, Hadoop (White 2009) has 

gained increasing popularity in handling big data issues over the 
past several years. 
 
There are many RS image processing libraries available on the 
Internet for further development by users. Orfeo ToolBox (OTB) 
is an open-source C++ library for remote sensing image 
processing, which provides affluent image processing functions, 
but it is targeted for a single PC, not for the parallel computing 
on a cluster.  
 
To address the challenges posed by processing big RS data, this 
paper proposes a Hadoop-based distributed framework to 
efficiently manage and process big RS image data. This 
framework distributes RS images among the nodes in a cluster. 
By integrating the functions in OTB libraries into MapReduce, 
these RS images can be directly processed in parallel. 
 

2.! RELATED WORKS 
 
A variety of research have been recently conducted on 
incorporating high-performance computing (HPC) techniques 
and practices into remote sensing missions (Lee, Gasster et al. 
2011). There is much more information hidden in the remote 
sensing data than that can be seen, and extracting that 
information turns out to be a major computational challenge. For 
this purpose, HPC infrastructure such as clusters, distributed 
networks or specialized hardware devices, for example, field 
programmable gate arrays (FPGAs) and commodity graphic 
processing units (GPUs)(Mather and Koch 2011; Plaza, Du et al. 
2011), provide important architectural developments to 
accelerate the computations related to information extraction in 
remote sensing (Lee, Gasster et al. 2011). 
 
Golpayegani and Halem proposed a parallel computing 
framework that is well suited for a variety of service oriented 
science applications, in particular for satellite data processing 
(Golpayegani and Halem 2009). Lv, Z., et al. (Lv, Z., Y. Hu, et 
al. 2010) used map/reduce architecture to implement parallel 
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K-means clustering algorithm for remote sensing images (Lv, Hu 
et al. 2010). Li Bo., et al (Li, B., H. Zhao, et al. 2010) proposed a 
parallel ISODATA clustering algorithm on Map Reduce that is 
easy to use (Li, Zhao et al. 2010). Almeer tested 7 functions 
implemented in Java in Hadoop MapReduce environment 
(Almeer 2012), but the images have to be resized before 
processing to fit the Java heap size limitation. Kocakulak and 
Temizel implemented a MapReduce solution using Hadoop for 
ballistic image comparison (Kocakulak and Temizel 2011). 
 
Other Researchers developed the parallel RS image processing 
algorithms with MPI. Generally, writing programs in MPI 
requires sophisticated skills for the users. With the increasing of 
image data, the parallel algorithms conducted by MapReduce 
exhibit superiority over a single machine implementation. 
Moreover, by using higher performance hardware the superiority 
of the MapReduce algorithm was better reflected. In the research 
conducted on image processing in the Hadoop environment, 
which is a relatively new field started for working on satellite 
images, the number of successful  approaches has been few 
(Almeer 2012). Therefore, we decide to integrate OTB image 
processing tools with MapReduce to achieve efficient distributed 
storage and processing big RS image data. 
 

3.! SYSTEM DESIGN 
 
This proposed framework is composed of two parts: data 
management and data processing as shown in Figure 1. In the 
data management part, the data can be directly fetched from 
other data platforms, and then stored in HDFS. In the data 
processing part, the input RS images will be assigned to 
reasonable number of Map tasks considering data locality and 
workload balancing. The OTB functions are embedded into 
MapReduce to directly process the data in each Map task. In the 
Reduce time period, the status of each Map task is collected to 
generate a log file. With the log file, we can monitor the status 
of MapReduce jobs. 
 
3.1 Data Management 
 
In order to help users to transfer such big data into HDFS, a data 
fetching module is developed. The data published in other data 
platforms can be directly downloaded into HDFS with 
customized configuration parameters, such as destination path, 
block size, and replication factor. 
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Figure 1 The architecture of the proposed framework 
 

The traditional remote sensing data processing algorithms focus 
on the image file level, seldom on pixel level. However, in 
Hadoop computing architecture, structured image files, such as 
geotiff files, will be split into multiple blocks and stored in 
different data nodes by block size. It would lead to two 
problems:1) part of the original files cannot be recognized 

without the splitting metadata; 2) regrouping of the data 
requires excessive disk and network load which will affect the 
efficiency. Algorithms for reading and regrouping image binary 
data are also needed, which will add the complexity of the 
system development and finally affect the efficiency. To solve 
these problems, we set the block size parameter in Hadoop as 
big as the images when fetching data, which will keep each file 
from being divided.  
 
3.2 Data Processing 
 
3.2.1 Data Partition Period: To achieve parallel computation 
on input data, MapReduce partitions the whole dataset into 
many logical splits, and then assigns these splits to 
corresponding nodes to read and process the data in parallel. 
How these splits are partitioned and assigned directly impacts 
data locality, which makes a dramatic difference on the system 
performance. Considering the data locality and workload 
balancing, we customize FileInputFormat class. In 
FileInputFormat class, each band image will create a logic split, 
which will then be assigned to the computing node where the 
file is stored on. When fetching data, these image files have 
been evenly distributed among the cluster, so each computing 
node will be assigned a similar number of splits, which keeps 
the workload balanced among the cluster. 
 
3.2.2 Map Period: After each computing node receives the 
assigned splits, it will launch a Map task for each split. In the 
Map task, we will first get the information delivered by the split, 
such as input file path, the image processing operation required 
by users and the file path for results. Then call the 
corresponding functions provided by OTB library to process the 
referred images. After the image processing, the result image 
will be directly stored in HDFS according to the file path 
referred by users. In addition, a status report for each image 
processing task will be recorded, and delivered to the next 
Reduce period. 
 
3.2.3 Reduce Period: The Reduce task will collect all the status 
reports from the Map period, then analysis which image 
processing tasks succeed, and which fail. For the failed tasks, it 
will launch a new MapReduce job.  
 

4.! EVALUATION 
 
4.1 Cluster Environment  
 
A cluster with five high performance PCs has been setup for the 
experiments. The cluster is equipped with Hadoop 2.6.0 and 
consisted of a NameNode and four DataNodes. OTB package is 
installed on each DataNode. Both NameNode and DataNode 
use 8 CPU-cores (3.60GHz), 16 GB of RAM and 256 GB of 
SSD storage. The Name Node and all DataNodes are connected 
by 1 gigabit switch. Ubuntu 14.04, Hadoop 2.6 and Sun Java 
8u45 are installed on both NameNode and DataNodes. Table 1 
and Table 2 show the PC and cluster hardware configuration, 
while Tables 3 shows the cluster software configurations, 
respectively. 

 
PC Number Details 
Personal 
Computer 

1 8 CPU-cores (3.60GHz), 16 
GB RAM, 1 Gigabit Ethernet 

Table 1. Single machine configuration 
 

Name Number Details 
Name Node  1  
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Data Node  4  
Network - 1 Gigabytes Switch 
CPU 1 8 CPU-cores (3.60GHz) 
RAM 16 GB 
Storage 256 SSD disk 

Table 2. Cluster hardware configuration 
 

Name Version Details 
Hadoop 2.6 Installed on each node 
Ubuntu 
Server 

14.04  

Java SDK 8U45  

OTB 5.0 Provides RS image processing 
tools 

Table 3. Cluster Software Configuration 
 

4.2 Data Source 
 
The experiment data are TM satellite images generated by 
Landsat satellites, which are fetched from USGS website. They 
are consisted of 260 image files, each of which has 8071 × 7021 
pixels resolution in TIF format. The spatial resolution is 30.0 
meters per pixel, and we divide the dataset into 7 groups, and 
each group has 4, 8,16,32,64,128,256 image files (Table 4). 
Then we choose the BandMath tool in the OTB to apply a 
mathematical operation to the input image files to test the rum 
time. 
 

Table 4: Data Groups for Test 
Group  File Number File Size (MB) 
G1 4 220 

G2 8 440 

G3 16 880 

G4 32 1760 

G5 64 3520 

G6 128 7040 

G7 256 14080 

 
4.3 Experiment Results 

 
To compare the performance of the parallel mode and the 
sequence mode, two scenarios are designed. The first scenario is 
to run the referred image processing algorithm on a single node. 
The second scenario is to execute the referred algorithm on the 
cluster. In each scenario, 7 different data sizes are used for testing. 
To reduce the variability and measurement error, we conducted 
the operation ten times and took the average values. The average 
run-time for two scenarios are shown in Figure 2.   
 
The figure shows that when the size of dataset is less than 1760 
MB, the run-time for the PC is less than that for the cluster. That 
is because Hadoop has its own overhead to run a MapReduce job, 
such as launching Hadoop client, scheduling map tasks and so on. 
However, when the dataset’s size is larger than 1760 MB, the 
run-time for the cluster is obviously less than that for the PC. 
Therefore, the proposed framework is better suited for large data 
size than for small data size when a computing intensive 
operation is required. 

 
Figure 2. Time consumption for PC and cluster with 

different image size 
 

5.! CONCLUSION & DISCUSSION 
 
In this paper, a Hadoop-based distributed framework is 
proposed to efficiently manage and process big RS image data. 
By integrating OTB RS image processing tools into MapReduce, 
this framework provides various parallel image processing 
operations. The experiment result shows that the proposed 
framework can reduce the run time when dealing with big data 
volume. In the near future, an algorithm for reading and 
regrouping image binary block data will be developed to 
support file split for addressing the special requirement for the 
block size, and achieve a better parallelism. 
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