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ABSTRACT: 
 
A new robust way for ground surface extraction from mobile laser scanning 3D point cloud data is proposed in this paper. Fitting 
polynomials along 2D/3D points is one of the well-known methods for filtering ground points, but it is evident that unorganized 
point clouds consist of multiple complex structures by nature so it is not suitable for fitting a parametric global model. The aim of 
this research is to develop and implement an algorithm to classify ground and non-ground points based on statistically robust locally 
weighted regression which fits a regression surface (line in 2D) by fitting without any predefined global functional relation among 
the variables of interest. Afterwards, the z (elevation)-values are robustly down weighted based on the residuals for the fitted points. 

The new set of down weighted z-values along with x (or y) values are used to get a new fit of the (lower) surface (line). The process 
of fitting and down-weighting continues until the difference between two consecutive fits is insignificant. Then the final fit 
represents the ground level of the given point cloud and the ground surface points can be extracted. The performance of the new 
method has been demonstrated through vehicle based mobile laser scanning 3D point cloud data from urban areas which include 
different problematic objects such as short walls, large buildings, electric poles, sign posts and cars. The method has potential in 
areas like building/construction footprint determination, 3D city modelling, corridor mapping and asset management.  

 
1. INTRODUCTION 

Terrestrial Mobile Laser Scanning (TMLS) has the advantage of 
3D data acquisition of the environment and physical objects in 
the vicinity of the mapping vehicle. It collects reasonably 
accurate geo-referenced point sets (clouds) quickly and safely. 
This type of data has different applications in many fields such 
as autonomous navigation, change detection, three dimensional 
(3D) city modelling, Digital Terrain or Surface or Elevation 
Modelling (DTM/DSM/DEM), environmental monitoring, 

corridor mapping and constructions management (Garouani and 
Alobeid 2013, Hebert and Vandapel 2003, Pu et al. 2011, Yang 
et al. 2013). A laser scanning point cloud consists of both 
ground and non-ground points and many application areas 
require classifying points into ground and non-ground points. 
For example, in corridor mapping, road assets management and 
for segmentation of urban street scenes (Pu et al. 2011) 
separating ground points is necessary and useful for point cloud 

post processing. Extracting the ground surface also helps to 
minimize and make the remaining analysis (e.g. region growing, 
segmentation and feature extraction) easy, time and cost saving. 
Accordingly, many methods have been developed for 
DTM/DSM/DEM, filtering (removing non ground points from a 
point cloud) etc. for years, mainly introduced from 
multidisciplinary research including statistics, computer vision, 
pattern recognition, photogrammetry and remote sensing (e.g. 

Bartles et al. 2006, Zhou et al. 2012). To meet the challenges 
associated with classification/ground filtering (separating 
ground points) methods have been introduced over the last two 
decades (e.g. Belton and Bae 2010, Brovelli et al. 2004, Crosilla 
et al. 2011, Lindenberger 1993, Kraus and Pfeifer 1998, Nasser 
et al. 2005). A comparative analysis among different  

methods conducted by the ISPRS Working Group (WGIII/3; 
Sithole and Vosselman 2004) show that no method is 
sufficiently good for every dataset.  Most of them do not 
perform well in the presence of multiple structures like ramps, 
sharp edges, steep slopes and isolated ground points. Hence 

there is much interest in developing a new general method to 
get better results.  

 
It is known that parametric polynomials estimate parameters 
that fit the data best for a pre-specified family of functions. In 
many cases, this method yields easily interpretable models that 
do a good job of explaining the variation in the data, but it is not 
always true. The chosen family of functions can be overly-
restrictive for some types of data (Avery 2012). Fan and Gijbels 
(1996) show even a 4th-order polynomial fails to give visually 

satisfying fits. As an alternative, higher order fits may be 
attempted, but this may leads to numerical instability. As a 
remedy, the Locally Weighted Regression (LWR) approach can 
be used. We choose LWR because it satisfies many desirable 
statistical properties (most importantly, it adapts well to bias 
problems at boundaries and in regions of high curvature; 
Cleveland and Loader, 1996). In this paper, we propose a new 
algorithm based on Robust LWR (RLWR). Local fitting by 

means of a locally weighted interpolation function based on 
local neighbourhood finds fine details about point cloud by 
smoothing. Fitting within a local neighbourhood considers local 
point density accurately, which is not always possible for global 
model (polynomial) fitting for the whole dataset. We know that 
significant point density variation is typical in laser scanner 
point cloud data. In particular, for steep slopes, this type of 
global parametric model fitting may lead to misclassification 

results and local fitting typically gives better results.  
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The proposed algorithm is an iterative process, where for every 

iteration a predefined robust weight function imposed according 
to the residual values, which are the deviations between the 
current fits and the z values.  Inclusion of a robust weight 
function in the proposed algorithm makes estimates robust and 
down-weights the height error of the points w.r.t. the fit for the 
intermediate steps in a robust fashion. Moreover, it reduces the 
outliers’ influence on the fits. The remaining arrangement of the 
paper is as follows. Section 2 gives a short review of the 

relevant literature. Section 3 details the proposed algorithm 
along with related principles and methods. In Section 4 the 
algorithm is demonstrated and evaluated using three sets of real 
terrestrial mobile laser scanning data. The conclusion follows in 
Section 5.  

 
2. A SHORT LITERATURE REVIEW 

In this section we review some well-known methods that are 
relevant here and show historical advancement in this area. The 
methods that are developed over the years can be categorized in 
general as follows.  

 
In mathematical morphologic filtering (Lindenberger 1993), 
initially, a rough ground surface is extracted by using a seed 
point that is the lowest based on the assumption that the lowest 
point belongs to the ground. Then the rough terrain is refined 

with an auto-regression process. This algorithm is vulnerable to 
the size of the structure element (Shan and Sampath, 2005). 
Later Kilian et al. (1996) used different morphologic operators 
and Vosselman (2000) developed a slope based filter 
incorporating the idea of height difference between two points 
as a function of the distance between the points. It is known that 
morphologic filtering is efficient for point cloud data in areas of 
small elevation difference. Zaksek and Pfeifer (2004) noticed 

that although the algorithm is effective in areas with small 
differences it is not so good in areas with steep slopes. 
Segmentation and clustering are processes for separating point 
clouds into homogeneous regions. This approach classifies 
points based on local geometrical relations like height, slope or 
curvature in a certain neighbourhood (Sithole and Vosselman 
2005). Tovari and Pfeifer (2005) proposed a two-step 
segmentation algorithm that starts from a seed point for region 
growing that examines k neighbourhood points to see whether 

they fulfil certain criteria, and then uses robust interpolation for 
point groups. The authors require more information about 
segmentation parameters and explicit break-line information to 
get more accurate filter results. Edge based clustering is 
introduced by Brovelli et al. (2004). This detects edges by using 
a threshold of the gradient. Points inside the closed edges are 
considered as the object points and the rest are considered as the 
terrain points. Robust interpolation (Kraus and Pfeifer 1998) is 

an iterative process based on linear prediction. It uses the 
concept of new height to each measured point using a local 
interpolation. Zaksek and Pfeifer (2004) claim that a robust 
interpolation method is more efficient than morphologic 
filtering in steep slopes covered by forest. Akel et al. (2007) 
propose an algorithm based on orthogonal polynomials for 
extracting terrain points from LiDAR data. We know higher 
order fits may lead to numerical instability (Fan and Gijbels 

1996). Skewness balancing introduced by Bartles et al. (2006) is 
mainly a segmentation algorithm based on the central limit 
theorem where the statistical measure Skewness is chosen to 
describe the characteristics of the point cloud distribution and 
has been used as a termination criterion in a segmentation 
algorithm. Later this algorithm has been developed combining 
with the Kurtosis measure by others (Crosilla et al. 2011).  
 

3. PROPOSED ALGORITHM 

The ground filtering algorithm proposed in this section for 
ground surface points extraction is a robust interpolation 
method. It couples locally weighted regression and the 
robustification of weighted regression. It works as a 

classification method to distinguish points into ground (terrain) 
and non-ground points (buildings, trees, walls etc.).  

 
3.1 Locally Weighted Regression 

Local regression is a nonparametric approach introduced in the 
statistical literature in the late 1970s (Cleveland 1979) and later 

developed by many others (e.g. Jacoby 2000, Loader 2004). It is 
used to model regression functions or surfaces between 
explanatory (independent) variable(s) and response (dependent) 
variable without any prior specified functional relation between 
the variables. Locally weighted regression is usually termed 
‘lowess’  (LOcally WEighted Scatterplot Smoother) or ‘loess’. 
It is a procedure in which a regression surface is determined by 
fitting parametric functions locally in the space of the 

independent variables using weighted least squares in a moving 
fashion. This is similar to the way that a time series is smoothed 
by moving averages (Cleveland and Grosse 1991).  

 
Let yi and xi = (xi1, xi2,…, xip), i=1,2,…,n be the measurements 
of dependent and independent variables respectively. Assume 
that the dataset is modelled as 
  
                                                 ,                                  (1) 

 
where    are independent and normally distributed with mean 0 

and variance   , and       is a smooth function of xi. LWR 

gives an estimate   (xi) at any value of xi in the space of 

independent variables. LWR is nonparametric in the sense that 
it does not specify the functional form of the whole dataset and 
no specific assumption is made globally for  (x) but locally 

around a point xi. We can assume that  (x) can be well 

approximated by a member of a simple class of parametric 
functions (e.g. according to Taylor’s theorem, any differentiable 
function can be approximated locally by a straight line). To 

estimate  (x) at a point xi, LWR uses a local neighbourhood 
(N(x)) of k (     ) observations in the x space which are 

closest to xi. A smoothing parameter   (     ) determines 

the size of k, which gives the proportion of points that is to be 

used in each neighbourhood (local regression). A larger local 
neighbourhood (i.e. larger  ) makes the fit smoother.  Every 

point in the local neighbourhood is weighted according to its 
distance to the interest point xi. Alternatively, a local 
neighbourhood can also be considered as a bandwidth (fixed 
distance) h (x), and a smoothing window         may be used 

for fitting a point xi. If the same number of observations is on 
either side of the nearest point, the weight function is 
symmetric, otherwise it is asymmetric. A linear or non-linear 
polynomial (e.g. quadratic) function of the independent 
variables can be used to fit the model using Weighted Least 

Squares (WLS) method. If locally quadratic fitting is used, the 
fitting variables are the independent variable(s), their squares, 
and their cross-products. Locally quadratic fitting tends to 
perform better than linear fitting where the regression surface 
has substantial curvature (Cleveland and Devlin 1988). The 
local parametric function should be chosen to produce an 
estimate that is sufficiently smooth without distorting the 
underlying pattern of the data. LWR uses a weight 

function       for the least squares fit. A common function is 
the tricube weight function, defined as:  
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where          is the distance between xi and xj in x-space. The 

value of       is a maximum for the point closest to xi and 

becomes 0 for the kth nearest xj to xi. Points that are too far away 
with 0 weights will be classified as outliers and deemed useless 
to the analysis. Figure 1 depicts the shape of the tricube weight 
function. 
 

 
Figure 1. Tricube and bisquare weight functions 

 
Finally, the estimates of the parameters of Eq. (1) are the values 
of the parameters that minimize  
 

                                     
 
             

  .                        (3) 

 
The coefficients from each local neighbourhood are used to 
estimate the fitted values at xi,   (xi). Then the ordered pairs of 

            give the fitted regression line for the whole dataset. 

Figure 2 gives the relevant ideas about the fitting parameters in 
LWR.  
 

3.2 Robustification of Locally Weighted Regression 

Like classical regression, LWR may be strongly influenced by 
outliers because of its least squares nature and hence can give 
inaccurate non robust results. The problems of outliers are 

compounded by the fact that the local regressions typically 
involve a subset of the complete dataset. Therefore, any 
erroneous data point will compromise a significant proportion 
of the points used in the local estimation and their degree of 
influence may cause false estimates (Jacoby 2000). To avoid the 
outlier effects and to get a robust fitted model we can use a 
robust weight for each data point in the neighbourhood. The 
well-known bisquare weight function can be used for this 

purpose, which is defined based on the residuals as: 
 

                           
         

   
 
        

    

                           
    

  ,               (4) 

 

where                                  
  

  

     
 ,  

 
MAD is the median of the     , and  

 
                                                   .                                 (5) 

 
The shape of the bisquare weight is shown in Figure 1. To 
estimate the new set of Robust LWR (RLWR) coefficients, the 
bisquare weight function is used, and the following function is 

minimized: 
 

                                
   

                  
  .                 (6) 

 
The newly estimated coefficients are used to obtain a new set of 
fitted values of    (xi). This robustness steps are repeated until 

the values of the estimated coefficients converge.  

 
Figure 2. Locally Weighted Regression (LWR) 

 
3.3 Implementation 

The laser scanned point clouds considered in this paper are 
acquired along transport corridors using vehicle mounted laser 

scanners. In such a case, the long dataset is typically sliced into 
manageable “stripes” for processing and then the results 
merged. Ground surfaces such as the road and pavements are 
usually considered as the lowest features locally. That means, 
ground points can be defined as the points on the lowest, 
smooth, nominally horizontal surface (Belton and Bae 2010). 
Based on this important property our algorithm proceeds to find 
the lowest level of the respective local region for every point in 

a stripe. A local region (neighbourhood) is defined for every 
point in a stripe. Searching the local neighbourhood for a given 
point in an unstructured point cloud is not trivial. Two well-
known local neighbourhood determination methods are Fixed 
Distance Neighbourhood (FDN) and k Nearest Neighbourhood 
(kNN). It is known that point density variation may 
misrepresent the real shape of a surface; hence, we consider 
kNN to avoid the problem with FDN for point density variation. 

This is a general phenomenon because of the movement of the 
data acquisition vehicle. For each stripe, the algorithm used here 
processes the two dimensional orthogonal profiles X-Z and Y-
Z. The method is performed by iterating over two main steps. In 
the first step, robust locally weighted regression is used to get a 
robust polynomial fit for the whole stripe. We use locally 
quadratic fitting for every local neighbourhood of size k. The 
second step combines four related tasks as follows. Step (i): 
calculation of residuals (differences between the z-values and 

the z-values from the current robust fit). Step (ii): classification 
of points into two categories: points above the fitted RLWR line 
and points on or below the RWLR function (line). Step (iii): 
bisquare robust weight function (Eq. 4) used to down-weight 
the z-values of the points which are above the polynomial 
function, while the rest of the points are given weight 1 (i.e. 
points on or beneath the fitted line will be unchanged). If, in any 
case, the value of a fitted z (after down-weighting) becomes less 

than the lowest z-value of the respective neighbourhood then 
the new z-value is replaced by the lowest one to make it 
meaningful, since in a local neighbourhood the lowest features 
are generally regarded as the ground surface. Step (iv): the new 
set of z-values is used to get the next RLWR polynomial 
function. The above two steps will be continued until the 
difference between the two Root Mean Squared Errors (RMSE) 
from the two latest consecutive fitted polynomials is 

insignificant (Δ, a very small value). We consider Δ=0.005 in 
our experiments. The final RLWR fit is considered as the lowest 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-217-2013 219



 

 

(ground) level for the concerned stripe and the points between a 

band created by the lowest level and lowest level added with a 
predefined threshold (based on the data examined) are 
considered as ground surface points from the profile. Finally, 
common points that are identified as ground points from the 
results of X-Z and Y-Z profiles are classified as the ground 
points for the stripe.  Note that the threshold values for X-Z and 
Y-Z may vary because the X and Y axis measures different 
directions (for example in the case of mobile mapping through 

road corridors, the Y axis is the direction along the road and the 
X axis is vertical direction w.r.t. the road) in the point cloud. 
Therefore, the thresholds for a X-Z stripe depend on the 
difference between the points from the two opposite sides of the 
road and the threshold for Y-Z depends on the difference 
between the points of the two most distant positions on the road. 
Hence a smaller stripe has the advantage of enabling the fixing 
of the thresholds accurately. The algorithm is summarized in 
Figure 3. 
 

 
Figure 3. Proposed algorithm; X-Z profile  
 

4. EXPERIMENS, EVALUATION AND DISCUSSION 

In this section, the proposed algorithm is demonstrated and 
evaluated through experiments on three datasets. We consider 
datasets consist of many different types of complex objects on 
and close to the road in urban areas. We assess the results 
visually and compare them with those for a recently proposed 

region growing based robust segmentation algorithm 
(Nurunnabi et al. 2012), and the necessary saliency features (e. 
g. normal and curvature) used in the segmentation algorithm are 
estimated using the robust method in Nurunnabi et al. (2013).  
 
The segmentation algorithm begins the region growing with a 
seed point that has the least curvature value in the dataset and 
grows regions using surface point criteria (coherence and 

proximity) in a local neighbourhood, NPi of size k of the ith seed 
point pi. The algorithm uses Orthogonal Distance (OD) for the 
distance of point pi to its best-fit-plane, Euclidian Distance (ED) 
between the seed point pi and one of its neighbours pj in NPi, 
and the angle difference (θ) between the seed point and its 
neighbours. The angle θ is defined as: 

                                     
|ˆˆ|arccos 21 nnT ,                       (7) 

where 1n̂  and 2n̂ are the two unit normals for the seed point (pi) 

and one of its neighbours (pj). The robust saliency features 
estimation method (Nurunnabi et al. 2013) introduces a 
Mahalanobis type robust distance for finding outliers in a local 
neighbourhood, in combination with the ideas of orthogonal 
distance from a point to the best-fit-plane and local surface 
point consistency to get Maximum Consistency with Minimum 
Distance (MCMD).  
 

Dataset 1. The first dataset (Figure 4 (a)) of 9,373 points 
consists a tree, part of a road side wall, part of a roof that enters 
into the tree, and road surfaces. We perform RLWR for the two 
bi-dimensional X-Z and Y-Z profiles. We use local quadratic 
fitting and the weight functions for every point within local 
neighbourhoods of size 300. We calculate residuals and perform 
the down-weighting based on bisquare robust weight to reduce 
the influences of off-terrain points. The iteration process 

continues until the difference between two Root Mean Squared 
Errors (diff RMSE) from two consecutive fits is < 0.005. Only 
after 6 iterations we get the ground level (magenta line; Figure 4 
(b, c)). Points within 0.25 and 0.35 meters vertical (Z) distance 
for X-Z (Figure (d)) and Y-Z (Figure (e)) respectively above the 
estimated ground level are treated as ground surface points. The 
common points from the X-Z and Y-Z profiles with grey colour 
in Figure 4 (f) are finally extracted as the ground surface points 

for the dataset.  

 
(a)  

 
(b)                                                 (c) 

 
(d)                                                (e) 

     
(f)                                            (g) 

 

Figure 4. (a) Dataset 1, (b) RLWR fits in X-Z profile (c) RLWR 
fits in Y-Z profile (d) classification of ground and non-ground 
points for X-Z profile (e) classification of ground and non-
ground points for Y-Z profile (f) final ground and non-ground 
surface points from the proposed algorithm (g) segmentation 
results  
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We compare our results with the above mentioned robust 

segmentation algorithm. We set the required parameters to be 
k=50, θth=10°, and minimum region size Rmin=0. The 
segmentation results are in Figure 4 (g). Points in the segments 
(I), (II) and (III) in Figure 4 (g) are clearly visible and can be 
considered as ground points. In table 1, we see 1,901 points are 
identified as ground points from the segmentation method, 
which is the 98.24% similar to the ground surface points from 

the proposed algorithm. Besides robustness, the main advantage 
of the proposed algorithm is: it takes only 32.49 seconds which 
is 16 times faster than the time (503.79 sec.) for the 
segmentation algorithm for the required filtering task.  
 
Dataset 2. Meng et al. (2010) points that errors are mainly 
found in difficult to recognize features, such as bushes, short 
walls, and on the boundaries of the ground and non-ground 

objects. Moreover, it is more difficult to identify ground points 
in an area covered by dense urban features, such as power poles, 
flags and cars. Our 2nd dataset (Figure 5(a)) of 104,301 points 
has been taken in such an urban area where short walls, a car, a 
power pole and sign posts are present.  
 
We perform RLWR for the two X-Z and Y-Z profiles. We fit 
quadratic local polynomial and use weight functions for every 
point within their local neighbourhood of size 500. We calculate 

residuals and perform the down-weighting based on the 
bisquare robust weight function as for the previous experiment 
to reduce the influences of off-terrain points. The iteration 
process terminates when the difference between the two root 
mean squares from two consecutive fits is < 0.005. After only 5 
and 6 iterations for X-Z and Y-Z profiles respectively we get 
the ground levels. Points within 0.35 and 1.35 meters vertical 
(Z) distance for X-Z and Y-Z respectively from the estimated 

ground level are treated as ground surface points. The common 
points (98,917 points) from X-Z and Y-Z profiles shown in grey 
colour in Figure 5(b) are finally extracted as the ground surface 
points. To get the ground surface from the segmentation 
algorithm, we set the required parameters to be the same as for 
Dataset 1. Figure 5 (c) shows the segmentation results. 
Segmentation extracts the ground surface as 98,554 points. All 
of them match the ground points from the proposed method: 

99.63% of the ground points of the RLWR method. We see 
RLWR takes only 801.26 sec, which is 11 times less than the 
segmentation method to classify the Dataset 2. All the times are 
for non-optimized MATLAB@ code. Rates of times are of 
significance, not the actual times.  
 

Table 1. Results from RLWR and segmentation algorithms  
 

Data 

Set 

Total  

points 
Methods 

Ground  

points 

Non-ground 

points 

Time 

 (Seconds) 

1 9,373 
RLWR 1,935 7,438 32.49 

Segmentation 1,901 7,472 503.79 

2 104,301 
RLWR 98,917 5,384 801.26 

Segmentation 98,554 5,747 8455.31 

 

 
(a) 

 
(b)                                         (c) 

Figure 5. (a) Dataset 2 (b) ground and non-ground surface 
points from the proposed algorithm (g) segmentation results 

 

Dataset 3. Our 3rd dataset is considered as a large dataset of 
1,703,315 points (Figure 6); and consists of large trees, 

buildings, small walls, signposts, power poles and different 
types of complex objects. We processed 10 stripes along the Y-
axis. Figures 6 (a) and (b) from two different views show that 
the proposed LWR based robust method efficiently classifies 
ground and non-ground surface points in areas covered by dense 
urban features.  

 
(a) 

 
(b) 

Figure 6. Dataset 3, Ground and non-ground surface points from 
the proposed algorithm (a) front view (b) back view  
 

5. CONCLUSIONS 

The locally weighted regression (LWR) based proposed 
statistically robust approach can extract ground surfaces in 

urban areas. Most urban features such as complex large 
buildings, large trees, short walls, sign posts, power poles, 
traffic signals, vehicles are efficiently separated from the 
ground surfaces. Although the method is an iterative process 
using local weights it performs its task with a very low number 
of iterations that minimizes its time. Therefore the method is 
fast and applying the proposed ground surface extraction 
technique the method can reduce the cost of any required post-

processing tasks. Moreover, our algorithm depends on only a 
few parameters that can be learned automatically. Quality 
assessment based on comparing with a recently introduced 
robust segmentation algorithm shows highly (> 98%) correct 
classification rate of the ground surface points. The method is 
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very useful to exclude majority of non-ground points while it is 

not necessary to filter out points belonging to small vertical 
surfaces like road kerbs. Further work will be concerned with 
the development of an automatic process for ground surface 
extraction and for more specific classification and recognition 
of non-ground objects.  
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