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ABSTRACT:

3D reconstruction of objects is a basic task in many fields, including surveying, engineering, entertainment and cultural heritage. The
task is nowadays often accomplished with a laser scanner, which produces dense point clouds, but lacks accurate colour information,
and lacks per-point accuracy measures. An obvious solution is to combine laser scanning with photogrammetric recording. In that
context, the problem arises to register the two datasets, which feature large scale, translation and rotation differences. The absence of
approximate registration parameters (3D translation, 3D rotation and scale) precludes the use of fine-registration methods such as ICP.
Here, we present a method to register realistic photogrammetric and laser point clouds in a fully automated fashion. The proposed
method decomposes the registration into a sequence of simpler steps: first, two rotation angles are determined by finding dominant
surface normal directions, then the remaining parameters are found with RANSAC followed by ICP and scale refinement. These two
steps are carried out at low resolution, before computing a precise final registration at higher resolution.

1 INTRODUCTION

With the emergence of highly automated recording techniques,
automatic point cloud registration has attracted great interest in
past years. While researchers from different disciplines, includ-
ing geodetic metrology, photogrammetry, computer graphics and
computer vision have proposed different registration algorithms,
only few attempts have been made to register point clouds with
large scale differences. For point clouds with the same scale,
such as individual laser scans, the iterative closest point algo-
rithm (ICP) (Chen and Medioni, 1992, Besl and McKay, 1992)
is widely used. Since ICP is a local method and requires good
approximations to converge to a correct result, different meth-
ods have been proposed to find approximate registration param-
eters using point correspondences. Algorithms such as 3D SIFT
(Li and Guskov, 2005), and SPIN images (Johnson and Hebert,
1997) extract features and match them to obtain correspondences
between point clouds. These methods have in common that the
two point clouds must have similar point spacing and almost the
same scale. A different approach is the 4-points congruent sets
(4PCS) algorithm (Aiger et al., 2008), which does not attempt to
extract features. Rather, it randomly picks four coplanar points
with large baselines and matches them based on their geometric
configuration in order to obtain the registration parameters. The
method also requires a known scale, and that the point clouds
have similar and relatively uniform point density. (Zinßer et al.,
2005) proposed a method which incorporates a scale estimation
into the ICP algorithm, but again is a local refinement which re-
quires that the two models are already roughly aligned.

To overcome the limitation w.r.t. scale (Corsini et al., 2013) have
recently proposed a method that automatically registers photogram-
metric and laser point clouds without any approximations, in-
cluding automated scale estimation. In their method, a sparse
photogrammetric point cloud is first roughly registered with the
laser point cloud using a combination of 4PCS and Variational
Shape Approximation (VSA) (Cohen-Steiner et al., 2004). Then
the orientation of each image is individually refined using mutual
information.

Here we propose a different approach to fully automatic registra-
tion. Our approach is based solely on 3D geometry and does not

use image or laser intensities. Instead, our method uses a dense
photogrammetric point cloud, which nowadays can be generated
reliably. Furthermore, the exterior orientation of the camera po-
sitions is fixed unlike in (Corsini et al., 2013) which keeps the
rigidity of the photogrammetric point cloud intact. Additionally
we do not need the image information, which makes it possible
to apply our method on point clouds solely generated with laser
scanners or similar active scanning devices.

2 MOTIVATION

A laser point cloud and a non-georeferenced photogrammetric
point cloud exhibit significant differences in scale, rotation, trans-
lation and point density. Additionally, scans can differ in object
coverage, and have different levels of noise and outliers. Fig. 1
shows a real example for the often neglected difference in cover-
age and detail.

Figure 1: Differences in detail. Top: Laser scan point cloud,
Bottom: Photogrammetric point cloud

While the laser scanner has only acquired a small part of the rail-
way tracks, it was able to capture the catenary support as well as
the catenary wires completely. The photogrammetric point cloud
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on the other hand covers a much larger area but the catenary sup-
port has been reconstructed only partially, and the wires are miss-
ing completely. Scale differences are another challenge when
attempting to register photogrammetric with laser point clouds.
Laser scanners deliver metric scale, since they measure distances
in world units. On the contrary, images are oriented based only on
ray directions, thus the scale is undetermined and set arbitrarily
at some point of the computation. This leads to the situation that
the scale difference between the point clouds can be very large,
i.e. a factor 50 or more. The arbitrarily large scale difference is
a challenge, since standard registration algorithms do not accout
for such large scale differences. Next to the scale differences, ro-
tation differences are another major challenge. Terrestrial laser
scans mostly have a known gravity vector since the instrument
is levelled before recording, whereas the photogrammetric net-
work again is not connected to the world coordinate system and
can even be completely upside down. Finally, different acqui-
sition techniques yield different point densities, as can be seen
in fig. 2. The latter difference is problematic because it causes
conventional 3D feature matching procedures to fail, since fea-
ture responses depend on point density. Translational differences,
which can be very large, are only a minor challenge.

Figure 2: Differences in point spacing. Left: Laser point cloud,
Right: Photogrammetric point cloud.

3 REGISTRATION METHOD

Figure 3: Registration
workflow

Fig. 3 shows the proposed point
cloud registration approach that pro-
ceeds in steps, rather than solving
for all transformation parameters at
once. It is inspired by the way a hu-
man operator interactively performs
this task: since the operator has to
work with a 2D view of the point
cloud, he first rotates and translates
the point clouds to get a similar per-
spective for both in which he can see
similar shapes or features (e.g. a
birds-eye view), then adjusts the re-
maining parameters (translation, in-
plane rotation, scale), and finally re-
fines the registration.

The proposed registration algorithm
proceeds in a similar manner. First,

the point clouds are pre processed, to reduce the point density and
processing time. Next, the dominant normal directions of both
point clouds are estimated and aligned, effectively solving for two
of the three rotation angles and reducing the registration problem
to a 2.5D rasted DEM (heightfield) matching process. The re-
maining parameters (3D translation, in-plane rotation, scale) are
then solved by robust fitting with RANSAC (Fischler and Bolles,
1981), followed by fine registration with exhaustive local search
and ICP. The involved parameters have been determined empiri-
cally using ten datasets with various properties, such as very high
resolution, low resolution and high noise levels.

3.1 Preprocessing

Initially, a statistical outlier filter (Rusu and Cousins, 2011) is ap-
plied to both point clouds in order to reduce noise which saves
computation time in later steps. In addition, both point clouds
are downsampled with a voxel grid filter. On the one hand this
yields a uniform point density, and on the other hand it reduces
the point cloud to a manageable size for coarse initial registra-
tion. More precisely, the filter replaces all points that fall within
a given voxel by a single point, in our case defined to be the cen-
troid of those points. The voxel size is determined by estimating
the median nearest-neighbor distance dNN in the point cloud, us-
ing a random sample of 5% of the points. Each point cloud is
downsampled twice, once to X · dNN and once to Y · dNN , to
generate representations at two different downsampling factors.
The clouds with a higher downsampling factor (X · dNN ) are
then used for coarse registration, while the ones with the smaller
downsampling factor (Y · dNN ) enable accurate fine registration
at the end. The downsampling factors are automatically calcu-
lated for each dataset.

3.2 Finding dominant normal directions

After pre-processing, the dominant normal directions are detected.
Since many scenes do not have an unique and unabiguous dom-
inant normal, we find up to five normals and test all of them in
subsequent steps. The normal directions of the two point clouds
are then aligned to determine two rotation angles (similar to the
way 1D rotation is accounted for in invariant image descriptors).

Figure 4: Normal di-
rections on an unity
sphere with the circu-
lar kernel marked in
red

To find dominant normal directions,
point normals are estimated for both
point clouds and clustered on the unit
sphere. Clustering is done with non-
parametric density estimation using a
circle on the sphere with radius rk =
0.035 (corresponding to a polar cap
with 2 ◦ of latitude) as kernel. A sim-
ilar approach is described in (Maka-
dia et al., 2006). However, instead of
unwrapping the normal sphere into a
equirectangular projection we sample
the normals directly on the sphere.
This has the advantage that the sam-

pling kernel always covers the same area on the sphere, with-
out increasing/decreasing in size towards the equator/poles. The
downside to this is an increased processing time. Next, normal di-
rections are found by greedily picking the clusters with the high-
est number of normals, enforcing a minimum distance of 5·rk be-
tween clusters for non-maximum suppression. After computing
the mean point count m of the clusters and its standard deviation
σm, clusters with less than m + 2.5 · σm members are discarded.
We keep at most five largest clusters, since few scenes will have
more than 5 similarly dominant normal directions. More direc-
tions are typically only found on objects similar to platonic solids.
Since registration of such objects is ill-posed, they are not treated
separately.

3.3 Conversion to Heightfields

Having found the dominant normal direction(s), the point clouds
are projected along the normal to a 2.5D heightfield, the nor-
mal being aligned with the z-axis of the 3D coordinate system.
The points are projected onto the x, y-plane and discretized to a
regular grid with step width dG, set to ten times the 2D median
point spacing in the projection plane. To generate the heightfield,
points with normals pointing away from the viewer are discarded
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Figure 5: Top: Globally normalized photo heightfield, Bottom:
Locally normalized photo heightfield. The red square indicates
the same region in both heightfields

as back-faces, and of the remaining points the highest one is re-
tained. The projection results in a 2.5D heightfield (Fig. 5), like
the ones often used to represent digital terrain models or range
camera images. These heightfields have the advantage that the
scale difference does not affect them. Rather, the point spacing
imposes a change in scale, which makes the scale differences on
these heightfields much smaller. To remove remaining blunders
and simplify processing, the heightfields are median-filtered and
rescaled to 8-bit images. It has proved beneficial for further pro-
cessing (see below) to keep two versions, one rescaled globally
to fit into the 8-bit range and one normalized locally in 32×32
pixels tiles.

3.4 Heightfield matching

Once the 2.5D heighfields have been created, they need to be
matched. In case of multiple dominant normal directions, we test
all pairwise combinations and keep the one with the best score.
Matching is again decomposed into two steps, namely

• rough registration with RANSAC

• refinement with exhaustive local search.

To obtain a rough initial registration, we first cut down the set of
possible rotations to a small number (recall that only one rota-
tion angle around the vertical is still unknown). To that end, we
compute gradients for both heightfields (through Sobel-fitering)
and build magnitude-weighted histograms over gradient direc-
tions. This procedure is identical to the one used to determine the
canonical orientation in SIFT (Lowe, 1999) and other rotation-
invariant descriptors. However, rather than settling on a single
orientation, our method again proceeds conservatively: we com-
pute the mean mκ and standard deviation σκ of the histogram
counts and keep all candidate directions with a count > mκ +
1.5 · σκ.

The 2D Helmert transformation between the two heightfields is
then obtained by RANSAC, using a minimum sample of 2 points.
The sampling is constrained to a sensible parameter range of

• rotation near one of the candidate directions

• Point sampling difference (heightfield scale factor) between
0.1 and 10

• heightfield overlap > 25% in both directions

For each such random sample, the median absolute differences
(MAD) are computed twice, once between the globally normal-
ized heightfields and once between the locally normalized ones.
If both are below a threshold (set to 30, respectively 50 gray-
levels), the transformation is refined with ICP. Refined solutions
are accepted only if the ICP solution has an inlier ratio of at least
95%. The sampling process is repeated until the RMSE of the
refined solution drops below 1.25 · dG, or a maximum number of
iterations is reached. Finally, the solution is further polished by
exhaustively testing small changes of the transformation parame-
ters in a local neighborhood around the estimated values.

3.5 Scale refinement

The principal remaining source of discrepancies is the inaccuracy
of the estimated scale, which proves to be the most brittle param-
eter. We thus search through range of scales around the scale
found by the preceding steps, to minimize the RMSE of ICP reg-
istration.

3.6 Final Registration

Having found an optimal solution at low resolution for all pairs of
dominant normal directions, the ones with reasonable accuracies
(below the mean RMSE plus 3 standard deviations) are passed
to high-resolution final registration. At this point, we revert to
the high-resolution point clouds generated with a finer voxel grid
(Y · dNN ), and polish the solution by again running ICP with
exhaustive scale testing, this time using smaller scale steps. The
solution with the lowest RMSE is our final solution.

4 EXPERIMENTS

To generate reference data for experimental evaluation, we have
registered all data sets interactively, by clicking four common
points to obtain 3D Helmert transformation parameters and refin-
ing the solutions with a non-scaled ICP, using the same stopping
criterion as in the automatic registration method. Note that our al-
gorithm is indeed fully automatic. Scale- and density-independent
thresholds are kept fixed, and those depending on the properties
of the specific point clouds are set in a data-driven fashion. The
fixed parameters are:

Heighfield overlap > 25% in both directions
Local MAD < 30
Global MAD < 50
Inlier ratio > 95 %

Other parameters, such as RANSAC stopping points (both ”hard”
and ”soft”) as well as downsampling ratios are variably defined
according to the point cloud sizes. Both manual and automatic
registration use identical point clouds, namely the high-resolution
voxel grid filtered ones, to obtain consistent scores. The resulting
RMSE as well as the ICP inlier ratio, number of used points, and
ratio of laser and photogrammetry points used for registration are
shown in tables 1, 2, 3, 4 and 5. The inlier ratio is based on the
correspondence estimation of the ICP algorithm. It is defined as
the amount of ”good” correspondences over the total amount of
found correspondences. The ratio of laser and photo points is then
the amount of good correspondences over the amount of points in
the laser/photogrammetric point cloud used for the registration.
Additionally, the estimated scale is shown. It is important to note
that the manual scale is not the ”correct” scale as it is derived
from manually measured point correspondences. It is therefore
an approximation and serves mainly as an indicator whether the
automated method obtained a reasonable scale factor.
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5 DATASETS

HXE The HXE dataset consists of a high resolution, terrestrial
laser scan and a photogrammetric point cloud obtained with an
unmanned aerial vehicle (UAV). The images have been taken in a
classic nadir acquisition setup. This dataset is a fairly ”standard”
as it does not have a lot of noise and features well defined man-
made structures.

Figure 6: HXE - Top: Laser, Bottom: Photogrammetry

Niederwald The Niederwald dataset consists of a terrestrial laser
scan and a photogrammetric point cloud which again was ob-
tained with an unmanned aerial vehicle (UAV). The laserscan
contains a large amount of outliers, most probably caused by a
scanner malfunction or a slow subsidence of the laserscanner tri-
pod because of thawing ground. The images have been taken in
two stripes, one nadir and one in a 45 ◦ oblique view.

Figure 7: Niederwald - Top: Laser, Bottom: Photogrammetry

Erechtheion The Erechtheion dataset was obtained with a ter-
restrial laser scanner and terrestrial photogrammetry. The origi-
nal laser scan data consists of over five billion points and covers
the outside, as well as the inside of the Erechtheion. The acquis-
tion is described in (El-Hakim et al., 2008) and was kindly pro-
vided. From this data a five million triangle VRML model was
created which was converted into a point cloud. The photogram-
metric point cloud, which is denser than the laser point cloud,
covers one side of the Erechtheion, which includes the porch of
the Caryatids.

Lucy The Lucy dataset, kindly provided by the Stanford Uni-
versity Computer Graphics Laboratory, has been recorded using
their large statue scanner and represents the laser dataset. The
photogrammetric dataset has been simulated by rescaling, down-
sampling, rotating and translating the statue. The scale factor
was set to 0.3 of the original model, which translates to a scale of
1

0.3
= 3.3333 that should be estimated.

Figure 8: Erechtheion - Top: Laser, Bottom: Photogrammetry

Figure 9: Lucy - Top: Laser, Bottom: Photogrammetry

Fountain-P11 The fountain dataset was kindly provided by the
dense multiview stereo repository of the École Polytechnique Fédérale
de Lausanne (Strecha et al., 2008). The photogrammetric point
cloud was kept ”as is” meaning that the estimated scale factor
should be exactly ”1”, since the data was oriented using ground
control points. The laser point cloud was downsampled before-
hand as it was far too large to be handled in a reasonable man-
ner. The photogrammetric reconstruction was performed with
CMVS/PMVS (Furukawa and Ponce, 2010).

Figure 10: Fountain-P11 - Top: Laser, Bottom: Photogrammetry
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6 RESULTS

Filler

HXE
Manual Automated

RMSE (m) 0.0618 0.0571
Inlier Ratio (%) 0.9946 0.9968
# Used Points 92’665 125’597
Ratio Laser Points (%) 0.0702 0.0952
Ratio Photo Points (%) 0.1866 0.2529
Estimated Scale Difference 24.9574 24.6296

Table 1: HXE results

Figure 11: HXE automatically registered, Red/Dark: Laser,
Blue/Light: Photogrammetry

The registration result of the HXE dataset is visually correct.
However upon closer inspection there is a scale error which trans-
lates into differences up to 3 cm. The manual registration how-
ever creates slightly worse results, mainly due to the difficulties
to pick four homologous points accurately enough.

Niederwald
Manual Automated

RMSE (m) 0.0366 0.0328
Inlier Ratio (%) 0.9411 0.9874
# Used Points 266’622 403’495
Ratio Laser Points (%) 0.0745 0.1476
Ratio Photo Points (%) 0.0976 0.1127
Estimated Scale Difference 24.4946 24.1767

Table 2: Niederwald results

Figure 12: Niederwald automatically registered, Red/Dark:
Laser, Blue/Light: Photogrammetry

The automated registration result of the Niederwald dataset is
also successful but shows small scale errors. It succeeds to obtain
better results than the manual registration.

The Erechtheion dataset seems to be correct from a first glance.
However the scale is not estimated properly. This is mainly due
to the long and planar wall as well as the fact that the laser dataset
also covers the inside of the building walls. This, combined with
the fact that the laser point cloud is rather sparse. results in a
worse result than the manual registration.

Erechtheion
Manual Automated

RMSE (m) 0.0344 0.0677
Inlier Ratio (%) 0.9691 0.9004
# Used Points 4’010 7’250
Ratio Laser Points (%) 0.0050 0.0091
Ratio Photo Points (%) 0.0007 0.0012
Estimated Scale Difference 0.3336 0.3542

Table 3: Erechtheion results

Figure 13: Erechtheion automatically registered, Red/Dark:
Laser, Blue/Light: Photogrammetry

Lucy
Manual Automated

RMSE (mm) 0.4461 0.4268
Inlier Ratio (%) 0.9999 0.9999
# Used Points 1’221’793 1’221’870
Ratio Laser Points (%) 0.1828 0.1828
Ratio Photo Points (%) 0.9105 0.9105
Estimated Scale Difference 3.3308 3.3328

Table 4: Lucy results

Figure 14: Lucy automatically registered, Red/Dark: Laser,
Blue/Light: Photogrammetry

The Lucy dataset has been registered successfully. The difference
to the manual registration is fairly small, mainly because picking
four homologous points in this dataset is rather easy. This is owed
to the fact that the datasets are essentially the same ones except
for the simulated differences in downsampling. The estimated
scale from the automated part deviates from the real value by
about 500 parts per million (ppm). For the manual registration it
is about 2500 ppm.

The fountain dataset is also registered successfully and again the
difference to the manual registration is fairly small. Like in the
Lucy dataset, the object coverage is pretty much the same and the
point densities are similar. The scale differences to the real value
of ”1” are a bit larger though. For the automated part it is 3000
ppm, for the manual 5600 ppm.
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Fountain-P11
Manual Automated

RMSE (m) 0.0055 0.0053
Inlier Ratio (%) 0.9905 0.9883
# Used Points 325’169 378’390
Ratio Laser Points (%) 0.0775 0.0901
Ratio Photo Points (%) 0.2590 0.3011
Estimated Scale Difference 1.0056 1.003

Table 5: Fountain-P11 results

Figure 15: Fountain-P11 automatically registered, Red/Dark:
Laser, Blue/Light: Photogrammetry

7 DISCUSSION

The results show that the automated method manages to obtain
approximations for all datasets. Furthermore, the proposed method
offers a completely automated processing chain, which avoids
any interactive point measurements. In most cases the result is
even better than the manual registration method. The only ex-
ception is the Erechtheion dataset where the scale estimation is
slightly worse than the manual result. This can be mainly at-
tributed to the long and planar wall as well as the backwall of the
interior.

The limitation of the proposed solution is that the datasets have to
have a common dominant normal direction. This is in most cases
true, but makes it difficult to apply the algorithm on datasets with
very low overlap. A possible solution might be to resolve the
ambiguity with the help of extended Gaussian images (Makadia
et al., 2006). Another drawback is the completely automated, but
nevertheless purely empirical setting of the parameters. Addition-
ally, reducing the problem to 2.5D heightfield matching greatly
simplifies the problem, but this comes at a price. Height fields
are a lot smoother and have much less high-frequency detail than
optical images, and are thus harder to match with standard image
matching techniques. An approach using higher-level shape in-
formation rather than just per-pixel heightfield differences could
potentially yield a more reliable registration pipeline, and also
handle datasets with even smaller overlaps.

We also point out that, other than for example the recent (Corsini
et al., 2013), our method views the photogrammetric reconstruc-
tion as a rigid object, keeping the network geometry unchanged.
This can be seen as positive or negative. On the negative side,
one sacrifices the possibility to remedy inaccuracies in the pho-
togrammetric orientation. On the positive side, inaccuracies in ei-
ther of the two point clouds will cause systematic registration er-
rors and can be detected (e.g. model deformations in photogram-
metry, or wave patterns due to vibrations of the laser scanner
mechanics). Finally, there are still small scale differences. As
pointed out by (Zinßer et al., 2005), scale selection with ICP is
not very reliable. It may be possible to further improve the scale
by employing a different fine registration method such as (Zinßer
et al., 2005, Gruen and Akca, 2005).

8 CONCLUSION AND OUTLOOK

The fully automated registration of point clouds from different
sensors allows for a better coverage of objects. By using different
platforms and acquisition times, it is possible to cover an object
in more detail both in terms of geometry as well as colour infor-
mation. The results show that the proposed method manages to
obtain approximate registration parameters reliably for four out
of five datasets. For cultural heritage, archaelogical, architectural
and even certain low-accuracy surveying applications these ap-
proximations might already be accurate enough.

Compared to the manual measurements, the automated results
yield lower RMSE values for four out of the five datasets, which
means that the automated scale estimation is more accurate than
calculating it via four manually measured points. However, at
least 25% of overlap in both directions is necessary for the pro-
cedure to work properly. Future research in heighfield matching
and scale estimation in the final registration part would further
improve the suggested method both in terms of accuracy and re-
liability.
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