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ABSTRACT: 

 

In this paper, we address outliers in spatiotemporal data streams obtained from sensors placed across geographically distributed 

locations. Outliers may appear in such sensor data due to various reasons such as instrumental error and environmental change. Real-

time detection of these outliers is essential to prevent propagation of errors in subsequent analyses and results. Incremental Principal 

Component Analysis (IPCA) is one possible approach for detecting outliers in such type of spatiotemporal data streams. IPCA has 

been widely used in many real-time applications such as credit card fraud detection, pattern recognition, and image analysis. 

However, the suitability of applying IPCA for outlier detection in spatiotemporal data streams is unknown and needs to be 

investigated. To fill this research gap, this paper contributes by presenting two new IPCA-based outlier detection methods and 

performing a comparative analysis with the existing IPCA-based outlier detection methods to assess their suitability for 

spatiotemporal sensor data streams. 
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1. INTRODUCTION  

Spatiotemporal data streams obtained from sensors placed 

across geographically distributed locations have been used in 

various applications such as environmental monitoring, object 

tracking and traffic monitoring (Gama and Gaber, 2007). A key 

challenge in such applications is that sensors may produce data 

streams at a very fast rate leading to numerous computational 

challenges (Aggarwal, 2013a). Typically, data collected from 

these sensors is sent to a central server through a 

communication network. Thus, such data is prone to outliers 

that can result from instrumental error, sudden environmental 

changes, and communication error. An Outlier in a dataset is 

defined as “a data point which is significantly different from 

other data points" (Barnett and Lewis, 1994). For any 

meaningful analysis of data, it is essential to detect these 

outliers in real-time. 

 

Various methods for outlier detection in spatiotemporal data 

have been presented in the literature (Hill and Minsker, 2010; 

O’Reilly et al., 2014; Zhang et al., 2010).  Most of these 

methods either do not work on streaming data or incur large 

computational cost. Recently, forecasting based outlier 

detection method has been proposed for spatiotemporal 

streaming data (Appice et al., 2014).  However, this method is 

not scalable due to large computational cost. A detailed survey 

on generic outlier detection techniques is beyond the scope of 

this paper. Interested readers can see (Aggarwal, 2013b; 

Chandola et al., 2009; Sadik and Gruenwald, 2013) for 

literature survey. In this work, we focus on Principal 

Component Analysis (PCA) based outlier detection methods.  

 

PCA is one of the most popular techniques for detecting outliers 

in various applications such as industrial processes (Li et al., 

2000), environmental sensors (Harkatet al., 2006; Harrou et 

al.,2013), distributed sensor networks (Chatzigiannakis and 

Papavassiliou, 2007), and high dimensional data (Ding and 

Kolaczyk, 2013). Most PCA-based models for outlier detection 

operate in batch mode (Chatzigiannakis and Papavassiliou, 

2007; Harrou et al., 2013; Harkat et al., 2006), where the model 

is first trained using training data and is then used to test the 

remaining data for outliers. As such, these models are time 

invariant. However, for streaming data, the following data 

characteristics may change with time (Li et al., 2000): (i) mean 

and covariance, and (ii) correlation structure which results in 

increase or decrease in number of principal components. The 

data which changes with time is also called “non-stationary 

data”. For the model to adapt to the change, it needs to be 

computed either at frequent intervals or when change occurs. 

Finding the correct time interval to avoid unnecessary 

computation or detecting the change is a challenging task. 

Another requirement is that the entire data needs to be stored 

for updating the model and model should be updated in real 

time. 

 

To address these challenges, several Incremental PCA (IPCA) 

methods have been proposed (Li et al., 2000; Papadimitriou et 

al., 2005; Zhao and Yuen, 2006). These variants update the 

models incrementally and require minimal storage. However, 

most of these IPCA models have been used either for finding 

outliers in non-spatiotemporal data or for finding correlation 

among the spatiotemporal data streams. Hence, there is a need 

to evaluate the suitability of IPCA-based outlier detection 

methods for spatiotemporal data streams. In this article, we 

propose two new IPCA-based outlier detection methods by 

extending the existing batch PCA-based outlier detection 

methods and compare them with the existing IPCA-based 

outlier detection methods (Li et al., 2000) to assess their 

suitability for spatiotemporal sensor data streams. As part of the 

evaluation, we apply these methods to two environmental 
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datasets each consisting of a set of geographically distributed 

sensors. We introduce various point outliers in these datasets 

and compare the performances of the methods in terms of rate 

of correct outlier detection as well as false alarm (wrongly 

identified outliers) rates. The time complexity of these methods 

is also analysed. Based on these comparisons, an appropriate 

IPCA method is recommended for detecting outliers in 

spatiotemporal datasets.  

 

The rest of the paper is structured as follows. Section 2 

describes PCA and IPCA methods. Section 3 discusses outlier 

detection methods based on PCA. Problem definition, the 

proposed methods and comparative framework are described in 

Section 4. Section 5 discusses the comparison experiments and 

the results. Conclusions are presented in Section 6. 

 

 

2. PCA AND INCREMENTAL PCA METHODS 

2.1 PCA 

PCA is a statistical multivariate analysis technique which 

captures the correlation among variables and represents the data 

into a new set of few variables capturing the maximum 

variance. These variables are denoted as principal components 

(PCs) and each PC is a linear combination of original variables 

(Jolliffe, 2002). The vector of coefficients of this linear 

combination defines the corresponding principal direction. PCA 

can be formulated as an optimization problem which minimizes 

the reconstruction error as: 

 

 
min

𝑃n×k,∥𝑃∥=
∑ ∥ (𝑥𝑖 − 𝜇) − 𝑃𝑃𝑇(𝑥𝑖 − 𝜇) ∥2

𝑡

𝑖=1

 
 

(1) 

 

where 𝑥𝑖ℜ𝑛 is a vector of measurements at time 𝑖, 𝑡 is number 

of time points for which data is currently available, 𝑃ℜ𝑛×𝑘 is 

a matrix with its columns being the principal directions, 𝑘 is the 

number of PCs, and 𝜇 is the mean vector of the data.   

 

The data characteristics such as mean and correlation structure 

change with time due to the change in the environment. In such 

cases, principal directions and hence PCs need to be updated to 

adapt to the change in real time. Two popular updating methods 

are:  

 

 Batch mode: PCs are updated at either fixed time 

interval or when change is detected. This method 

requires: (a) storage of past data and (b) identification 

of a correct interval size at which such updates are 

performed. 
  Incremental mode: PCs are updated at each time 

instance. Unlike the batch methods, these methods do 

not require storage of the past data or determination 

of the interval size. As a result, this method is fast and 

preferred for streaming data. This method is denoted 

as Incremental PCA (IPCA) method. 

 

In this article, we focus on Incremental PCA as described 

below. 

 

2.2 Incremental PCA Methods  

Various incremental methods for computing PCs, when all the 

data is not simultaneously available, have been proposed (Li et 

al., 2000; Li, 2004; Zhao and Yuen, 2006; Weng et al., 2003; 

Papadimitriou et al., 2005). These can be categorized as 

covariance based and covariance free methods, and are 

summarized next. 

 

2.2.1 Covariance Based Method: In this method, PCs are 

updated at each time instance using updated covariance matrix. 

There are two approaches in using covariance matrix. In the 

first approach, data covariance matrix is used where initial 

covariance matrix is computed using training data (Li et al.,  

2000) and then it is updated at each time instance using current 

data sample. Then the updated covariance matrix is used in 

computing new PCs. A number of methods for detecting the 

number of PCs (𝑘) have been proposed (Li et al., 2000). The 

most popular method is cumulative percent variance (CPV) 

which measures the percent of variance captured by the 𝑘 PCs 

corresponding to 𝑘 largest eigen values. Efficient methods, such 

as Lanczos method (Golub and Van Loan, 1996), can be used 

for computing high PCs. High PCs and their respective eigen 

values are sufficient for detecting outliers (Li et al., 2000). The 

time complexity of Lanczos-based method is 𝑂(𝑛2𝑞), where 𝑛 

is the number of sensors, 𝑞 is the dimension of lanczos matrix 

and 𝑞 ≪ 𝑛. In this approach, previous PCs are not used in 

computing new PCs. 

 

In the second approach (Halla et al., 2002; Li, 2004), previous 

PCs and current data sample are used in computing a reduced 

covariance matrix, which in turn is used in computing new PCs. 

The advantage of this approach is that the size of covariance 

matrix is much smaller than the dimension of the data since 

only a few PCs are used. However, the main drawback with this 

approach is that the number of PCs always remains same and 

thus it cannot deal with the change in correlation structure of 

the data.   

 

We use the first approach for our comparison and denote it as 

COV. 

 

2.2.2 Covariance Free Method: A covariance free method 

has been proposed for computing PCs incrementally 

(Papadimitriou et al., 2005; Weng et al., 2003). This method 

updates the number of PCs as well as the principal directions 

guaranteeing that reconstruction error is predictably small.  

 

We use the approach given in (Papadimitriou et al., 2005) for 

our comparison and denote it as COVF. The time complexity of 

this method is 𝑂(𝑛𝑘), where 𝑘 is the number of PCs selected 

for PCA. 

 

 

3. OUTLIER DETECTION 

PCA-based methods to find outliers can be broadly categorised 

into statistics-based methods and oversampling methods.   

 

3.1 Statistics-Based Methods 

Statistics-based methods have been widely applied in detecting 

outliers in environmental data (Harkat et al., 2006; Harrou et 

al., 2013) and process monitoring (Li et al., 2000). The most 

popular statistics are: 

 

(a) Q-statistic: It is also known as squared prediction error or 

squared reconstruction error (SRE). It measures the amount of 

variance not captured by the current PC model for the current 

(at time 𝑡) sample 𝑥𝑡 and is computed as: 
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 𝑄𝑡 = 𝑥𝑡
𝑇( − 𝑃𝑡−1𝑃𝑡−1

𝑇 )𝑥𝑡 (2) 

 

where  𝑃𝑡−1 ∈ ℜ𝑛×𝑘  is a matrix of principal directions 

corresponding to 𝑘 high PCs at time 𝑡 − 1. The sample’s Q-

statistic is computed using the previous PCs and is compared to 

a threshold value (Li et al., 2000). This threshold is obtained 

analytically based on the distribution of the Q-statistic. If the 

error is above this threshold, then the current sample is 

considered as an outlier and is reported for further investigation.  

 

A threshold on SRE can also be computed using mean of 

previous SRE values (Chatzigiannakis and Papavassiliou, 

2007). We label this method as SRE method.  

 

(b) 𝑇2 Statistic: It is used to measure the variance captured in 

the current model and is defined as: 

 

 𝑇𝑡
2 = 𝑥𝑡

𝑇𝑃𝑡−1Λ𝑡−1
−1 𝑃𝑡−1

𝑇 𝑥𝑡 (3) 

 

where Λ𝑡−1 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑘) is the diagonal matrix of 

the 𝑘 largest eigen values at time 𝑡 − 1. Computation of this 

statistic also needs updated eigen values.  𝑇2 statistic has a chi-

squared distribution with 𝑘 degrees of freedom. The threshold 

value of  𝑇2 statistic is  𝜒𝛽
2(𝑘) for a given level of significance 

𝛽. A sample is considered to be an outlier if the value of  𝑇2 

statistic is more than the threshold value. 

 

For our comparison to be presented later on, we use Q-statistic 

for the COV method (denoted as COV-Q) as given in (Li et al., 

2000) and the SRE method for COVF method (denoted as 

COVF-SRE). To our knowledge, SRE method has been used 

with batch PCA only (Chatzigiannakis and Papavassiliou, 

2007); not in incremental mode. 

 

3.2 Oversampling 

In the oversampling method (Lee et al., 2013), the current 

sample is replicated many times and oversampled PCA is 

applied on all replicated data. The idea is to amplify the effect 

of an outlier by replicating the sample many times and then 

measure the variation in the first PC. This would make it easier 

to find outlier even for a large data set, but this method has not 

been proposed for IPCA.  

 

For our comparison, we modify the method to make it suitable 

for IPCA and use this method along with COVF for outlier 

detection. This method is denoted as COVF-Oversamp. 

 

 

4. PROBLEM DEFINITION AND METHOD 

In this article, we consider point outliers which are spikes in the 

sensor values at discrete points of time. The problem is defined 

as follows: given a collection of temporal streams obtained from 

a set of n sensors, placed across various geographical locations, 

the objective is to monitor the series and detect point outliers in 

real-time, i.e., upon arrival of data.   

 

We consider our dataset outliers free and insert various point 

outliers in the dataset. This will help us to know the places of 

point outliers. To compare the COV-Q, COVF-SRE and 

COVF-Oversamp methods, we use the following steps for each 

method: 

 

1. Compute data mean, PCs, number of PCs (𝑘), and 

threshold value for outlier detection using the first 

𝑛 + 1 data samples. For COV-Q, compute eigen 

values as well. 

2. For each sample 𝑥𝑡 =  [𝑥𝑡1 𝑥𝑡2  … 𝑥𝑡𝑛]𝑇 that arrives 

at time 𝑡 >  𝑛 + 1 

a. Subtract mean value from 𝑥𝑡 

b. Compute SRE for COV-Q and COVF-SRE, 

and variation between oversampled PC and 

first PC for COV-Oversamp. 

c. If the value is above a threshold, report for 

outlier and assign the original value to 𝑥𝑡 
d. Update the mean value, PCs, 𝑘 and 

threshold value. 

 

For time varying data, it is important to ignore the old data to 

capture the most recent behaviour. In step d above, while 

updating the mean, an exponential forgetting factor 𝜆 with 

0 < 𝜆 <
𝑡−1

𝑡
< 1 can be used (Li et al., 2000; Papadimitriou et 

al., 2005). It can also be considered as a tuning parameter which 

depends on how fast the system changes.  

 

For our experiments, we tried different values of 𝜆 and set 𝜆 =
0.9 which resulted in the smallest average reconstruction error 

for each method. 

Figure 2. Measurements and mean of chlorine data 

(Blue: sensor 1, red: sensor 2 and green: sensor 3) 

Figure 1: Measurements and mean of AQI data 

Figure 2: Measurements and mean of chlorine data (blue: 

sensor 1, red: sensor 2, green: sensor 3) 
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5. EXPERIMENTS 

Since COV method given in (Liet al., 2000) and COVF method 

in (Papadimitriou et al., 2005) have not been compared before, 

first we compare them based on number of PCs required in each 

method, reconstructed values, and reconstruction error obtained 

from each method. Then, outlier detection methods are 

compared.  

 

5.1 Datasets 

We used the air quality index (AQI) dataset which is publicly 

available from central Environmental Protection Agency (EPA) 

repository in USA (EPA, 2011). EPA has placed sensors to 

measure pollutants across locations all over USA. The data is 

collected on hourly basis. Each sensor measures air pollutants at 

regular intervals and sends the measurement to the central data 

repository. AQI measures the quality of air which is computed 

based on the quantity of pollutants measured at each location at 

each given instance. From amongst 3000 sensors, 81 sensors 

from one geographically chosen area are selected for the 

experiments. The data and its mean are shown in Figure 1. In 

this figure, time is on the x-axis and values corresponding to all 

sensors are on the y-axis. 

 

We also used the chlorine dataset presented in (Papadimitriou et 

al., 2005) which contains chlorine concentration level across 

166 junctions tracking the flow of water at each pipe in a 

network. The dataset contains 4310 timestamps collected over 

15 days at 5 minutes interval. The data is periodic and has slight 

phase shift due to the time taken for fresh water to flow down 

the pipes from reservoirs. The data and its mean from first 3 

sensors are shown in Figure 2. 

 

5.2 Results on AQI Data 

5.2.1 Comparison of Both the Methods: Both COV and 

COVF methods require one PC each for representing the data. 

The average of squared reconstruction error using both the 

methods is same, i.e., 0.488. In Figure 3, the original values 

centred at mean are shown in the first plot and reconstructed 

values using COV and COVF methods are shown in next plots. 

From the figure, it can be seen that the reconstructed values 

match the original measurements quite well. 

 

 

Figure 3: Reconstructed values and original measurements: AQI 

data 

 

5.2.2 Comparison of Outlier Detection Methods: It is 

assumed that the data does not have any outliers. To set 

thresholds and compute initial PCs for different methods, the     

dataset was divided into training and test sets. The first 82 

values from time point 1 to 82 are considered as training data 

set and the rest of 158 values are considered as testing dataset. 

In the testing data set, outliers were randomly introduced at 

10% of the points in randomly chosen sensors. Further, the 

magnitudes of the outliers were randomly chosen to be between 

0.1-0.2 of the corresponding sensor values. This resulted in a 

total of 16 outliers. Outlier detection results from the three 

methods are shown in Table 1. From the results, it can be seen 

that all outliers have been detected by COV-Q and COV-SRE. 

However, COV-SRE detects smaller number of false alarm 

instances than COV-Q.  

 

 

5.3 Results on Chlorine Data 

5.3.1 Comparison between Methods: As seen in Figure 2, 

chlorine data has slight phase shift in the measurements of each 

sensor. For this, a slightly different implementation of COVF 

method is used for training the initial model than the one used 

for the AQI data. Here, since COVF updates the vectors at each 

time instance and mean of the data is periodic using forgetting 

factor 0.9, we update the training model in every iteration by 

using the updated mean in every training instance.  Initially, the 

COV method requires the number of PCs to be between 3-5 and 

this number then fluctuates between 2-3 while the COVF 

method requires 6 PCs throughout the process. The average of 

SRE using both methods is same, which is 0.004203. The 

original values centred at mean are shown in the first plot and 

the reconstructed values obtained from COV and COVF are 

shown in next plots in Figure 4. From the figure, it can be seen 

that the reconstructed values match the original measurements 

quite well.  

 

Methods Correct detection 

instances 

False alarm 

instances 

Cov-Q 244 313 

CovF-SRE 330 349 

CovF-Oversamp 7 78 

Table 2: Outlier detection results: Chlorine data 

 

Figure 4: Reconstructed values and original measurements: 

chlorine data (blue: sensor 1, red: sensor 2) 

 

Comparison of Outlier Detection Methods: Similar to the 

previous dataset, it is assumed that the data does not have any 

Methods Correct Detection 

Instances 

False Alarm 

Instances 

COV-Q 16 43 

COVF-SRE 16 24 

COVF-

Oversamp 

15 26 

            Table 1: Outlier detection results: AQI data 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015 
International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-II-4-W2-67-2015

 
70



 

outlier. To set thresholds and compute initial PCs for different 

methods, the first 167 data values are considered as training set 

and the rest of 4143 values are considered as testing dataset. In 

the testing dataset, 10% of points in randomly chosen sensors 

are considered as outliers and values equal to its mean value at 

that time instance plus 3 times of standard deviation are 

considered. This resulted in a total 433 outliers. Outlier 

detection results obtained from the three methods are shown in 

Table 2. From the results, it can be seen that the number of 

correct number of instances is less than the number of outliers 

present in the data. Also, the number of false alarms is more 

than the number of correct number of instances. These results 

show that the presented techniques may not work well on such 

type of data where data from each sensor has a phase shift. 

 

 

6.  CONCLUSIONS 

Based on the experiment results, it can be seen that the COV-

SRE method outperforms the other methods for spatiotemporal 

data in terms of correct detection instances and running time 

complexity. Use of this method is proposed and this can be 

taken as an initial recommendation for detecting outliers in 

spatiotemporal data streams. Further, detailed comparison for 

datasets with a much larger number of sensors is required. For 

such situations, sensors can be clustered based on their spatial 

locations and point outliers can then be identified locally in 

each cluster. The presented techniques assume that the data 

comes to central server at regular time interval and does not 

consider the missing data. Extensions to scenarios where this 

assumption does not hold can also be considered as future work. 
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