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ABSTRACT 
We present a method for detecting and modelling rails in mobile laser scanner data. The detection is based on the properties of the 
rail tracks and contact wires such as relative height, linearity and relative position with respect to other objects. Points classified as 
rail track are used in a 3D modelling algorithm. The modelling is done by first fitting a parametric model of a rail piece to the points 
along each track, and estimating the position and orientation parameters of each piece model. For each position and orientation 
parameter a smooth low-order Fourier curve is interpolated. Using all interpolated parameters a mesh model of the rail is 
reconstructed. The method is explained using two areas from a dataset acquired by a LYNX mobile mapping system in a 
mountainous area. Residuals between railway laser points and 3D models are in the range of 2 cm. It is concluded that a curve fitting 
algorithm is essential to reliably and accurately model the rail tracks by using the knowledge that railways are following a continuous 
and smooth path. 
 

1. INTRODUCTION 

Rail track irregularities have a large effect on railway safety and 
operation. To ensure a good maintenance of the rails, frequent 
measurements are needed, which are costly and require specific 
tools for different aspects of the rails geometry. Mobile laser 
scanning (MLS) offers the advantage of acquiring accurate 3D 
measurements of all the objects present in the railway 
environment in a short operational time. Another advantage of 
using mobile laser scanner data mounted on a train vehicle is 
that there is no need for surveyors to enter the rail track. 
 
Producing 3D models of the rail environment is useful for many 
applications such as asset inventories, analysing the minimum 
free passage space, and determination of measurements such as 
platform position in relation to the rail track. Manual detection 
and modelling of the rail tracks in a point cloud is largely 
impractical for two main reasons. Firstly, recognizing and 
precisely delineating the tracks in sparse points is difficult for a 
human user. Secondly, the extensive length of the rails makes 
their detection and modelling a very tedious task. 
 
The idea is to apply a knowledge based classification which 
takes advantage of the regularity in a railway environment to 
classify points on the objects of interest. The focus in this paper 
is on detection of points on railway tracks, followed by a 3D 
modelling step. Local properties are piecewise linearity of rail 
tracks. Two parallel tracks form a pair at a certain fixed 
distance, i.e. the gauge. Globally railways follow a continuous 
and smooth pattern. Our contribution is the integration of local 
and global geometric properties of the railway during both the 
detection and modelling steps. After describing the related work 
(section 2) our detection algorithm is explained in section 3. 
Section 4 handles the modelling steps, followed by an 
explanation and analyses of our results in section 5. 
Conclusions and future work are presented in section 6.  
 

2. RELATED WORK 

Classifying laser data has been a research topic for several 
years. In airborne laser scanner (ALS) data the challenges are 
on analyzing the influences of training sizes, feature selection 
(Pal and Foody, 2010) and the classifier itself (Pal and Foody, 

2012). Often the aim of classifying ALS data is to find specific 
objects, such as buildings and vegetation (Xu et al., 2012), or to 
filter non ground points (Tovari and Pfeifer, 2005). Automation 
in finding the rail track centre lines using high resolution aerial 
imagery and lidar can be found in Beger et al., (2011). Jeon 
(2010) detects and models catenary wires from airborne laser 
scanner systems. Rutzinger et al (2011) describe the feasibility 
of building footprint extraction from MLS data. Several studies 
show that MLS data can be used for asset inventory of the rail 
side hardware and engineering design work, and to extract 
highly accurate spatial information for construction applications 
and maintenance (Leslar et al, 2010). Although these studies 
show the potential of using MLS data for applications, the 
measurements themselves are still based on manual 
interpretations. Chan and Lichti (2011) explain how to fit 
catenary curves to power cables, in order to calibrate a mobile 
mapping system. Arastounia (2012) describes two methods for 
detecting rail points, based on a template-based matching and a 
region growing approach. The template matching emphasizes 
the detection of points on parallel tracks, whereas the region 
growing approach uses the knowledge on the continuous shape 
of the tracks. Fitting parametric models to points has been 
described in many reverse engineering projects, for example 
curve fitting (Werman and Keren, 2001), for modelling 3D 
buildings (Verma et al, 2006), (Maas and Vosselman, 1999) and 
industrial installations (Rabbani and Van den Heuvel, 2004). 
 
To our knowledge there is no approach that detects and models 
rail tracks by fitting parametric models, using both local and 
global properties of the rail way environment.  
 

3. KNOWLEDGE BASED DETECTION OF RAIL 
TRACKS 

The aim of this step is to detect and select laser points on a 
railway track. These points will be used to fit 3D models of the 
railway. As the rail modelling stage (described in section 4) 
includes a curve fitting stage, it is considered to be less harmful 
to miss a few railway points (false negatives), than to include 
too many false railway points (false positives). Our detection 
algorithm is based on object specific properties of the railway 
environment, which are listed in Table 1. Although in this paper 
the focus is particularly on rail tracks, the presence of contact 
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wires above potential rail track points is considered beneficial 
for improving the detection rate of rail tracks as it can remove 
several false positives. That is the reason why the detection of 
contact wires is included as well. 
 
Property type Rail track points Contact wire points 

Relative 
height 

Rail tracks are slightly 
higher than terrain 

level. 
Directly above the rail 
track (+4.5 m) there 
are only a few laser 

points. 

Wires are at a certain 
minimum height 

above terrain level. 
Directly underneath 

the wire (-4.5m) 
there are only a few 

laser points. 
Linearity Majority of rail track 

points within 1x1 m fit 
to a line with a certain 

thickness 

Majority of wire 
points within 1x1 m 

fit to line with a 
certain thickness 

Relative 
position to 

other objects 

For each rail track 
point, there are wire 

points within a certain 
planimetric and 
vertical distance 

For each wire point, 
there are rail track 

points within a 
certain planimetric 

and vertical distance  
Relative 

position to 
other rail 

track 

Other rail track points 
are parallel and at a 
certain distance (the 

gauge) 

 

Table 1. Properties of points on rail tracks and contact wires.  
 
These properties are implemented in a four step approach. In 
the first step the height distribution of all laser points are 
analyzed per 1 by 1 m grid cell. The reason for this grid size is 
that the expectation is that there is maximum one rail track 
within a grid cell. In figure 1, points can be seen from 3 
neighboring grid cells, in a horizontal viewing direction. The 
purpose of this initialization step is to roughly indicate whether 
in this grid cell there are points on rails and/or wires. Basic 
assumption for the rough detection of rail points is that the grid 
cell contains points on the terrain, there are several points 
slightly above the terrain (potentially the points on the railway 
track), there are almost no points between the rail track and the 
wires, and there may be some points on the wires at a certain 
height above the terrain. Starting point is the determination of 
DTM height per grid cell. As an initial guess the 10%-ile height 
of all points within the grid cell. If there are less than 10 % of 
the points within 0.5 and 4.5 m above DTM height, there may 
be rail and or wire points.  
 

 
Figure 1. Starting point is determination of DTM height, 

followed by checking empty space between 0.5 and 
4.5 m above DTM height. Distance between two 
ticks at the axis is one meter.  

 

For roughly detecting points on wires the assumption is that 
points on wires are between 5.5 and 6.5 m above terrain level, 
only the lowest 5 cm of those points are taken as potential 
contact wire points. All points within 0.5 meter above DTM 
height (called “the terrain points”) are further analyzed for rail 
point detection, see figure 2. If the difference between the 98%-
ile height of the terrain points and the 10%-ile point is larger 
than 10 cm, there may be a rail track inside the grid cell. All 
points within 10 cm of the 98%-ile point are potentially rail 
track points, but only if this is not the majority within the grid 
cell, see figure 2. These criteria come from the knowledge that 
in most situations the railway is about 10-15 cm elevated above 
the terrain. For the exceptions, e.g. at road crossings, our 
modeling strategy (see section 4) is designed to bridge the gaps 
in the detected railway points. 
 

 
Figure 2. Potential rail track points are detected by histogram 

analyses of terrain points. 
 
The second step is to keep only points that represent linear 
structures. Within a grid cell of 1 by 1 m there is maximum one 
piece of rail track and/or 1 piece of wire. For the line fitting a 
RANSAC algorithm (Fischler and Bolles, 1981) is used, where 
the assumption is that the majority of the roughly detected rail 
track points within a grid cell, actually fits to one line within a 
certain buffer (say 0.05 m). Two parameters are used here: the 
percentage of inliers and the maximum distance of inliers to the 
line. Results of a successful line fitting are the inlier points 
which represent the detected rail tracks and wires, plus a 3D 
fitted line through the inliers. When closely looking at this step, 
it is obvious that the detection algorithm is designed for 
detecting points at the top part of the rail track. The RANSAC 
line fitting selects points within a buffer of 0.05 m on points 
that are slightly elevated above the terrain. For reliably fitting a 
complete rail track model, it is desired to also include the points 
at the foot of the rail track. Only after a successful inlier 
detection of the rail points, other laser points are added if there 
are within 0.12m distance, i.e. the height of the body of the 
track, to the line. For rail tracks it always implies the addition of 
the points directly beneath the top of the rail track. 
Until this point, the processing has been done grid cell wise, 
analyzing all points within a square meter. The result is a rough 
classification of the point cloud based on histogram analysis in 
combination with linearity restrictions. From now, the 
processing will be done on the roughly classified point cloud.  
 
The third step is optional and contains an extra filtering step by 
keeping rail points only if there are wire points within a certain 
2D and 3D distance, and vice versa.  The assumption is that 
there is a wire somewhere near the rail track, for example 
within 2 m in the horizontal plane and between 5 and 6 meter in 
vertical direction. As a result one can immediately assign a wire 
ID to the rail points on a pair of rails, making it possible to 
determine the number of tracks in a certain area. Assumption is 
that there is one contact wire for each pair of rails. 
 
The fourth step is to check whether two rail tracks are parallel 
and at a certain constant distance from each other. For each 
RANSAC line it is checked whether there is another parallel 
line at a certain distance (the gauge in this dataset is about 1.45 
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m). This is done by projecting mid points of the lines to other 
parallel lines and see whether the distance is between 1.3 and 
1.6 m. If this is the case, it is a strong indication that this pair of 
lines, and thus two pairs of inlier points, are actually 
representing rail track pieces. If a corresponding line cannot be 
found, there can be two reasons: firstly the processed line can 
represent some false positives, or secondly, at the location of 
the corresponding rail track there is no line detected by the 
RANSAC algorithm. So, at that location the roughly classified 
points are checked whether they fit to the railway track, but for 
some reasons were not yet classified as such or not considered 
to fit to a RANSAC line. These potential points are added to the 
detected rail track points. A connected component analyses is 
performed to group points on each railway track. Only points at 
large components are finally classified as rail track points. The 
main purpose of this fourth step is to decrease both the number 
of false negatives (by adding potential points) and the number 
of false positives (by removing the small components). After 
finding correspondences between two tracks, it is determined 
for each pair whether points belong to the left or to the right 
track.  
 

 
Figure 3 Detection steps for rail tracks: rough classification of 

terrain points after step 1 (upper left, green are 
potential rail track points, cyan are points lower than 
the DTM height, yellow are other points within a 
grid cell with rail points, orange are points in a grid 
cell without rails or wires). Middle left: result after 
RANSAC line fitting (step 2). Lower left: including 
points (yellow) within 0.12 m of fitted line. Upper 
right: filtering step by keeping only rail track points 
(green) within a certain distance of wire points 
(orange) (step 3). Lower right: red lines indicate 
which fitted lines are parallel with a perpendicular 
distance between 1.4 and 1.6 m (step 4). Red points 
are on one side of the track, green at the other side. 

 
At this stage it is known per laser point whether it belongs to a 
rail track and to which of the two rail track within a pair. This 
will be the input for the railway modeling stage. 
 

4. 3D RAIL TRACK MODELLING  

4.1 Parametric model of a rail piece 

A rail track is modelled as a set of smaller rail pieces. A rail 
piece is defined by seven shape parameters, as shown in Figure 
4, and six orientation parameters that specify the position and 
rotations of the local coordinate system of the piece with respect 
to the global coordinate system of the point cloud. 

 
Figure 4 Rail piece coordinate system and model parameters 

 
4.2 Parameter estimation by Markov Chain Monte Carlo 

To fit the rail pieces, first the points detected on each track are 
partitioned into straight segments using a planimetric grid of 50 
m cell size. For the points within each cell the eigen vector 
corresponding to the largest eigen value is calculated as the 
main axis of the segment. The points are then again subdivided 
into segments of size L (piece length) along the main axis.  
 
In the fitting of the piece model to the segmented points, the 
shape parameters are considered fixed and only the orientation 
parameters of the model are estimated. The least-squares 
method for the estimation of the orientation parameters often 
fails because of the sparsity of the points. We therefore use a 
Markov Chain Monte Carlo (MCMC) algorithm to obtain an 
estimate by sampling the joint probability distribution of the 
orientation parameters. Formally, for a given point segment D 
the aim is to find a model Mi that maximizes the probability 
P(Mi|D) = ηP(D|Mi)P(Mi), where P(D|Mi) is a measure of how 
well the model fits the data points D, P(Mi) is the model prior, 
and η is a normalization factor that is independent of Mi.  
We define:  
 

P(D|Mi) = exp(-d) (1) 
 
where d is the mean distance from the points to the model Mi. 
The point-model distance is defined as the smallest distance 
between the point and each of the planar patches of the model 
(see Fig. 4). However, distance calculation based on the 
mathematical equation of a plane may lead to small distances 
for points that are outside the patch boundary but lie on the 
extension of the patch plane. To exclude such incorrect 
distances we introduce the following additional condition: for a 
point-plane distance to be accepted the point should 
orthogonally project inside the polygon that encloses the patch. 
Distances not fulfilling this condition are excluded from the 
calculation of d in Eq. (1). The prior P(Mi) is used to 
incorporate our prior knowledge of the model parameters. We 
expect with a high probability that the rotation parameters of 
each rail piece are only slightly different from the previous 
piece, and that the position of a piece is close to the center of its 
corresponding point segment. To include these we model the 
prior with a normal distribution centered around the expected 
rotation and position parameters of the piece model: 
 

P(Mi) ~ N(u, µ, ∑) (2) 
 
where u = [xo, yo, zo, v, f, k]T is the vector of six orientation 
parameters of model Mi , µ is the mean vector and ∑ is the 
covariance of the parameters in u. The mean vector contains the 
expected rotation (i.e. the rotation of the previous piece) and 
position parameters (i.e. the center of the point segment). For 
the first piece in each track we set v=0 and f=0, while k is 
obtained as the orientation of the main axis of the point segment 
(eigen vector corresponding to the largest eigen value of the 
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segment). The covariance of the prior distribution ∑ is chosen 
by assuming large variances for the expected orientation 
parameters and no correlation between them. The large 
variances ensure that the Markov chain does not get stuck at the 
mean of the prior distribution. 
 
For the MCMC sampling we use the Metropolis-Hastings 
algorithm (Hastings, 1970), which starts at a random initial 
point and recursively provides samples µt, t=1,…,n from the 
target distribution P(Mi|D). The samples are drawn from a 
proposal distribution, which is chosen as a Gaussian with 
variances larger than the prior distribution. An estimate of the 
expectation of model parameters is then obtained by the ergodic 

mean of the samples: θ෠ ൌ
ଵ

௡ି௠
∑ θ௧௡
௧ୀ௠ , where m specifies the 

number of so-called burn-in samples. Further details about the 
Metropolis-Hastings algorithm can be found in (Gilks et al., 
1995). 
 
4.3 Curve fitting 

The rail pieces modelled by the MCMC sampling do not 
necessarily form a continuous and smooth rail track. A typical 
rail track is a combination of linear segments and smooth 
circular curves. Therefore, to obtain a continuous and smooth 
model of the entire rail track we interpolate the rail pieces with 
a Fourier series: 

௝ሺ݅ሻߠ ൌ ෍ሺܽ௞ cos ݅ݓ݇ ൅ ܾ௞ sin ሻ݅ݓ݇
௡

௞ୀ଴

 (3) 

where uj ,j=1,..,6 is jth orientation parameter, i=1,..,m is the rail 
piece number, ak, bk, w are unknown coefficients of the 
interpolation function and n is its order. By evaluating Eq. (3) 
with uj of all pieces a system of equations is obtained, which is 
then solved for the unknown coefficients. The estimated 
coefficients minimize the sum of squared differences between 
the piece parameter and the interpolated parameter. The 
interpolation coefficients are estimated for each parameter 
separately, and can be used to evaluate the parameter at any 
point along the rail track. The order of the Fourier series defines 
the flexibility in the fitted curve. Note that we want to avoid 
higher order Fourier series to prevent the occurrence of 
oscillation and waviness in the final model. When analysing the 
geometry of the rail pieces, the rotation parameter around the 
Y-axis of the rail model (see Figure 4), i.e. the φ angle, is the 
most sensitive to the random error and scarcity of the laser 
points. This can also be seen in the evaluation of the φ 
parameter. Therefore, it has been decided to determine φ by 
calculating the slope between two parallel rail pieces. This can 
easily be done as the position of the rail pieces is very well 
determined. This newly determined φ is assigned to both 
parallel rail pieces. In Díaz Benito (2012) a Bezier curve fitting 
approach has been described. This works well for almost 
straight rails giving continuity and smoothness to the piece 
model, however Bezier curves are tangent only to the initial and 
end sections, and not bounded at all to the local parameters of 
intermediate pieces. Therefore, such a model behaves poorly in 
intermediate sections of curved tracks, as it cannot closely 
follow the railpoints. 
 

5. RESULTS AND ANALYSIS 

The proposed methods were evaluated by processing two point 
clouds obtained by a mobile laser scanner on the Austrian 
railway. 

5.1 Mobile laser scanner dataset used 

The data has been acquired by Topscan, using an Optech Lynx 
V1 mobile mapping system. The system, containing two 
scanners, was mounted on a car which was placed on a train 
waggon. Point densities near the rail track are about 700 p/m2, 
containing points from both scanners. The target object is a 
curvy rail track in a mountainous area. Two areas are selected 
from this dataset. Area 1 is a track of 200 m, containing one 
curve. The rail track from area 2 follows a S-curve with a total 
length of 400 m.   

 
Figure 5. Oblique view on the point cloud from Area 1 (left, 

2.2M points) and Area 2 (right, 4.2M points). 
 
5.2 Detection of points on rail tracks 

In figure 6 the (intermediate) results of the detection algorithm 
are shown. It can be seen that the result of the histogram 
analyses is giving a rough idea on the potential locations of 
railways (b) and wires (c). However, information on linearity 
and relative distances to other objects are needed to remove 
many false positives. The detected wire points are used to keep 
only nearby rail track points and thus to filter points that were 
falsely classified as rail track points. The final detection results 
are shown in figure 6f. As there was no reference data and the 
selection of test data would be a tedious work, we have 
estimated the number of false positives and false negatives by 
analysing the data gaps and outliers during the modelling steps, 
see section 5.4 and 5.5.    
 

 
Figure 6. Detection of rail points per step. Input point cloud (a), 
rough detection of rail points (b) and contact wires (c), inliers of 
RANSAC fitting (d), large segments of inliers on wires (e), 
final rail points (f) after checking parallelism and checking 
nearby wire points. 
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5.3 Rail piece fitting 

Results of fitting about 60 points to a single rail piece with a 
length of 1.2m are shown in figure 7 for four different 
perspectives. Per piece the number of points and their 
distribution over the model may vary.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Rail piece fitting result from the perspective view (a), 
X-Y view (b), Y-Z view (c) and X-Z view (d). 

 
5.4 Curve fitting 

Figure 8 highlights the working of the curve fitting to individual 
fitted rail pieces. The rail track now forms a continuous and 
smooth curve. We have analysed the RMS residual between 
piece parameters and interpolated parameters for different 
number of terms in the Fourier series. It was found that for area 
1 three Fourier terms, for area 2 five Fourier terms, for the 
position parameters, and one Fourier term for rotation 
parameters in both areas are a suitable choice as we do not see a 
substantial improvement of the residuals with increasing 
number of terms. Nearly 5% of the individual pieces did not 
have enough laser points to accurately fit a single piece, 
however the other 95% was more than enough to bridge the 
gaps after the curve fitting. A triangular mesh is built from the 
curve fitting result to conveniently visualize the final model. 

 
Figure 8. Individual rail pieces before (left) and after (right) 
Fourier curve fitting for area 1. 
 

 

 

 
Figure 9. Curve fitting parameters from top to bottom X, Y, Z 
(left) and omega, phi and kappa (right). 

 
Figure 9 shows the curve fitting to each orientation parameter of 
the pieces. Each dark circle represents an orientation parameter 
of a piece and each red curve represents the interpolation 
function (Fourier series) for that parameter. 
 
5.5 Final 3D rail model results 

The meshes of the rail models are shown in figure 10 and 11. 
When overlaying the models to the point cloud, one can 
globally see that the models fits nicely, although for accuracy 
analyses one needs to rely on quantitative measures.   

 
Figure 10. Point cloud (left) overlaid with 3D rail models 
(right), of part of area 1. 

 
Figure 11. 3D models overlaid on points from area 2.  
 
To analyze how well the models fit to the laser data, point-to-
model distances are calculated and shown in figure 12 and table 
2. The two figures below show the distances between the points 
and the models visualized by color. It can be seen that the 
residual distances are more or less evenly distributed along the 
rails, except for a few outlier points (3.7-5.1%), which are seen 
in dark red. While the influence of outliers is evident from the 
large mean values, the median distances provide a reliable 
measure of the accuracy of the final models. It can be concluded 
from the median distances that the accuracy of modeling the 
railway tracks is below 2 cm. 

 

Figure 12. Distances between final model and railway points for 
dataset 1 (top) and 2 (below). 
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Table 2. Statistics on point-to-model distances for both areas. 
 

6. CONCLUSION AND FUTURE WORK 

We have described a method that can detect and model railways 
in an automated way. Combining three types of properties of 
the railway track, relative height, linearity and relative position 
to other objects, resulted in a highly accurate detection of rail 
points. The accuracy of the end results is in the order of 2 cm, 
which is acceptable for many applications that deal with the rail 
environment, such as asset inventories and visualisations. 
However, for highly detailed measurements with mm precision, 
e.g. calculation of wear of rail tracks, it is recommended to have 
more accurate measurements. 
 The piece wise determination of rail models can only be 
used if it is followed by a fitting algorithm that analyses the 
more global shape of the rail track. The reason is that for small 
pieces there are too few points to accurately determine all 
model parameters. Using a curve fitting algorithm is essential to 
fully use the knowledge that rail tracks are following a smooth 
path. This can visually be seen, and is grounded by the 
correction of the parameters without increase of the residuals 
between points and model. After back-projecting the 3D model 
of the rail tracks to the original point cloud it is possible to 
better analyse the detection strategy, and even calculate the 
number of false positives. This is useful to know the sensitivity 
of some of the parameters, such as the determination of DTM 
height per grid cell and setting a certain minimum number of 
inliers for RANSAC line fitting. Future work will focus on 
optimizing the detection strategy. Also, the influence of the 
length of individual rail pieces on the accuracy of the model 
parameters and the use of clothoids for transitions between 
straight lines and curves will be analysed further. 
 The algorithms have shown their performances on 
relative simple rail environments. In practice, switches, bridges 
and train stations may ask for other parameter settings or even a 
modified workflow. Future work is to detect points near special 
objects such as switches, followed by a parametric model 
fitting. This is feasible as we can accurately determine where 
two tracks would meet, and the variety of switch types is 
limited, at least within one country.  
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t1 
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t2 
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t1 
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1.2k of 23.6k 

(5.1%) 
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t2 

3.64 1.99 1.35 6.76 
605 of 16.3k 

(3.7%) 
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