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ABSTRACT:

The continuous growth of remotely sensed data raises the need for efficient ways of accessing data archives. The classical model
of accessing remote sensing (satellite) archives via distribution of large files is increasingly making way for a more dynamic and
interactive data service. A challenge, though, is interoperability of such services, in particular when multi-dimensional data and
advanced processing are involved. Individually crafted service interfaces typically do not allow substitution and combination of
services. Open standards can provide a way forward if they are powerful enough to address both data and processing model.
The OGC Web Coverage Service (WCS) is a modular service suite which provides high-level interface definitions for data access,
subsetting, filtering, and processing of spatio-temporal raster data. WCS based service interfaces to data archives deliver data in their
original semantics useful for further client-side processing, as opposed to the Web Map Service (WMS) (de la Beaujardière, 2006)
which performs a pre-rendering into images only useful for display to humans.
In this paper we present a case study where the OGC coverage data and service model defines the client/server interface for a climate
data service. In particular, we show how flexible temporal analysis can be performed efficiently on massive spatio-temporal coverage
objects. This service, which is operational on a several Terabyte data holding, has been established as part of the EarthServer initiative
focusing on Big Data in the Earth and Planetary sciences.

1 INTRODUCTION

Sensor, image, simulation, and statistics data comprise, to a large
extent, what makes up Big Data in the Earth sciences today. The
sheer volume of data stored, as well as the velocity with which
further data keep pouring in, calls for more efficient ways of ac-
cessing data archives than the classical model of accessing re-
mote sensing archives via distribution of large files. A first step
beyond such an ftp based download of files, whose granularity is
fixed and imposed by the service, is user-driven spatial subsetting
where the resulting files are generated on the fly. Additionally,
sometimes reprojection and recoding into some client-chosen de-
livery format is offered.

Clearly, standardization of such Web interfaces is instrumental
for achieving interoperability. One and the same client can be
directed to different archives, and the functionality faced can be
anticipated uniformly. While for humans this can be considered
a convenience, for machine-to-machine communication it is es-
sential to have a clear, exact data and service semantics.

The Open Geospatial Consortium (OGC) offers interface stan-
dards for various data categories and purposes. At the heart is the
feature data type which resembles a geospatial object of any kind.
Vectorial data are one particular sub-category, coverages another.
A coverage loosely can be characterized as the digital representa-
tion of some space-time varying phenomenon; most commonly,
they are known as raster data – such as 1-D sensor timeseries, 2-
D satellite imagery, 3-D x/y/t image timeseries, or 4-D xy/z/t cli-
mate datasets –, but encompass more general structures as well,
like point clouds and general meshes. As such, coverages qualify
as Big Data when looking merely at their typical volumes as well
as the variety encountered.

An abstract definition of coverages is given by OGC Abstract
Topic 6 (OGC, 2006) and ISO 19123 (ISO, 2005), a concrete, in-
teroperable, and compliance testable specification based on ISO
∗Corresponding author.

19123 is the GML Application Schema - Coverages (Baumann,
2010a), nicknamed GMLCOV.

From both vector-type features and raster-type coverages, a WMS
service can render a 2-D image for display. Wile this is good
for human consumption, often results need to be fed into further
processing, or specific visualization tools. To this end, features
(and, therefore, coverages) can be served out through a Web Fea-
ture Service (WFS) (Vretanos, 2010). However, a WFS will al-
ways only deliver the complete feature or coverage; while some-
times this is sufficient, normally subsetting is indispensable on
the high-volume coverages. Therefore, a specific WCS inter-
face (Baumann, 2012) is provided by OGC. Actually, WCS is
a whole suite consisting of a Core which every implementation
must support, plus a set of extensions adding further functionality
facets. Hence, WCS offers a functionality spectrum ranging from
simple spatio-temporal subsetting and encoding of the result in
any suitable format up to complex ad-hoc analytics through a
coverage query language, the Web Coverage Processing Service
(WCPS) (Baumann, 2009).

In the remainder of this article we describe relevant related stan-
dards and technologies, with a section dedicated to the Earth-
Server project; Section 4 presents a comprehensive walkthrough
of WCPS queries that can enable different kinds of online analy-
sis, for either existing features within the project and as well for
a range of future value-adding capabilities that EO services can
implement. Conclusions are exposed in Section 5. For a pre-
liminary introduction to the WCS processing extension, namely
WCPS, the reader is redirected to (Baumann, 2010b) where the
standard has been formally presented, along with some first use
case scenarios inside and outside the EO domain.

2 STATE OF THE ART

There is a legion of raster data formats, all with their particu-
lar sets of metadata, degree of informational completeness, the
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number of dimensions and pixel types they can support, etc. In
terms of operations, often libraries are available with APIs for
complete or partial access. However, each format is crafted in-
dividually and independently, and with its individual fingerprint
it is not possible to combine them into interoperable services
without heavy programming. Hence, a suitable abstraction is
needed which is powerful enough to support all raster types ap-
pearing, with a unified metadata concept, encapsulated in an Ab-
stract Data Type style Web interface. From the variety of ap-
proaches existing, in the context of this paper only adopted stan-
dards are of relevance, due to the focus on interoperability. Stan-
dardization of geo service interfaces is mainly driven by OGC
which has an outreach into ISO TC211 and liaisons into other
standardization bodies like W3C and OASIS-Open.

OGC Abstract Topic 6 (AT 6) — which is identical to ISO 19123
— defines an abstract model of coverages, which is concretized
by the Geography Markup Language (GML) 3.2, “an XML gram-
mar written in XML Schema for the description of application
schemas as well as the transport and storage of geographic infor-
mation” (Baumann, 2010a).

GMLCOV is a concrete application profile, which provides the
unified coverage representation. There a function-like mapping
in the domain space is held by one of the three fundamental con-
stituting elements of a GMLCOV, the domainSet.

This work considers mainly data having 2D (geographical coor-
dinates: x, y), 3D (x, y and temporal or height coordinates: x,
y, t or x, y, h) and 4D (x, y, p, t, where pressure level p prox-
ies height). A complete domain definition needs a Coordinate
Reference System (CRS) for each of its dimensions to be con-
sistently and effectively understood. GMLCOV utilizes an OGC
compliant, URI based labelling of CRS, paired with a semantic
resolver to ensure interoperability. A resolver also allows user
defined CRS to be readily understood by mapping them to their
GML definition (Baumann et al., 2012).

The actual data payload is contained in the rangeSet part. To
allow values in the rangeSet to be properly decoded, structural
information about them is required, along with metadata about
their semantic meaning; both of these are defined in the third
key element of any GMLCOV, the rangeType element. Figure 1
shows these aforementioned coverage constituting elements and
their logical relation.

The GMLCOV coverage model ensures a semantically rich set
of metadata by means of a direct inclusion the Sensor Web En-
ablement (SWE) data model (Robin, 2011) as means to describe
the feature space, i.e. the rangeType. It lets the service specify
many aspects of a sensor’s measurement like units of measure,
allowed values, quality flags, reference frames, and others. In the
case of spaceborne imagers and radiometers, this can reach the
resolution of the single spectral band.

The concrete definition of a coverage, together with a format en-
coding specification, allow instances to be created and transmit-
ted among different software elements, thus ensuring interoper-
ability: a key aspect to be achieved in modern archives to foster
data dissemination and exploitation. Coverages can be under-
stood by machines, processed automatically in complex work-
flows and easily shared.

GMLCOV is the core data model over which web services are
built to allow interoperable access to data, such as the WCS ser-
vice and the Processing extension to WCS. The former provides
basic access to the underlying coverage data, such as subsetting
over the domain, and an extension mechanism by which further

Figure 1: Principal elements of a GMLCOV instance and their
relationship.

functions can be added (Baumann, 2012), the latter, providing
advanced server side processing capabilities.

Naturally extending the GMLCOV coverage model, the WCS
Earth Observation (EO) application profile — now open OGC
standard (Baumann et al., 2014) — further enriches the descrip-
tive metadata that can be associated with single EO granules, like
phenomenon time, result time, dataset status. It also defines new,
more complex, coverage types with homogeneous and heteroge-
neous grouping options over time (Meissl et al., 2013).

Support for time-series of coverages, a crucial aspect for EO
archive services, is also promoted by the OGC Temporal Do-
main Working Group (OGC, 2013). It enables a single coverage
to represent a full multi-dimensional time-series by intrinsically
adding one or more temporal dimensions to the CRS of a cover-
age, building a spatio-temporal compound CRS. This way, coor-
dinate tuples in the domainSet can include both geospatial and
temporal numbers, whose meaning is publicly encoded via the
actionable URIs which identify each single CRS. See (Campalani
et al., 2013) for further insights on the matter.

3 THE EARTHSERVER INITIATIVE

The EU funded project EarthServer (http://earthserver.eu/),
coordinated by Jacobs University Bremen (JUB), aims at the de-
velopment of data access and data processing access services in
several geoscience and planetary application domains. These ser-
vices are aimed at delivering flexible yet user friendly interfaces
to data archives, enhanced with processing capabilities. On the
server side, the rasdaman array database technology (Raster Data
Manager, 2009) is used to ensure efficient and scalable archive
storage while including the processing features offered by its
WCPS engine component, also known as PetaScope (Aiordăchioaie
and Baumann, 2010). On the client side, a wide array of open-
source libraries and technologies is leveraged for making data
analysis available on a wide range of platforms, such as mobile
devices, standard web browsers and up to immersive virtual re-
ality devices. The project targets data volumes in the range of
hundreds of Terabytes, thus tackling several of the challenges of
Big Data. This work collects and showcases current results of
the ongoing project from the perspective of data archive enhance-
ment through WCPS and interoperability. Application domains
considered in the project are Cryosphere, Atmosphere (Climate),
Marine (Ocean), Geology (Solid Earth) and Planetary (Mars).

In the Atmosphere domain, the Multi-sensor Evolution Analysis
(MEA) platform developed at MEEO Srl (http://www.meeo.
it/) provides easy-to-use gateway portals to multi-dimensional
2D up to 5D datasets retrieved from spaceborne observations
(e.g. MODIS), numerical modelling (e.g. MACC) or ground ob-
servations, totaling terabytes of data. It offers Data Curation and
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Figure 2: Identification of drought/famine events in Eastern Africa (Somalia) and evolution trends using multi-temporal data analysis
of Soil Moisture (top), NDVI (middle) and precipitation (bottom) time series.

temporal analysis of atmospheric profiles, aerosol content and
optical depth, cloud properties, among other Earth Observation
(EO) products (Mantovani et al., 2013, VELISAR 2.0, 2006).

The data itself was provided by European Space Agency (ESA),
National Aeronautics and Space Administration (NASA) and en-
tities such as the European Centre for Medium-range Weather
Forecast (ECMWF), the Austrian Meteorological Service (ZAMG),
the Italian National Agency for new technologies, energies and
sustainable development (ENEA), and the Sweden’s Meteoro-
logical and Hydrological Institute (SMHI). Software and data re-
quirements have been collected from User Interest Groups (UIGs)
belonging Earth and atmosphere communities, and include tem-
poral evolution on a specific point with the creation of time series
of a single field, comparison of different fields on the same point
and visualization of specific fields superimposed with high reso-
lution background maps (Natali et al., 2011).

Figure 2 presents the current potential of the platform which, in
addition to the mere visualization of the selected datasets, pro-
vides useful plots that show the temporal evolution back in time
over selected points of interest, with the chance to evaluate the
same evolution for a set of related products. Specifically, the
figure shows how the visual temporal cross-comparison of data
from different EO-derived products like soil moisture, vegeta-
tion index and precipitation could help identifying known famine
events in Eastern Africa of the recent years. In the next section,
we will propose a cookbook of WCPS queries that can suggest
new advanced features to web services like MEA.

4 QUERYING THE ATMOSPHERE

In today’s data-intensive science, users and community experts
are overwhelmed with data sets from many different sources (Hey
et al., 2009). They need tools that can help them moving the pro-
cessing to the data, and hence ease their research studies to at
least provide preliminary analysis capabilities on the bulk data
archives, being able to select the subset of fields they need to
download for the more complex processes.

for variableName in ( coverageList )
*(, variableName in ( coverageList ) )
[ where booleanScalarExpr ]
return encode ( coverageExpr, formatName )

Listing 1: Template syntax for a WCPS encoded
processCoveragesExpr.

Querying the atmosphere can involve a multiplicity of different
products: raw atmospheric dataset comes as multispectral images
whose spatial resolution and temporal frequencies can widely
differ between sensors; derived spaceborne products might rep-
resent aggregated fields with missing data and averaged over a
time interval; statistical model simulations and forecasts usually
provide the prediction error as at full spatial extent. In this sec-
tion it will be shown how WCPS can handle and support typical
access and processing of atmosphere products.

Based on the GMLCOV coverage model, WCPS offers a lan-
guage to retrieve information from one or more coverages stored
on a server. As formalized in Listing 1, the basic request structure
consists of:

- a loop over a list of coverages offered by the server;

- an optional filter predicate (where clause);

- an expression indicating the desired processing operation.

The return clause executes the specified operations for each
coverage in the input coverage list, given that the filter condition
is met. One or more variables are used to reference the groups of
coverages. The WCPS standard describes a long list of basic pro-
cessing operation (expressions) available for use. They mainly
divide into three big types: probing functions, scalar and cov-
erage expressions. Probing functions extract descriptive meta-
data of a coverage, like its bounding box, its native coordinate
system or its number of dimensions. Scalar expressions are for-
mally operations which condense the values provided by a set of
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#MIN
min(c[t("#DATE")])
#MIN with Nil exclusion
min((c[t("#DATE")] = #NIL) * (-(#NIL)) +

(c[t("#DATE")]!= #NIL) * c[t("#DATE")]

Listing 2: Minimum of an image in a time-series.

coverage points to a single scalar value, representative of a spec-
ified data aggregation, like the maximum value. Finally, cover-
age expressions take coverage objects as input and operate on
a point-to-point basis: the returning value is a coverage of the
same kind. For a thorough introduction on WCPS see (Baumann,
2010b).

Now focusing again on WCPS capabilities for EO visualization
services, in the first place WCPS can be used to provide basic
sample univariate and bivariate statistics from a coverage with
missing data. Online exploratory analysis for variable selection
in (geostatistical) regression models is then faced in Section 4.2,
followed by examples of how to achieve fruitful time-series anal-
ysis on both single pixel or area of interest. Section 4.4 de-
scribes how to couple products from different sensors onto a sin-
gle WCPS query, so to compare their fields over time. Finally,
Section 4.5 presents some use case for practical scenarios of air
quality risk assessment.

Time-series of 2D coverages will be assumed for simplicity. To
help query readability in the listings, previously shown coverage
expressions can be referenced through the red header which en-
titles each expression. Additionally, symbol n stands for a null
value and the user’s spatial region of interest is referred to as
r. This latter defines a spatial selection over some spatial axes,
like Latitude and Longitude, and is formally equivalent to as
‘Lat(lo:hi), Long(lo:hi)’, in case of a geographic projec-
tion. Simply including pressure or height parameters in the r can
turn the same WCPS to 4D. Irrelevant parts of a WCPS query like
the output format or the coverage(s) name will be left out, while
only showing the core of the query, that is the coverageExpr

(see Listing 1). Every further listing presented here will show a
WCPS coverageExpr, and this detail will be left out from the
captions. Additionally, coverage names are out of scope here,
while related variable names will be c for single-product queries,
c1 and c2 in case of multiple products.

4.1 Sample Statistics

The WCPS query language currently offers basic bricks of so-
called condensers, which apply some operation on a set of grid
points to retrieve a (scalar) score. Such operations enable ex-
tremes detection (min,max), average (avg) and sum (add). A
general condenser is also available to build up customized oper-
ations.

Basic univariate statistics, like the minimum of a coverage, need
special care in case missing values are present, like shown in List-
ing 2. By exploiting the boolean logic of the query language, one
can shift Nil values outside the scope of the condensing opera-
tion. In the listing, the notation ‘c[t("1950-01-04")]’ means
extracting the 2D slice image over some date in the 3D time-
series, based on the syntax defined in ISO 8601 (ISO, 2004).

Collapsing Nil values is also shown in Listing 3. In the first ex-
pression, the built-in avg operator is replaced by a manual com-
putation of what an average is, that is the sum of the values, di-
vided by their cardinality ( 1

N

∑N

i
ci); secondly, the corrected

sample standard deviation sc =
(

1
N−1

∑N

i
(ci − c̄)

)0.5
is com-

puted. In real queries the inclusion of WCPS macros, like the

#AVG
add((c[#ROI , t("#DATE")] = #NIL) * (0)

+ (c[#ROI , t("#DATE")] != #NIL) *
(c[#ROI , t("#DATE")]))

/ count(c[#ROI , t("#DATE")] != #NIL)
#STDEV
sqrt(add(

pow(
(c[#ROI , t("#DATE")] = #NIL) * (0) +
(c[#ROI , t("#DATE")]!= #NIL) * (
c[#ROI , t("#DATE")] - #AVG(c)), 2))

/ (count(c[#ROI , t("#DATE")] != #NIL) - 1))

Listing 3: Univariate statistics: sample mean and standard
deviation.

#COVARIANCE
add(( #NIL(c1) or #NIL(c2)) * (0) +

(!# NIL(c1) and !#NIL(c2)) * (
(c1[#ROI , t("#DATE")] - (#AVG(c1))) *
(c2[#ROI , t("#DATE")] - (#AVG(c2))))

/ count(
(c1[#ROI , t("#DATE")] != #NIL and
c2[#ROI , t("#DATE")] != #NIL)) - 1)

#PCC
add(( #NIL(c1) or #NIL(c2)) * (0) +

(!# NIL(c1) and !#NIL(c2)) * (
(c1[#ROI , t("#DATE")] - (#AVG(c1)))
(c2[#ROI , t("#DATE")] - (#AVG(c2)))))

/ (sqrt(add(
( #NIL(c1) or #NIL(c2)) * (0) +
(!# NIL(c1) and !#NIL(c2)) * (

pow(c1[#ROI , t("#DATE")] - (#AVG(c1)), 2 ))))
* sqrt( add(

( #NIL(c1) or #NIL(c2)) * (0) +
(!# NIL(c1) and !#NIL(c2)) * (

pow(c2[#ROI , t("#DATE")] - (#AVG(c2)), 2 )))))

Listing 4: Bivariate statistics: sample covariance and
Pearsons’r linear Correlation Coefficient (see Eq. 1).

average of a coverage while computing sc can be either obtained
by separate AJAX queries or by literal replacement of the expres-
sion.

While the computation of further coefficients of univariate statis-
tics is clearly possible via WCPS, we now proceed to show some
more interesting bivariate statistic. Listing 4 shows how to com-
pute the covariance function qcd = 1

N−1

∑N

i
(ci − c̄)(di − d̄)

and the coefficient of linear correlation between two coverages
c1 and c2, which might have independently distributed missing
data, see Equation 1.

rcd =

N∑
i

(ci − c̄)(di − d̄)/

√√√√ N∑
i

(ci − c̄)2
N∑
i

(di − d̄)2

(1)

The general mechanism to handle missing data is hence to to split
the operation in the sum of two terms whose data is masked by
complementary boolean expression. Such mechanism will not be
shown own in future sections to achieve a better query readabil-
ity.

4.2 Exploratory Data Analysis

The ever increasing amount of data that is daily provided by geo-
stationary and polar-orbiting satellites, makes it hard to atmo-
spheric modellers to use whole archives of datasets without data
curation services.
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#HISTOGRAM
coverage histogram
over $i x(0:99)
values count(

c[t("#DATE")] > (1+# MIN) +
$i * (($MAX -$MIN) / 100) and

c[t("#DATE")] <= (1+# MIN) +
(1+$i) * (($MAX -$MIN) / 100))

#HISTOGRAM LOG
coverage histogram
over $i x(0:99)
values count(

ln(1 + #NIL + c[t("#DATE")])
> ln(1+# NIL+#MIN) +

$i * (ln(
(1+# NIL+#MAX )/(1+# NIL+#MIN)) / 100) and

ln(1 + #NIL + c[t("#DATE")])
<= ln(1+# NIL+#MIN) +

(1+$i) * (ln(
(1+# NIL+#MAX )/(1+# NIL+#MIN)) / 100) and

c[t("#DATE")] != #NIL))

Listing 5: 100-bin histogram retrieval of a coverage and its
logarithmic transform.

#LM RESIDUALS
c1[#ROI , t("#DATE")] - c2[#ROI , t("#DATE")] * (

add(c1[#ROI , t("#DATE")] *
c2[#ROI , t("#DATE")] ) /

add(pow(c2[#ROI , t("#DATE")], 2)))

Listing 6: Map of the residual for the model c1 ∼ c2.

Although advanced geostatistical analysis and modelling is surely
better executed locally with ad-hoc tools like R (R Development
Core Team, 2011), it is hereby shown how to provide some first
exploratory data analysis directly on-the-fly, to let users evalu-
ate models before downloading data. This can be a crucial fac-
tor, especially in the phase of covariables selection (Gupta and
Christopher, 2009).

A first visual comparison between fields is usually achieved with
scatterplots, which can be easily plotted on a browser by fetch-
ing abscissa and ordinate series with separate WCPS queries. A
more complex use case, frequently used in any sort of prelimi-
nary data analysis, is the visualization of the histogram, the dis-
cretized density function.

Listing 5 show how to retrieve the necessary data to build up
and visualize online the histogram of a selected field. In case of
highly skewed distributions, like is the usual case for e.g. aerosols
and particulate matter in general, it can be useful to check the his-
togram of the log-transformed variable, like shown in the second
example again in Listingr̃eflst:histograms.

Often in regression analysis there is need to inspect a 2D residual
map derived from the application of a linear model, to check for
homogeneity in the spatial distribution of the residuals over the
ROI. Listing 6 shows how to reproduce such map on a linear
model without intercept y ∼ x, where the normalized coefficient
β0 =

∑
xy/

∑
x2. Alternatively the residual plot could be

retrieved to evaluate the degree of heteroskedasticity.

4.3 Time-series Analysis

Data analysis across time is certainly a major application in the
Atmosphere domain (Zha et al., 2010), as in many other. Eval-
uating information over an historical archive of data serves to
different actors, from environmental policy makers for decision
making, to environmental modellers to feed their models, up to
the simple citizen to evaluate the air quality of his geographic
area across the years.

#SINGLE PXH
coverage single_pixel_history
over $t t ( imagecrsdomain(c, t) )
values c[#ROI , t:"CRS:1"($t)
#MERGED PXH
coverage averaged_pixel_history
over $t t ( imagecrsdomain(c, t) )
values avg(c[#ROI , t:"CRS:1"($t)])
#AGGREGATED PXH
coverage aggregated_pixel_history
over $t t ( 0,

(count(c[# SLICE(Lat ,Long )])/\# AGG_DAYS)-1 )
values avg(c[#SLICE(Lat ,Long),

t:"CRS:1"($t:$t+(\# AGG_DAYS -1))])

Listing 7: Pixel histories, with spatial and temporal aggre-
gation.

In this section we present the template queries to extrapolate so
called pixel histories, that is 1D series of a selected variable
of interest, within a specified time interval. As shown in List-
ing 7, there are different types of pixel histories which could be
retrieved, depending on the application scenario, and they are
hereby explained:

Single-pixel history 1D series of values over a specified 0D ge-
ographic point (e.g. which AOT values over 30 ◦E−45 ◦N?);

Merged-pixel history 1D series of values representing a speci-
fied condensing operations over a region of interest (e.g. which
average PM2.5 values over the urban area of Rome?);

Aggregate-pixel history 1D series of values which have been
aggregated over a specified time interval (e.g. which weekly
average of daily PM2.5 over this location?).

The WCPS function imagecrsdomain gives the number of cells
of a coverage along a specified dimension: to address then this
internal indexed CRS, the notation CRS:1 has been implemented.
Variable #AGG DAYS represents the number of days of time aggre-
gation, e.g. 7 for weekly averages. Finally, #SLICE(Lat,Long)
determines a slicing operation over the geographic axes, i.e. a
point.

4.4 Products Cross-Comparison

An eagerly awaited functionality of atmospheric data services is
the possibilty to compare and combine different satellite products
and model data. This can be required for data validation, quality
enhancements or data fusion for the reduction of the holes in the
satellite data (Leptoukh et al., 2007).

As an example of the potential of WCPS processing capabilities,
Listing 8 shows some use case query that can be exploited to
achieve a visual intercomparison of two different satellite prod-
ucts’ time-series: c1 having daily frequency, and c2 having a
higher spatial resolution and M times the temporal frequency of
c1.

#∆ MERGED PXH retrieves a 1D merged pixel history of the dif-
ferences (residuals) between the two coverages: this is indepen-
dent of the spatial and temporal resolution thanks to the avg

condenser which can span both spatial and temporal coordinates
in the compound CRS of the coverage. #AGGREGATED ∆ MAP

shows a 2D map of the “distance” between the products, aggre-
gating in time the values of c2 to the more to the coarser temporal
resolution of c1. This is achieved thanks to the scaling operator
scale. Finally, #1:1 ∆ MAP on the other hand, make a one-
to-one comparison of products, by upscaling the coarser spatial
resolution of c1. Time subsettings are explicitly shown this time
to better appreciate the meaning of each query.
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#∆ MERGED PXH
coverage delta_merged_pixel_history
over $t t ( imagecrsdomain(c1 , t) )
values avg(c1[#ROI , t:"CRS:1"($t)]) -

avg(c2[#ROI , t:"CRS:1"($t:$t+(#M -1))])
#AGGREGATED ∆ MAP
scale(c1[#ROI , t("2014 -01 -01")],

imagecrsdomain(c2[#ROI , t("2014 -01 -01")]) -
coverage delta_pixel_history
over $x x ( imagecrsdomain(

c2[#ROI , t("2014 -01 -01")], Long) ),
$y y ( imagecrsdomain(
c2[#ROI , t("2014 -01 -01")], Lat) )

values avg( c2[Lat($y), Long($x),
t("2014 -01 -01 T00":"2014 -01 -01 T23 :59")])

#1:1 ∆ MAP
scale(c1[#ROI , t("2014 -01 -01")],

imagecrsdomain(
c1[#ROI , t("2014 -01 -01")]) -
c2[#ROI , t("2014 -01 -01 T12 :00")] )

Listing 8: Expressions for the intercomparison of two
satellite products with independent spatial and temporal
resolutions.

#TRAFFIC LIGHT
{ red: (char)( c >= LO_THRESHOLD ) * 255;
green: (char)( c < HI_THRESHOLD ) * 255;
blue: (char)( c * 0 )

{ [#ROI , t("#DATE")]

Listing 9: Traffic light maps for the visualization of the ex-
ceedance of a lower and a higher concentration threshold.

#95% EXCEEDANCE
((c[#ROI , t("#DATE")]). prediction +
(c[#ROI , t("#DATE")]). variance * 1.644854)
> #HI_THRESHOLD

Listing 10: Threshold exceedance map from a model sim-
ulation, with 95% of confidence interval.

4.5 Hazard Assessment

Whereas atmospheric scientists and modellers require exact data
retrieval to apply statistics and simulations, a more user (and pol-
icy makers) oriented approach is to yield visual imagery of a cer-
tain product, e.g. related to the air quality, signalling hazard situ-
ations, like the case of mass concentrations of pollutants that go
far beyond the recommended threshold.

A green-yellow-red “traffic light” map can be fetched, as shown
in Listing 9: being able to define the values of the output map
separately on the different bands, it is possible to use logical ex-
pression to set the red, green and blue bands respectively.

Like shown in Listing 10, a different situation occurs when run-
ning a-posteriori analysis of model forecasts (Emili et al., 2011):
a user could upload his geostatistical maps to the WCPS server,
and gain information by actively using the estimation error as-
sociated with every predicted pixel to retrieve exceedance maps
of the selected pollutant over a specified threshold, and with a
custom confidence interval.

5 CONCLUSIONS

In this article we have presented a comprehensive set of WCPS
queries that can be adopted by EO service providers to enable
high-level processing frontend functionalities to their spatio-temporal
datasets, with a focus on the typical datasets that are provided in
the atmospheric imagery.

Several demonstrations were shown, from sample univariate and
bivariate statistic coefficients to exploratory variables analysis,
from time-series pixel and ROI histories to the intercomparison
of different satellite products. Risk assessment capabilities for
typical air quality use cases are finally shown.

The proposed approach supports the paradigm of moving the pro-
cessing to the data, opening new possibilities to scientific mod-
ellers and EO analysts. The use of the OGC open standard and
FOSS database technologies like rasdaman promotes intercon-
nectedness and interoperability among Big Data services.
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Aiordăchioaie, A. and Baumann, P., 2010. PetaScope: An
open-source implementation of the OGC WCS geo service stan-
dards suite. In: Scientific and Statistical Database Management,
Springer, pp. 160–168.

Baumann, P., 2009. OGC Web Coverage Processing Service
(WCPS) Language Interface Standard. OGC 08–068r2.

Baumann, P., 2010a. GML Application Schema for Coverages.
OGC 09–146.

Baumann, P., 2010b. The OGC Web Coverage Processing Ser-
vice (WCPS) standard. Geoinformatica 14(4), pp. 447–479.

Baumann, P., 2012. OGC Web Coverage Service (WCS) – Core.
OGC 09–110r4.

Baumann, P., Campalani, P., Misev, D. and Yu, J., 2012. Find-
ing my CRS: A systematic way of identifying CRSs. In: ACM
SIGSPATIAL GIS, pp. 71–78.

Baumann, P., Meissl, S. and Yu, J. Y., 2014. OGC Web Coverage
Service 2.0 Interface Standard — Earth Observation Application
Profile. OGC 10–140r1.

Campalani, P., Misev, D., Beccati, A. and Baumann, P., 2013.
Making time just another axis in geospatial services. In:
20thInternational Symposium on Temporal Representation and
Reasoning (TIME).

de la Beaujardière, J., 2006. Web map service. OpenGIS Web
Map Server Implementation Specification pp. 06–042.

Emili, E., Popp, C., Wunderle, S., Zebisch, M. and Petitta, M.,
2011. Mapping particulate matter in alpine regions with satellite
and ground-based measurements: An exploratory study for data
assimilation. Atmospheric Environment.

Gupta, P. and Christopher, S., 2009. Particulate matter air quality
assessment using integrated surface, satellite, and meteorological
products: Mutliple regression approach. Journal of geophysical
research 114(D14), pp. D14205.

Hey, A. J., Tansley, S., Tolle, K. M. et al., 2009. The fourth
paradigm: data-intensive scientific discovery.

ISO, 2004. ISO 8601:2004: Data elements and interchange for-
mats – Information interchange – Representation of dates and
times.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4, 2014
ISPRS Technical Commission IV Symposium, 14 – 16 May 2014, Suzhou, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-21-2014 26



ISO, 2005. ISO 19123:2005: Geographic information – Schema
for coverage geometry and functions.

Leptoukh, G., Zubko, V. and Gopalan, A., 2007. Spatial aspects
of multi-sensor data fusion: Aerosol optical thickness. In: Geo-
science and Remote Sensing Symposium, 2007. IGARSS 2007.
IEEE International, IEEE, pp. 3119–3122.

Mantovani, S., Natali, S., Barboni, D. and Grazia Veratelli, M.,
2013. Climate data service in the FP7 EarthServer project. In:
EGU General Assembly Conference Abstracts, Vol. 15, p. 12849.

Meissl, S., Aime, A. and Giannecchini, S., 2013. WCS and
EO-WCS status in open source. In: FOSS4G.

Natali, S., Beccati, A., D’Elia, S., Veratelli, M., Campalani, P.,
Folegani, M. and Mantovani, S., 2011. Multitemporal data man-
agement and exploitation infrastructure. In: The 6thInternational
Workshop on the Analysis of Multi-temporal Remote Sensing
Images (MultiTemp).

OGC, 2006. The OpenGIS Abstract Specification — Topic 6:
Schema for coverage geometry and functions. OGC 07–011.

OGC, 2013. Temporal DWG Web. http://external.
opengis.org/twiki_public/TemporalDWG/WebHome. Ac-
cessed online on 2013-aug-22.

R Development Core Team, 2011. R: A Language and Envi-
ronment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0.

Raster Data Manager, 2009. www.rasdaman.org.

Robin, A., 2011. OGC SWE Common Data Model Encoding
Standard. OGC 08–094r1.

VELISAR 2.0, 2006. Public access to crustal deformation data.
http://mea.eo.esa.int/InSARItaly.

Vretanos, P., 2010. OpenGIS Web Feature Service 2.0 Interface
Standard. OGC 09–025r1.

Zha, Y., Gao, J., Jiang, J., Lu, H. and Huang, J., 2010. Moni-
toring of urban air pollution from MODIS aerosol data: effect of
meteorological parameters. Tellus B 62(2), pp. 109–116.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4, 2014
ISPRS Technical Commission IV Symposium, 14 – 16 May 2014, Suzhou, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-4-21-2014 27


