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ABSTRACT: 
Planar structures are essential components of the urban landscape and automated extraction planar structure from LiDAR data is a 
fundamental step in solving complex mapping tasks such as building recognition and urban modelling. This paper presents a new and 
effective method for planar structure extraction from airborne LiDAR data based on spectral clustering of straight line segments. The 
straight line segments are derived from LiDAR scan lines using an Iterative-End-Point-Fit simplification algorithm. Adjacency 
matrix is then formed based on pair-wise similarity of the extracted line segments, and a symmetric affine matrix is derived which is 
then decomposed into eigenspace. The planar structures are then detected by mean-shift clustering algorithm in eigenspace. The use 
of straight line segments facilitates the processing and significantly reduces the computational load. Spectral analysis of straight line 
segments in eigenspace makes the planar structures more prominent, resulting in a robust extraction of planar surfaces. Experiments 
are performed on the ISPRS benchmark LiDAR data over three test sites containing a variety of buildings with complex roof 
structures and varying sizes. The experimental results, which are quantitatively evaluated independently by the ISPRS benchmark 
test group, are presented. The results show that the proposed method achieves on average 80% of completeness with over 98% of 
correctness. Better performance is observed over larger size of buildings (>10m²) with over 92% of completeness and nearly 100% 
of correctness in all test areas, indicating the robustness and high reliability of the proposed algorithm. 
 

1. INTRODUCTION 

Light Detection and Ranging (LiDAR) has been one of the 
major sources for spatial information collection. The airborne 
LiDAR measurements are made by a scanning mechanism to 
generate profile slices of landscape. The recorded point clouds 
directly provide 3D information of the underlying terrain and 
objects. LiDAR has the advantages of high accuracy, rapid 
acquisition and high resolution which are extraordinary 
appropriate for large-scale elevation collection and object 
extraction. 
 
Planar structures are widespread in urban landscape and are 
required in a variety of mapping tasks. For building extraction 
and urban modelling, accurate planar structures are fundamental 
features in data-driven reconstruction approaches (Oude 
Elberink and Vosselman, 2009).   Automated recognition of 
object, such as vegetation and buildings, can be made more 
efficiently by employing geometric and topologic analysis of 
planar segments (Xu et al., 2012). Moreover, planar structures 
prove to be useful in data quality control (Vosselman, 2012). 
Multi-source registration and robot navigation also benefit from 
recognised planar structures. 
 
To address the problem of converting raw LiDAR data to 
embedded planar surfaces in an efficient and low-cost manner, 
automated extraction of planar structures from airborne LiDAR 
data has been an active research for decades. Existing 
algorithms can be generally categorized as point-based and line-
based.  Point-based algorithms mainly utilise point coordinate 
attribute. Planes can be detected via region growing approaches 
to group locally consistent points on a large dataset (Vosselman 
et al., 2004; He et al., 2012) or by iterative segmentation of 
point clouds using RANSAC algorithms (Brenner, 2000; 
Schnabel et al., 2007). Point clouds can also be transformed in 

different feature spaces to facilitate plane detection. 3D Hough 
transform has been proved useful by expressing points as 3D 
curves in Hough Space for intersection inspection (Borrmann et 
al., 2011). Research also shows promising results have been 
achieved by clustering in Gaussian Sphere feature space 
(Dorninger and Pfeifer, 2008; Sampath and Shan, 2010). 
 
Unlike the point-based approaches, the other group which is 
also adopted in this paper employs straight line segments as the 
basic element for planar surface extraction. The main idea is 
based on the observation that, in each scan line, the points 
belonging to a planar surface form a straight line segment. Line-
based method was introduced in Jiang and Bunke (1994) using 
range image, and then adopted for urban mapping (Hebel and 
Stilla, 2008) and robot navigation (Georgiev et al., 2011) 
employing LiDAR point cloud. Generally those methods follow 
the typical split-and-merge paradigm. In step of splitting, raw 
data is interpreted as straight line segments which have higher 
level geometric information than points. In merging step, a seed 
plane is derived by similarity measurement among neighbouring 
line segments, along with region growing. The advantages of 
the line-based algorithm are the high data compression rate and 
the higher geometric level. 
 
However, line-based approaches, to date, inherit the deficiency 
of greedy procedure that only one model can be detected in each 
iteration (Huang and Brenner, 2011). Two problems embed in 
this procedure. First, the remaining lines are iteratively 
calculated until they have been assigned and removed, which 
result in high computational complexity for multiple surfaces 
extraction. Second, line segments which belong to two adjacent 
planes may be too early removed by the firstly found plane. In 
order to tackle these issues, we introduce a novel line-based 
spectral clustering method for detecting and estimating a set of 
plane structures simultaneously in global impression. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-103-2013 103



 

2. METHODOLOGY 

The proposed algorithm for planar surface extraction in airborne 
LiDAR data essentially includes procedures of straight line 
segment extraction, line-based spectral clustering and planar 
structure estimation which will be detailed in the following 
sections. 
 
2.1 Straight line segment extraction 

We adopted the Iterative-End-Point-Fit simplification scheme 
to extract straight line segments from each scan line, as 
described in Nguyen et al. (2007). Given a successively 
recorded points from each scan line, the algorithm starts with 
the single edge by simply connecting the first and last 
points.  Then the edge is iteratively split by the furthest 
perpendicular distance point until all point-to-edge distances are 
within a user specified tolerance (�). The output is a patch of 
successive connected line segments.  
 
To avoid irrelevant line segments, three filters are defined and 
applied. Firstly, we eliminate the line segments with small 
proportion of last pulse count to point size in each line 
segments. Intuitively, small proportion indicates more non-last 
pulse points which tend to vegetation. Furthermore, we reject 
the line segments which contain less than four last pulses. In 
this way, most vegetation and small object which belong to 
irrelevant features can be easily filtered out. Finally, we 
estimate coarse ground elevation level by splitting a scan line 
into slices and then linking the local lowest points. Those line 
segments closing to ground are eliminated as ground segments. 
Figure 1 (a) shows a portion of LiDAR raw data in one scan 
line. Figure 1 (b) presents the line simplification result and 
coarse ground level shown in white dashed lines. Figure 1(c) 
demonstrates the filtering result without irrelevant line 
segments. The line colours encode number tags. 
 

 
 
Figure 1: Straight line segment extraction. (a) Point cloud from 

a portion of a scan line; (b) initial straight line segments and 
coarse ground level; (c) Straight line segments on roofs.  

 
2.2 Line-based spectral clustering 

In this section, we focus on line-based clustering. To be more 
specific, we formulate and apply spectral clustering on straight 
line segments to decompose spectral space into meaningful sub-
parts denoted as subspaces and each subspace represents a 
planar surface. Spectral clustering algorithm is first suggested in 
Donath and Hoffman (1973). It has recently been employed for 

data analysis such as image motion (Yan and Pollefeys, 2006) 
and mesh smoothness segmentation (Liu and Zhang, 2004) in 
computer vision. Rather than directly projecting local features 
in space, spectral clustering views the data clustering as a graph 
partitioning problem without make any assumptions on the form 
of the data clusters. Adjacency matrix is formed from data and 
then projected to the  low-dimensional spectral space, in which 
high similarity primitives are encouraged moving toward each 
other while others moving increasingly apart, as Polarization 
Theorem stated (Brand and Huang, 2003). As a result, spectral 
clustering often outweighs traditional clustering algorithms, 
such as �-means clustering (von Luxburg, 2007). The 
comprehensive introduction of spectral clustering can be found 
in (Vidal, 2011). 
 
Generally, spectral clustering algorithms first construct affinity 
matrix by measuring pair-wise similarities and then use the 
eigenvectors of the affinity matrix to enhance clustering of data 
points in the eigenspace. However, line segments by themselves 
fail to derive co-planar similarities directly. Therefore, we 
design the spectral clustering flow chart as illustrated in Figure 
2 and the elaborative description is given in subsections. 
 

 
 

Figure 2: Flow chart of spectral clustering. 
 
2.2.1 Retrieve local best-fit plane subspace. One observation 
is that a line segment and its nearest neighbours often belong to 
the same subspace. Hence, the subspace ��� for a line segment 
�� ∈ � can be obtained by the best-fit plane of line segments in 
its local neighbourhood. Then, if two line segments �� and �	 
lie in the same subspace	��, their locally estimated subspaces ��� 
and ��	 should be similar.  
 
We adopted the method proposed by Zhang and Faugeras 
(1992) to define line segment neighbourhood. Particularly, line 
segments fall in a cylindrical space with radius r and its axis 
coinciding with the direction of the query line segment are 
defined as neighbourhoods of the segment. It means distances 
between the line segment and its neighbour segments should be 
less than r. Furthermore, we reject line segments as neighbours 
of the query line segment when they are in the same scan line. It 
is due to all line segments in the same scan line always lay in 
the same vertical profile. 
 
With the neighbourhood, we then search for the locally best-fit 
plane for each line segment. Commencing with a line segment 
�� ∈ � and its neighbourhood	�� ⊂ �, we then iterative 
generates candidate planes {��}���

�  formed by two end-points 
(source and target) from �� and the mid-point of		��,		�� ∈ ��. 
The line segment	�� is selected as an inlier of 	P� if offset 
between the mid-point of 	x� and 	P� is smaller than a threshold 
and �� ∙ �� is closed to zero, where �� is the normal of �� and �� 
is the direction of ��. �� with the largest number of inliers is 
verified as the best-fit plane of the line segment ��. 
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2.2.2 Graph Laplacian construction. The similarity of each 
pair of subspaces is measured using angular difference and 
geodesic distance between the two subspaces. The angular 
difference is formed as  
 
��������� =  ��!(#��)      (1) 
 
Where # is the angle between the normal vectors of the two 
subspaces. The geodesic distance is defined as 
 
�� %&'(�� = �� %!()� , ���)      (2) 
 
Where dist(m�, S1�) is the Euclidean distance from mid-point m� 
of  �� to subspace ���. Then the weighted ℝ3×3 adjacency matrix 
is generated by an exponential kernel as 
 
5�� = '�6 (−���������/2:�

! − �� %&'(��/2:!
!)     (3) 

 
Where :� and :! are the scaling parameters of the Gaussian 
Kernel. Clearly, when 5�� is close to 1, it means both DiffAng�� 
and DistGeo�� are small, then we expect �� and �� are in the 
same cluster.  
 
To make the adjacency matrix unidirectional, the ℝ3×3 affinity 
matrix is expressed as ��� = (5�� + 5��)/2, such that 0 <
��� = ��� < 1 . To normalise affinity matrix, a diagonal matrix 
� is defined as the degree of �, where ��� is the sum of �’s i-th 
row. Afterwards, the normalised affinity matrix denoted as 
symmetric graph Laplacian is expressed as 
 
GHIJ = �K�/!��K�/!      (4) 
 
Where G�� = ���/L���L���. Straight line segments are now 
represented in a ℝ3 feature space by each row vector.  
 
2.2.3 Spectral subspace clustering. Let G� and G� are two 
points in ℝ3. The correlation of them matches the cosine angle 
between two points in feature space as 
 
M(NN�� = M( #��             (5) 
 
With #�� = arccosRG�

SG�T is the angle between two unit vectors. 
In ideal case, two vectors in one cluster should have the same 
coefficients (M(NN�� = 1), such that the grouping ordered 
adjacency matrix appears a block-diagonal structure. Based on 
block-diagonal structure, its eigenvalues and eigenvectors are 
the union of the eigenvalues and eigenvectors of each block. 
However, correlations from real-world data are not exact 0 or 1, 
which means off-diagonal blocks are non-zero. On the other 
hand, the largest � eigenvectors will be stable to small changes 
of GHIJ if their eigenvalues has small eigengap, as matrix 
perturbation indicated in Stewart (1999). Therefore, the union of 
the largest � eigenvalues and eigenvectors represents the most 
energy-preserving of eigenvalues and eigenvectors of GHIJ (Ng 
et al., 2001). Furthermore, as Polarization Theorem stated in 
Brand and Huang (2003), the spectral decomposition to 
successively lower rank results in the sum of squared angle-
cosines ∑(cos#��)! strictly increasing. It means the correlations 
will migrate away from 0 towards two poles +1 or -1, also 
known as truncated eigenbasis amplifying. In a low-dimensional 
feature space, the projected points with high correlations step 
together while the low correlation points move more apart. As a 
result, the clustering in the new spectral space representation is 
more likely to success.  

 
 
Figure 3: Illustration of spectral clustering. (a) Raw point cloud; 
(b) extracted line segments; (c) constructed adjacency matrix; 

(d) ideal adjacency matrix; (e) line-based clustering result. 
 

 
 

Figure 4: Boundary dection results. (a) and (b) Detected 
boundaries of extracted planes and final structure 

representation; (c) and (d) simplified boundaries and planar 
structure. 

 
The graph matrix defined in Equation (4) is projected to 
eigenspace for clustering. The decomposition in lower 
dimensional is derived by choosing the � largest eigenvectors 
from eigenvalue decomposition of LWXY. The collected 
eigenvectors form the new matrix Z ∈ ℝ3×	. Let  [� in the �-th 
row of Z, the point with vector  [� represents the �-th straight 
line segment in eigenspace. To project data matrix into a unit 
sphere, [� is normalized to be a unit vector [\� , such that [\� =
[�/‖[�‖. 
 
We subsequently cluster those points in unit sphere via mean-
shift (Comaniciu et al., 2002) to detect planes. The selection of 
mean-shift clustering is that mean-shift is a non-parametric 
algorithm which iteratively computes the mean shift vector by 
translating density estimation windows until convergence. 
Mean-shift clustering processes without the prior knowledge of 
cluster quantities.  Additionally, it can handle arbitrarily shaped 
clusters which make it more reliable for extraction applications. 
 
We demonstrate the clustering procedure by a simple roof             
structure in Figure 3. The rooftop consists of 1219 LiDAR 
points (Figure 3(a)). The points can be represented by 82 
straight line segments obtained from LiDAR scan line 
segmentation as shown in Figure 3(b).  The line segments are 
further processed using the proposed algorithm. The local best-
fit planes are firstly retrieved, and the weighted adjacency 
matrix is formed containing 82×82 similarity measurements. 
We only accept the weights over 0.7 and assign others as zero. 
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In Figure 3(c), the accepted coefficients are shown in grey value 
while the others in black (the illustration follows grouping 
orders). An approximately block-diagonal structure is obtained 
which can be easily discovered by the dominant eigenvectors. 
Compared to the ideal form shown in Figure 3(d), the accuracy 
of derived adjacency matrix is up to 89%. Spectral clustering is 
then applied on the constructed graph Laplacian, resulting in 
four cluster groups corresponding to four planar roof structures 
as shown in Figure 3(e). 

 
We use a robust estimation algorithm such as RANSAC on each 
segmented points to determine plane model parameters. The 
closed plane boundary is constructed by consequently 
connecting pair of end-points in each scan line. An optional 
polyline simplification, as described in Section 2.1, can also be 
used to obtain more abstract boundary in Figure 4. 

 

 
 
Figure 5. Experiments on testing areas. The first column shows true orthoimages. The second column is the extracted plane structures 
on the true orthoimage. The third column illustrates the clustering result of line segments of a local area and the last column presents 

the extracted planar structures. 
 

3. EXPERIMENTAL RESULTS 

We have evaluated the proposed algorithm on International 
Society for Photogrammetry and Remote Sensing (ISPRS) 
Commission WG III/4 benchmark LiDAR data in Vaihingen, 
Germany. On purpose of urban object classification and 3D 
building reconstruction, the data has 4-7 pts/m² resolution 
collected by Leica ALS 50 system. The entire three test sites are 
involved for evaluation and ground truths are detailed (LoD2) 
3D models of the building roofs derived by manual stereo 
plotting. The first column of Figure 5 shows the true 
orthoimages of the three test areas respectively. Area 1 is 

characterized as dense development site consisting of historic 
buildings with complex shapes. Area 2 contains a few high-
rising residential buildings with mixed flat and sloped roof 
types. Area 3 is a purely residential area with detached 
buildings. For more details of site and data description, we refer 
to Rottensteiner et al. (2012). 
 
3.1 Evaluation metrics 

The evaluation was performed to quantify the segmentation 
quality of rooftop in terms of completeness and correctness 
(Rutzinger et al., 2009) in object level. In addition, we also 
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evaluate the geometric property of the extracted roof faces. The 
height difference between the extracted planar structures and the 
reference surfaces, denoted as ^_�^` is computed. The other 
one checks the consistency of the model to the raw data, 
denoted as	^_��`. To be more specific, the ^_��` measures 
consistency distance of every point to its extracted plane. 
 
3.2 Results and discussion 

The experimental results over three datasets are shown in the 
second column of Figure 5 respectively. The plane structures 
are represented as the 2D polygons visualising together with the 
orthoimage. Table 1 lists the parameter settings used in the 
experiment. 
 

Table 1 Parameters setting for experiment 
 

Parameter Value 

point-to-edge tolerance � 0.25 (m) 

neighbourhood searching N 1.2 (m) 

angular scaling 
1σ  0.1 

geodesic scaling 
2σ  0.15 

weight threshold in  
adjacency matrix 

> 0.7 

 
Visual inspection illustrates that the proposed plane extraction 
method works well on all testing areas. The third column in 
Figure 5 depicts the clustering result of straight line segments 
from the highlighted buildings. The colour encodes the 
clustering status. The forth column shows the extracted planar 
structures from the buildings. Please note that the boundaries 
are derived from individual groups only without further 
modelling. 
 
The extracted results were sent to the ISPRS benchmark test 
evaluation group, and were evaluated independently. 187, 54 
and 139 planes have been extracted in the three test areas, 
respectively. The comparison results are tabulated in Table 2. 
The proposed algorithm achieved over 80% completeness (Cm) 
for Area 1 and Area 3, while it is lower in Area 2, with a 
completeness of 71.0%. The performance is better over the 
roofs with area larger than 10m².  The completeness for all areas 
increases up to above 90%, with over 95% in Area 1 and Area 
3. The higher completeness in Area 1 and Area 3 indicates the 
algorithm performs better in residential areas. The evaluation 
shows the correctness (Cr) for all test areas is above 97%. For 
larger size roofs, the correctness for Area 2 and Area 3 is 100%, 
indicating reliable results have been achieved by the proposed 
algorithm. Over-segmentation (1:N) is low for all testing areas 
(maximum 3), while the under-segmentation (M:1) is the major 
problem in Area 1 and Area 3 with 40 and 44 cases 
respectively. The low under-segmentation in Area 2 is mainly 
because some roof planes with small size are not detected (low 
completeness). The mixed error (M:N) is also low in all testing 
area. The RMS errors of the height differences to the reference 
planes are all smaller than 0.45m. Higher completeness rate in 
Area 1 and Area 3 results in smaller RMS errors than in Area 2. 
The RMS errors of the consistence with data are all smaller than 
0.3 m. Overall, our method achieves acceptable plane extraction 
results. Based on noble performance on large roof planes, 
higher accuracy can be expected on LiDAR data with higher 
density. By comparing our method with state-of-art plane 
detection methods shown in benchmark result (Rottensteiner et 

al., 2012), our method achieved the top performance in terms of 
completeness, correctness and segmentation quality. 
 
Some errors remain in extraction results. Clearly, some short 
line segments on small roof structures are eliminated in filtering 
step, as indicated in the circle 1 in Figure 5. A few flat and 
dense vegetation areas are incorrectly detected as plane. An 
example is given in Figure 5 (circle 2). We also notice that 
small planar structures with less than three line segments are 
hardly detected (circle 3 in Figure 5). The reason is that the 
plane has too few coefficients in affinity matrix to be 
distinguished.  
 

Table 2 Statistical evaluation of the plane extraction results 
 

 Cm / Cr 
[%] 

Cm / Cr 
( > 10m²) 

[%] 

ab:d

/aa:b

/aa:d 

^_�^` 
[m] 

^_��` 
[m] 

A1 88.2 / 99.5 95.2 / 99.2 3 / 40 / 2 0.38 0.23 

A2 71.0 / 98.1 91.7 / 100.0 2 / 2 / 0 0.45 0.28 

A3 82.6 / 97.8 96.0 / 100.0 2 / 44 / 1 0.30 0.16 

 
4. CONCLUSION 

This paper presents a novel algorithm for planar structure 
extraction from airborne LiDAR data. Rather than using a 
parameterized plane model for data fitting, the task of planar 
feature extraction is transformed into spectral subspace 
clustering by exploring the similarities between the straight line 
segments derived from the LiDAR scan lines. Therefore, line 
segments rather than redundant raw LiDAR points are 
employed as the basic elements which convey more geometric 
information for successive processing while significantly 
reducing the data volume in clustering analysis. The extracted 
straight line segments are projected to spectral space through 
graph Laplacian transformation and spectral decomposition. 
This enhances the correlation of high-similarity points while 
penalizes dissimilar points allowing more efficient plane 
detection via mean-shift clustering algorithm in feature space. 
The proposed method has been experimentally evaluated on the 
ISPRS benchmark LiDAR data over three test sites. The 
independent evaluation by the ISPRS benchmark test group 
showing on average 80% of completeness with over 98% of 
correctness has been achieved. The errors are observed on dense 
vegetation with flat top which are incorrectly detected as roofs. 
In addition, buildings with small size are not detected due to 
insufficient straight line segments on roofs. This is indicated in 
the evaluation where the completeness increases up to 92% over 
large size of buildings. It is also noted that the correctness is 
very high over all test areas. The close to 100% correctness on 
large roofs demonstrates the robustness and high reliability of 
the proposed method.  
 
Current research centres on the refinement the developed 
algorithm and modelling of the extracted planes which will be 
further processed for automated 3D building reconstruction in 
our project. 
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