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ABSTRACT:

This article presents a generic and efficient method to register terrestrial mobile data with imperfect location on a geographic database
with better overall accuracy but less details. The registration method proposed in this paper is based on a semi-rigid point to plane
ICP ("Iterative Closest Point"). The main applications of such registration is to improve existing geographic databases, particularly in
terms of accuracy, level of detail and diversity of represented objects. Other applications include fine geometric modelling and fine
fagade texturing, object extraction such as trees, poles, road signs marks, facilities, vehicles,etc. The geopositionning system of mobile
mapping systems is affected by GPS masks that are only partially corrected by an Inertial Navigation System (INS) which can cause
an important drift. As this drift varies non-linearly, but slowly in time, it will be modelled by a translation defined as a piecewise linear
function of time which variation over time will be minimized (rigidity term). For each iteration of the ICP, the drift is estimated in
order to minimise the distance between laser points and planar model primitives (data attachment term). The method has been tested
on real data (a scan of the city of Paris of 3.6 million laser points registered on a 3D model of approximately 71,400 triangles).

1 INTRODUCTION
1.1 Context

Over the last years, a growing number of mobile mapping sys-
tems have been developed in order to obtain large amounts of
accurate georeferenced data on urban canyons. In this context,
a number of problems arise especially in georeferencing because
buildings cause GPS masks which are partially corrected by the
inertial measurements. That is why, it is not possible to use these
data with a high level of detail directly without making a registra-
tion pass. In this paper, we propose not to find the ideal absolute
position, but to register such data on the geographical database
that it is supposed to help improve.

In the following, the term model will denote any such 2D or 3D
geographical database. Such models give a rough and general-
ized representation of reality. They have a reliable georeferencing
(even if not perfectly accurate ) because they are built on points
measured by human operators. For instance the one we used in
this study has a precision around 30cm. However, they usually
have a low level of detail (details smaller than 1m were not rep-
resented in our database). A model is constituted of geometrical
primitives which can be: punctual (0D, such as a levelling net-
work point, apex of polyhedral objects, tree trunks position or
posts in 2D), linear (1D, such as edges of 2D polygons, edges of
3D polyhedral objects or linear objects in 3D, land registry, to-
pographic database or fragmented data in 2D representation and
curbs), or surface (2D, such as sides of polyhedral objects). In
this paper, the term mobile data will denote any data (image or
laser) acquired by a terrestrial mobile mapping system. A mobile
mapping system is a vehicle which integrates camera and/or laser
sensors in order to perceive the environment and a positioning
system that allows to localize the data acquired by these sensors.
These systems allow to move the sensor closer to the observed
data. The level of detail of these acquisitions has been increased
compared to airborne imaging. This advantage has led to fast de-
velopment of these types of system over the last years. Mobile
mapping location is generally define by firstly a global position-

ing system (GPS) allowing to obtain the position of an object
with varying accuracy. The latter depends on the acquisition con-
ditions and the system which lead to an accuracy of a few meters
to 0.10 m. Secondly, it is supported by an inertial measurement
unit (IMU) consisting of accelerometers measuring the vehicle
acceleration, gyrometers measuring the angular acceleration and
magnetometers to obtain the position of the geographic true north
at all time of whose the accuracy depends on the used system and
thirdly sometimes an odometer measuring the distance crossed by
the vehicle. The data stemming from these sensors are integrated
to compute the precise position of the vehicle at all times.
However, this geolocation maybe disrupted by two phenomena.
On the one hand the multiple path denotes the fact that the GPS
sensor receives the same signal several times, either directly, or
indirectly (reflected by fagades for example) which disturbs it.
On the other hand the GPS masks are characterised by a loss of
information. The part of the sky that is visible is relatively small
and the sensor does not see satellites well enough to deduct its
correct position.

These disturbances leads to an absolute error in the trajectory es-
timation of the vehicle which is partially compensated for by the
information of the IMU. This partial compensation generally in-
fers a gap which can reach several meters in the case of a GPS
mask that lasts several minutes. In this article, we call drift this
gap between the trajectory supplied by the system and the real
(ideal) trajectory. The registration method aims to estimate this
drift.

The drift depends not only on the quality of the positioning but
also on the algorithm of integration of the sensor data. It must
be considered as non-linear (non-rigid) according to the time (the
drift occurs even if the vehicle is at a standstill). However, good
IMU quality guarantees a very slow variation of the drift as well
as a very good orientation of the vehicle. The drift mainly con-
sists in slow drift in translation of our registration and in particu-
lar the drifting model based on these two hypotheses.
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1.2 Motivation

For all these reasons, it is interesting to register mobile data on
models, particularly for applications such as change detection,
updating geographical databases, increasing their level of detail
(geometry and texturing) and making all datasets correspond to a
common standard. The underlying motivation is twofold:

e combine the model robustness (less detailed) with a high
level of detail of mobile data (less precise),

e make the model and the mobile laser data compatible in or-
der to improve the model geometry, and its texture because
if the vehicle is equipped with cameras, this compatibility
will also be beneficial to the registration of the laser data on
the model.

The method described here can be used for any positioning sys-
tem for whose drift variations are slow enough (which is the case
with all the systems integrating IMU or precise accelerometers).
The major obstacles in this registration are:

e the incompatible level of detail between the model (a few
tens of centimetres) and the mobile data (one centimetre),

e the positioning error of the mobile mapping system linked
to a strong non-linear drift in time.

The main objective is not to obtain an absolute centimetre geolo-
cation of the mobile data, but to ensure its relative consistency
with the model to make them readily usable for further applica-
tions.

2 STATE OF THE ART REGISTRATION

Data registration is a topic that has been studied for many years
by various scientific communities (computer vision, computer
graphics, photogrammetry, medical imaging, artificial intelligence).
The main objective consists in registering at least one dataset on
an other. One of the dataset usually serves as a reference on which
the second will be overlapped. The purpose is to determine the
transformation (rotation and translation) necessary to bring them
as close as possible. Data registration technique combine two im-
portant steps. The first one consists in comparing all the datasets
to extract common characteristics for each of them. The second
uses these characteristics to determine the optimal transformation
to use. These methods, summarized in (Gressin et al., 2013) may
be rigid or non-rigid, 2D or 3D, and use point to point or point to
plane distances.

Currently, the reference technique which is most often used (Salvi
et al., 2007) for registration problems is the ICP (Iterative Closest
Point). This registration method has the advantage of being sim-
ple to use while giving very good results. The major drawback is
it requires a good initial estimation of the relative position of the
objects to register (Chen and Medioni, 1992). It works in a itera-
tive way and consists in minimizing a distance until convergence
to determine the optimal transformation between the objects.
The ICP was introduced for the first time by (Besl and McKay,
1992) and worked by finding matches between two initial enti-
ties. This matching was simple and consisted in looking for the
closest point to point match in both datasets. Then, numerous re-
searches has been carried out to improve this technique.

A few registration methods have been developed apart from ICP.
To quote a few, (Pottmann et al., 2004) used a local quadratic

approximation, (Ripperda and Brenner, 2005) used techniques
based on the distributions of the normal field named NDT for
"Normal Distribution Transform ", (Tsin and Kanade, 2004) per-
formed the registration process by using nucleus correlation, (Chen
et al., 1999) used an approach based on "RANSAC" (Random
Sample Concensus), (Jian and Vemuri, 2005) used a gaussian
mixture, and (Wolfson and Rigoutsos, 1997) used a registration
method based on geometrical hashing.

Positioning The prior on the drift mentioned before allowed us
to turn to an ICP registration method. However, we saw that not
only was there a drift but that it was non-linear in time. The initial
strategy was to use a simple and robust registration method based
on the ICP between geometrical primitives of the model and the
3D points of the mobile data. This correspondence technique was
characterized by a non-rigid drift model defined piecewise lin-
early between different control times throughout the trajectory.
The main contribution of the article with regard to the state of the
art is the definition of this drift model, particularly well adapted to
mobile mapping and therefore to the drift that we try to estimate.
The other characteristics of our method are:

1. point selection by a local geometrical descriptor inspired by
(Demantké et al., 2012),

2. using the geometry of acquisition in order to define compat-
ibility between the normal of the model and the point cloud.
This compatibility allows for more robustness in the match-
ing as demonstrated by (Rusinkiewicz and Levoy, 2001).

3. a fast matching step (laser points / geometrical primitive of
the model) by using a KdTree (Rusinkiewicz and Levoy,
2001) and (Zhang, 1994).

3 DRIFT MODEL

We are now going to present the choices made for our drift model
denoted as D.

3.1 Model Choice

As explained in section 1, our choice of model was guided by
three characteristics of the positioning system drift. Firstly, the
drift variation was slow. Secondly, it had a good orientation
quality (a small rotation drift compared to the translation drift).
Thirdly, the drift was independent from the speed of the vehicle
(there is drift even if the vehicle is at a standstill). So, we chose
a drift model defined by a piecewise linear translation according
to time t. The choice of the temporal dependence was natural
in view of the third characteristic, and also allowed to manage
the difference of vehicle drift in case of loops (scanning the same
place at different times). Finally, the choice of linear interpola-
tion rather than cutting into rigid blocks (Gressin et al., 2013)
allows to model the real drift more finely.

3.2 Formalism

The drift of the initial trajectory can be written as a translation
D : t — R® which defines the real trajectory registration of
the vehicle:

P’r’ec: wmt"’D(t) (1)

Where P;;: is the initial position of a point of the cloud (calcu-
lated by the system of positioning), Py 1S its position after regis-
tration and ¢ is the acquisition time. This information is given by
the GPS with a precision of the order of a hundredth of a second.
Drift D is discretized by a piecewise linear function. For point
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Pinit acquired at time ¢, the corresponding point P... is deter-
mined by interpolating Pj,;: (cf.equation 2) between two drift
value d. given at the upper and lower control time 7, spaced out
regularly by an interval of time A (cf.Figure 1):

(Tet 1y = )0e— (1) + (t = Tom (1)) et (1) _
Ay

(1= a(t)de— (1) + a(t)det 1) @)

where variables known at time ¢ are:

¢t (t) the index of the first control time after ¢, ¢~ (t) the index
of the first control time before t and a(t) = (t — T, (;)) /A the
interpolation coefficient.

The unknowns that define the drift are:

O+ (1) the drift at the control time T¢+ ;) and .- (4 the drift at
the control time T, ;.

The step of temporal discretisation A; must be chosen as rather

Ds (t) =

small in order to approximate the non linear drift accurately enough.

Thus, the unknowns determined by ICP will be the three compo-

Figure 1: Cutting of the trajectory in different control time 7.

nents of the vectors d. which define the drift by equation (2).
It allows to obtain the new trajectory of the vehicle by equa-
tion (1) hence, allowing for the complete cloud registration by
application of the drift for every point. In general, in this ar-
ticle, trajectory registration T'raj,.. will always be defined by
Trajrec = Trajinit + Ds(t) where Trajini: is the initial tra-
jectory and J the vector concatenating the drift é. for each control
time 7. and which defines it in a differential way with regard to
the initial mobile data (cf.Figure 2). It particularly allows us to
define a simple distance between two trajectories defined by &°
and 87 which we shall call "average drift" and denoted as DM

Npe

1 P
DM(&',6%) = =3 llo - &Ll 3
¢ e=1

where N7, represents the number of 7. along the trajectory. This
allows us to take into account not only the geometry of the point
clouds but also the time dimension because the distances were
measured between points acquired at the same time (at control
time 7¢) and not between the closest points to both cloud. Also
please note that this distance can be seen at the same time as
a distance between point clouds and between the corresponding
trajectories because the drift Ds(t) applies to both.

%y s Cloud j

Figure 2: Illustration of the distance d separating the drift d; at
control time 7, between two mobile data for the average drift
computation DM.

3.3 Rigidity

As this model can be deformed, it is necessary to parametrize its
rigidity. We did this defining a deformation energy correspond-
ing, by analogy to mechanical deformation, with the amount of

energy to be provided to the system in order to deform it (in par-
ticular this energy must be null in a rigid transformation). Thus,
we are going to define a deformation energy denoted as Fgey:

Nbpe—1

Baer(8) = Y 61— 6cl® “)
c=1

Minimizing this energy will bring the drift at time 7% to be close

to the drift at time 7,41, which allows to introduce the a priori

mentioned in section 1 i.e. the variation of the drift is slow. This

will also help convergence by propagating the constraints along

the trajectory.

4 ICP (ITERATIVE CLOSEST POINT)

4.1 Principle
The ICP is a registration technique that works by matching differ-

ent datasets thanks to an iterative method. Every iteration tries to
move the datasets closer to each other by minimizing an energy
Ereq. The iterative process is stopped when a criterion is reached.
The key of this method is that it can be adapted to various types
of metrics such as point to point, point to primitive and primitive
to primitive distances. The major drawback is that it needs a good
initial guess of the drift values (rotation and translation). This is
not limiting in our case where the acquisition system ensures a
correct geolocalization of the mobile data.

O 1

B

Figure 3: Probability of a laser point belonging to a vertical plane.

Figure 4: Binary threshold. Points belonging to a fagade in green
and points not belonging to a facade in black.

4.2 The six steps of ICP

The ICP algorithm described in (Rusinkiewicz and Levoy, 2001)
is decomposed in six steps: (1) selection of characteristic prim-
itives on each dataset, (2) match these selected primitives, (3)
matching agreement, (4) weight of the matches,(5) term defini-
tion, (6) system minimization. In this paper, the method is ex-
plained following these steps.
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4.2.1 Selection of characteristic primitives Point selection
is an essential step of the registration. In our study, the models
used describe the geometry of buildings in an urban environment
by means of geometrical 3D primitives (triangles). Therefore, to
perform a registration, it is necessary to determine which points
in a laser point cloud correspond to a building fagade. In our
experiment, the ground was not scanned, and the roofs were not
visible from the ground. Thus, we limited the selection to fagade
points. It would thus be possible to work in 2D but we chose
to keep to 3D for two reasons: firstly to make the method ex-
tendible to scans observing the ground (thus allowing for altimet-
ric correction) and secondly to tackle special cases such as a small
building in front of a bigger one or to vertically unhook fagades.
We use a local geometric descriptor, introduced by (Demantké
et al., 2012), to describe the probability of a point P to belong
to a facade (cf.Figure 3). The selection of facade point is done
by thresholding the local geometrical descriptor computed from
every 3D laser point (cf.Figures 4 and 5a).

4.2.2 Matching and agreement Once the facade points se-
lected, it is then possible to match them with the model’s primi-
tives. We shall say that the match is good if the data point results
from a laser echo on a real object which is represented the match-
ing primitive. In all other cases, we shall say that the match is
bad. Bad matches may be due to two factors. Firstly, a suffi-
ciently large drift causing that a point is attributed to the wrong
primitive. Secondly, the existence of objects that are not modelled
in the scene (trees, facilities, etc.). Laser points corresponding to
such objects do not correspond to a primitive of the model but
may be matched to one. In our case, the selection reduced the
number of points of this type but could not eliminate them com-
pletely.

Bad matches can lead to large errors in drift estimation if their
proportion is too significant. So, the objective was to generate as
many good matches and as few bad ones as possible. For that pur-
pose, points are usually matched to the closest primitive provided
that the distance from the point to the primitive is lower than a
fixed threshold d,q.. In our case, the mobile mapping system
records the spatial position of the laser center, denoted as C, for
every point P, which allowed to define the laser beam R = C'P.
In our study, the direction of the normal 7 p was computed using
the method of (Demantké et al., 2012), and was oriented in the
direction of the laser center.

Every primitive Prim of the model also has a normal 7 pyiy, di-
rected from the inside to the outside, so we could refine the pro-
cess of agreeing the matches by adding a normal compatibility
criterion. Finally, we used beam R = C'P to match a point P to
the first primitive Prim intersected by R meeting the following
two conditions (cf.Figure 5b):

1. Normal compatibility: 7 prim.iip > 0 (cf.Figure Sc),

2. Distance of acceptance: dist(P, Prim) < dmaas (cf.Figure
5d),

If no primitive is intersected or they do not meet the conditions,
no match is made. This additional information improves the ro-
bustness of the matching thanks to the contribution of the com-
patibility of the normal, and thus the robustness of the ICP. More-
over, using ray-tracing to select primitive candidate can be per-
formed by highly optimized libraries reducing drastically the pro-
cessing time as the matching is by far the most time consum-
ing step. If the laser center position is not known, the presented
method can be used by returning to a more classical matching, to
the detriment of losing the two advantages mentioned above. In
the rest of this article, we will index the matches by i: match

i pairs the beam R; = P;C; acquired at time ¢; to primitive
Prim;. fip, and fiprim,; Will denote the normals associated to
P; and Prim;.

4.2.3 Weight of the matches We also use a normal compati-
bility criterion to weigh the different matches:

wi; = T_iPi . ﬁPriml (5)

This weight is always positive as the selection rejects the matches
for which w; < 0.

4.2.4 Data term Every iteration of the ICP aims at moving
the data closer to the model. This is done by minimizing a data
term. In our case, we can simply define it as:

Na.pp

Ermodet(5c) = Z w;.dist(P;(), Prim;)? =
= ©)

NQPP

Z w;.((Pi + Ds(ti) — Qi) Aprim,;)”

i=1

where P;(6) = P, + Ds(t;) is a matched point to which we
applied the drift defined by ¢ (cf.equation 2), Ny is the total
number of matchings and @); is any point belonging to the primi-
tive Prim;.

4.2.5 System minimization The semi-rigid registration prob-
lem (for a given matching) consists in finding the drift Ds(¢) de-
fined by the set of §. which minimizes:

Ereg(0) = Emodet(0) + Arigia * Eaey(9) @)

where 444 is a rigidity parameter chosen by the user (cf.Section
3.3). We are now going to write (7) in matrix form, by separating
both energies. According to equation (2) each squared term of
FErnoder in (6) is equal to:

dist(P;(0c), Prim;) =

(1 - a(ti))dc* (t3) ~ﬁPrimi + O[(tz)(;ch (t4) ~ﬁP'riva
—(Qi
FErvoder can be written in matrix form (weighted least square):

E’model (6) - (Arnodel(s - b'model)tW'model (A'model5 - b'model)
)

®

— P,).fiprim;

where:

-6 = (61,0Y,0%,03,..., 5]ZVTC )" is a vector of dimension (3Nr.,)
concatenating the drift vectors . for each control time T,

- bmodel is a dimension Ny, vector whose i*" term is:

(Qi — Pi).fprim; 10)

- Amoder is @ matrix of dimension (Ngpp X 3Nt,), The it" line
of this matrix contains only six non null terms starting from index
3¢™ (t;): the three components of (1 — a(t;))7iprim, then those
of a(t:) T prim;»

- Winodei is a diagonal matrix of dimension Ngyp,p and 7"
nal term w;.

diago-

In the same way, according to the equation (4) we can write Eg. s
in the following way:

Eac(8) = || Aaesd|[* (11)

where Agey is a matrix of (N7, — 1) X Nr,) 3 by 3 blocks. The
block of coordinates (¢, ) is Idif ¢’ = ¢, —Idif ¢ = ¢+ 1 and
zero otherwise.
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Figure 5: Illustration of the selection point process. (a) All facade points selected by the local geometrical descriptor. (b) Ray-tracing
step: a point is selected only if the beam intersects a primitive. (c) Normal compatibility step: a point is selected if its normal is
consistent with the primitive normal. (d) Distance acceptance: a point is selected only if its distance to the primitive is lower than a

threshold value.

Finally, according to (7), we obtain the matrix expression:
Ereg(d) = 5tMTeg5 — 25tvmg + cnst (12)

with:
Myeg = AthnodelWAmodel + )\AtdefAdef

t
Ureg = Amodeleodelbmodel

It is a quadratic form which minimum is reached when:

VisEBreg = 2Myegd — 20reg = 06 8 = Micpvreg  (13)

This optimal vector § of dimension 3 * N, defines the drifts J.
associated with control times 7.. Consequently, we can use its
values to compute the new trajectory and new points positions.
The registration by ICP is made by iterating the matching and
minimization steps until a stopping criterion is reached (cf.Figure
6):

1
100

AT )
, Yo 6y, 2)

1607 = Gell < —=1|d2 — o] (14)

X
.

[ correct trajectory [l incorrect trajectory

Figure 6: Overview of the method.

5 RESULTS AND EVALUATION
5.1 Data

The model: The geographical database used for this evaluation
was part of a 3D model created by use of photogrammetry from
airborne images and cadastral database. The area covered part of
the 12°" district of Paris. It consists of about 71.400 triangular
primitives among which 25.000 correspond to building facades.
This model was generated according to the method described in
(Durupt and Taillandier, 2006).

The mobile data: The mobile data that we used was produced
by the terrestrial mobile mapping vehicle Stéréopolis II ((Papar-
oditis et al., 2012)). Two fixed RIEGL lasers simultaneously ac-
quire the scene on each side of the road with a rate of 10 000
pts/sec each. These lasers cover an angular sector from the hori-
zontal to 80° upward in a plane orthogonal to the trajectory thus
covering most of the fagades, but not the ground. The data used
for the evaluation consists of 3.6 million laser points extending
over a distance of about 400 meters and were acquired in 3 min-
utes. This data is well localized and close to the model (0.5 m on

average) as shown in Figure 7.

The selection step kept 54, 7% of these points, some of which
correspond however to planar vertical surfaces that were not rep-
resented in the model (bus shelters, trunks, etc.) as shown in
figure 8.

Scale : A
I Unselected points I Trajectory [ 3DModel

[ Selected point

Figure 7: Overview of the geometric descriptor.

Scale:
I Unselected points

[ Selected point [ Trajectory [ 3DModel

Figure 8: Zoom of part of the geometric descriptor in the scene
emphasizing other vertical objects than building facades (poles,
trees, panels, etc.).

5.2 Results

This method was used to register the data presented in section
5.1. At the end of the registration process, 93, 89% of the selected
points were matched and the point to primitive distance decreased
from 0.5 to 0.095 m. The final distance must not be interpreted as
a registration error as this remaining distance comes mainly from
facades details laying outside of the main fagade plane (windows,
balconies). At visual inspection, fagade planes from the model al-
ways exactly coincide, so we consider this registration result as
nearly optimal. The registration lasted 182s all in all. The process
stopped after 16 iterations of approximately 11s each (matching,
system resolution and application of the drift). The number of it-
erations depend on the initial distance from the data to the model
(the greater the distance, the more iterations are necessary to re-
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Figure 9: Initial (top) and final (bottom) steps of the registration of an artificially degraded terrestrial laser point cloud with around 20

meters precision on three different area of interest.

trieve good matches) and on the threshold used as a stop crite-
rion (the lower the threshold, the more iterations are necessary
to reach it). To test the robustness of our method, we amplified
the deformation 40 times (thus with an initial precision of 20m
instead of 0.5m) and still obtained an excellent result as shown
in figure 9. We could even obtain a correct registration with an
amplification of the real drift up to 80 times.

6 CONCLUSION AND PERSPECTIVES

The purpose of our approach was to define a process capable of
registering mobile laser data on a geometrical database by tak-
ing into account the non-linearity of the deformations in time. A
registration algorithm was set up based on a point to plane ICP
method and a piecewise linear deformation model according to
time. The obtained results are satisfactory because the evaluation
of the robustness shows that the algorithm can register drifts up
to 80 times higher that of our system which guarantees its relia-
bility. The registration method described in this article is easy to
parametrize because it only has two influential parameters: the
rigidity term Ar;giq and the maximal matching distance dmax
which are both simple to interpret. The method is also generic
as it is applicable to both 2D or 3D models, and because the hy-
potheses on the real drift are not too limiting; the most binding
one is probably the requirement for a highly accurate orienta-
tion as it is not re-estimated. Finally, the proposed algorithm is
sufficiently fast for our needs as it takes 182 s to register data
acquired in 3 minutes. In the context of a production field, we
can thus hope to process data acquired in the day time during the
following night.

Our main leads for improvement are:

- Matching the points with other types of objects (ground or other
urban objects in addition to fagades) to increase the robustness of
our method.

- Evaluating accuracy in terms of repeatability of the method.

- Using the trajectory resulting from registration to re-estimate
the orientation of the vehicle to remove the major limitation of
current usability (precision of the orientation).

REFERENCES

Besl, P. and McKay, N., 1992. A method for registration of 3-d shapes.
IEEE Transactions on PAMI 14(2), pp. 239-256.

Chen, C., Hung, Y. and Cheng, J., 1999. Ransac-based darces: a new
approach to fast automatic registration of partially overlapping range im-
ages. IEEE Transactions on PAMI 21(11), pp. 1229-1234.

Chen, Y. and Medioni, G., 1992. Object modelling by registration of
multiple range images. IVC 10(3), pp. 145-155.

Demantké, J., Vallet, B. and Paparoditis, N., 2012. Streamed vertical rect-
angle detection in terrestrial laser scans for facade database production.
IAPRS I-3, pp. 99-104.

Durupt, M. and Taillandier, F., 2006. Automatic building reconstruc-
tion from a digital elevation model and cadastral data: An operational
approach. PCV.

Gressin, A., Mallet, C., Demantké, J. and David, N., 2013. Towards 3d
lidar point cloud registration improvement using optimal neighborhood
knowledge. 1JPRS 79, pp. 240-251.

Jian, B. and Vemuri, B., 2005. A robust algorithm for point set registration
using mixture of gaussians. ICCV 2(II), pp. 1246-1251.

Paparoditis, N., Papelard, J.-P., Cannelle, B., Devaux, A., Soheilian, B.,
David, N. and Houzay, E., 2012. Stereopolis II: A multi-purpose and
multi-sensor 3d mobile mapping system for street visualisation and 3d
metrology. RFPT 200, pp. 69-79.

Pottmann, H., Leopoldseder, S. and Hofer, M., 2004. Registration without
icp. CVIU 95(1), pp. 54-71.

Ripperda, N. and Brenner, C., 2005. Marker free registration of terres-
trial laser scans using the normal distribution transform. IAPRS XXXVI-
5/W17 (on CD-ROM), pp. 99-104.

Rusinkiewicz, S. and Levoy, M., 2001. Efficient variants of the icp algo-
rithm. 3DIM pages, pp. 145-152.

Salvi, J., Matabosch, C., Fofi, D. and Forest, J., 2007. A review of recent
range image registration methods with accuracy evaluation. IVC 25(5),
pp. 578-596.

Tsin, Y. and Kanade, T., 2004. A correlation-based approach to robust
point set registration. ECCV 2004 0, pp. 558-569.

Wolfson, H. J. and Rigoutsos, I., 1997. Geometric hashing: an overview.
IEEE Computational Science and Engineering 4(4), pp. 10-21.

Zhang, Z., 1994. Iterative point matching for registration of free-form
curves and surfaces. IJCV 13(2), pp. 119-152.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-11-5-W2-193-2013 198



