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ABSTRACT: 

 

Automatic registration of multi-sensor data is a basic step in data fusion for photogrammetric and remote sensing applications. The 

effectiveness of intensity-based methods such as Mutual Information (MI) for automated registration of multi-sensor image has been 

previously reported for medical and remote sensing applications. In this paper, a new multivariable MI approach that exploits 

complementary information of inherently registered LiDAR DSM and intensity data to improve the robustness of registering optical 

imagery and LiDAR point cloud, is presented. LiDAR DSM and intensity information has been utilised in measuring the similarity 

of LiDAR and optical imagery via the Combined MI. An effective histogramming technique is adopted to facilitate estimation of a 

3D probability density function (pdf). In addition, a local similarity measure is introduced to decrease the complexity of optimisation 

at higher dimensions and computation cost. Therefore, the reliability of registration is improved due to the use of redundant 

observations of similarity. The performance of the proposed method for registration of satellite and aerial images with LiDAR data in 

urban and rural areas is experimentally evaluated and the results obtained are discussed.  

 

                                                                 

*  Corresponding author.   

1. INTRODUCTION 

The automatic registration of multi-sensor data has generated 

much research interest in remote sensing and digital 

photogrammetry because of both the increasing availability of 

large volumes of Earth observation data and the need for 

automatic integration of multi-sensor data to generate redundant 

and complementary spatial information products. In fact, 

integration of complementary multi-sensor data such as LiDAR 

(Light Detection And Ranging) and optical imagery is required 

for many applications such as feature extraction, building 

reconstruction, 3D city modelling and change detection.  

 

LiDAR systems record 3D coordinates of ground objects, with 

the resulting point cloud generally giving poor definition of 

break lines. The photometric data acquired with the 3D point 

cloud includes only the intensity of each reflected laser strike. 

Optical images, on the other hand, provide comprehensive 

photometric data, but it can be difficult to fully extract 3D point 

clouds from imagery alone due to shortcomings in both imaging 

geometry and the robustness and reliability of image matching 

procedures (Shin et al., 2007). The advantages of using 

complementary information from multi-sensor datasets can be 

fully exploited only when the datasets are co-registered in a 

common reference system.  Otherwise, the presence of small 

errors in registration can have a large impact on the accuracy of 

subsequent analysis. Data fusion applications that utilise both 

3D point clouds and optical imagery generally require accurate 

and automatic registration of the two datasets. Although most 

Earth observation datasets are georeferenced, misregistration 

errors often exist between complementary datasets, generally as 

a result of perturbations in direct georeferencing and/or 

instabilities in sensor system calibration.  

 

This paper is organized as follows: Section 2 provides a 

literature review related to the automated registration of optical 

imagery to airborne LiDAR point clouds. Section 3 defines 

Mutual Information (MI) and introduces the proposed 

approach. Then, in Section 4, the implementation of the method 

is explained, and its performance is experimentally evaluated in 

Section 5. Conclusions follow in Section 6. 

 

2. CURRENT METHODS 

In general, automatic methods for registration of 2D images and 

3D point clouds fall into two main categories, namely feature-

based and intensity-based (Goshtasby, 2012). 

 

2.1 Feature-based Methods 

Feature-based methods of registration rely on the extraction of 

features separately from different datasets and their subsequent 

matching. Different types of features, such as points, linear 

features and patches, are used to establish the correspondences 

between both datasets (Habib et al. 2005; Rönnholm 2011; Toth 

et al. 2011). Success in the matching process for datasets with 

different modalities is dependent upon the presence of a 

sufficient number and distribution of corresponding features.  

Particularly, in the case of 2D/3D data registration, a feature 

common to both datasets may nevertheless have different 

meaning due to differences in the data character. In addition, 

feature extraction from 3D point cloud data, along with the 

searching for corresponding features, requires both point cloud 

processing and feature matching procedures that are less 

straightforward. More importantly, in the absence of sufficient 

corresponding features, the feature-based methods are often 

inappropriate and prone to failure. 
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2.2 Intensity-based Methods 

Intensity-based methods for registration operate under the 

assumption that strong statistical relationships exist between the 

datasets (Hajnal et al., 2001).  They do not rely on extracted 

common features; but instead upon matching based on 

similarities in intensity characteristics, e.g. on grey values of the 

images or on elevation values (mapped as intensities) within 3D 

point clouds. This can make these intensity-based methods more 

general, robust and efficient for registration of multi-sensor 

data. The performance of MI as a similarity measure for 

intensity-based registration methods has been reported in 

medical imaging for some two decades (Hajnal et al., 2001; 

Pluim et al., 2003). Promising results achieved in medical 

imaging have encouraged the photogrammetry and remote 

sensing communities to apply this approach for multi-sensor 

data registration (LeMoigne et al., 2011).  

 

The amount of MI between two datasets is defined via the joint 

probability density function (pdf) of the datasets, instead of 

through a similarity determination via intensity matching. This 

particular property has made MI suitable for measuring the 

similarity of data with either linear or non-linear relationships in 

uni- or multi-modal datasets.  

 

The maximum value of MI is expected to be achieved when the 

datasets are geometrically aligned (Maes et al., 1997; Viola and 

Wells III, 1997). Traditional registration of optical imagery with 

3D point clouds has been carried out under the assumption that 

MI operates well when the datasets have a functional 

relationship between them. MI of optical imagery and surface 

normals has been used as a similarity measure (Viola and Wells 

III, 1997). This method can suffer from occlusions and different 

lighting conditions, so illumination-related geometric properties 

including the surface normals, ambient occlusions and 

reflection directions have been incorporated into MI to improve 

the performance of the 2D to 3D data registration procedure 

(Corsini et al., 2009). It is noteworthy that due to its statistical 

basis, MI can find the correspondence between 3D LiDAR 

point clouds and optical images without any consideration of 

functional relationships.  The exterior orientation of the camera 

is computed by implementing the sum of joint entropies of 

optical images with LiDAR elevation and LiDAR intensity in 

urban areas, without using surface normals (Mastin et al., 

2009). Aerial orthoimages have been registered to LiDAR DSM 

and intensity data by defining a general weighting function for 

the joint pdf to overcome the problems of a non-monotonic 

convergence surface of MI (Parmehr et al., 2012).  

 

Contrary to the method proposed in this paper, the approaches 

referred to above are not generally able to fully utilise both the 

LiDAR intensity and 3D point cloud data in the registration 

process. Moreover, the methods referred to above suffer from 

unreliable results due to a lack of observational redundancy in 

determination of the similarity measure. In order to efficiently 

accommodate the registration of multi-sensor data including 

satellite and aerial images and airborne LiDAR data, a novel 

multi-resolution local combined MI has been developed. 

 

3. METHODOLOGY 

3.1 Mutual Information 

MI is based on information theory and has been defined in the 

literature in various forms such as entropy, conditional entropy 

and probability divergence (Cover and Thomas, 1991). In this 

paper, MI of two variables A and B with a joint pdf of P(A,B) is 

defined using Shannon entropy (Shannon et al., 1949) as 
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Here, H(A) and H(B) are the marginal entropy of A and B, 

respectively, and H(A,B) is their joint entropy. H(A), H(B) and 

H(A,B) are defined as 
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MI measures the amount of predictable information in one 

variable from that in the other. In intensity-based registration 

methods, images are assumed as random variables. More 

importantly, it is assumed that a maximum value of MI can be 

achieved if images are geometrically aligned. In Eq.1, the 

maximum value of MI is achieved when the joint entropy is 

minimized. That is, in the case of misregistration, corresponding 

elements of images such as regions are duplicated in the joint 

pdf, which increases the value of the joint entropy. In registered 

data, on the other hand, corresponding elements appear once, 

which yields smaller joint entropy.  

 

In order to adapt MI for registration of optical images and 

LiDAR data, the 3D LiDAR dataset is treated as a 2D image, 

such that the elevation and intensity values in the LiDAR data 

are both treated as image grey values.  

 

3.2 Combined Mutual Information  

The statistical dependence of multiple variables can be 

measured by multivariable generation of MI via a higher order 

joint entropy (McGill, 1954; Watanabe, 1960). The MI of three 

variables A, B and C is defined as 
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While multivariable MI supports high dimensional 

observations, it does not take into account the known relative 

geometry between the variables.  

 

In order to consider existing geometric dependence between a 

pair of variables, Combined MI has been proposed (McGill, 

1954). Combined MI of a variable C and two already aligned 

variables A and B is defined as  

 

).,,()(),());,(( CBAHCHBAHCBAI                   (5) 

                 

Eq. 5 can be rewritten using the chain rule of multivariable MI 

(Cover and Thomas, 1991) as  
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The schematic presentation of multivariable and combined MI 

of three variables is given in Figure 1. The darker area presents 

information among variables.  

 

I((A,B);C) measures the amount of information of C that would 

be gained from the pair of (A,B) simultaneously. Since LiDAR 

intensity data is inherently registered with the DSM (3D point 
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cloud), it provides complementary information. In this paper, 

the CMI is applied to exploit both the geometric dependence 

and complementary character of intensity data. 

 

 
Figure 1. Venn diagram of multivariable (left) and Combined 

MI (right). 

 

3.3 PDF Estimation 

According to Eqs. 1 and 2, the statistical dependence between 

the image and LiDAR data is calculated using the probability 

density function. It can be estimated by either parametric or 

non-parametric approaches. Histogramming as a non-parametric 

approach of pdf estimation has been adopted in this work 

because of its simplicity and efficiency (Bishop, 1995). In 

histogramming, each entry of the joint histogram of the datasets 

denotes the number of elements of data with coinciding 

intensities. Dividing the joint histogram by the total number of 

members in the data yields the joint pdf, and the marginal pdf of 

each dataset can be found by summing over the rows and 

columns, respectively.  

 

The number of bins plays a crucial role as a smoothing 

parameter in the process of pdf estimation. As an example, a 

high number of bins (small bin) causes a spiky pdf, while the 

use of a small number of bins (large bin) provides a very 

smooth pdf. In addition, the number of bins selected affects 

both the MI value and the results of registration. In other words, 

an optimum number of bins can preserve the necessary 

information for similarity measurement within the datasets, as 

well as reducing the cost of computation, particularly in the case 

of estimating a higher dimensional pdf (multivariable pdf).  

 

Conventional statistical methods for finding the optimal number 

of bins (Scott, 1979; Freedman and Diaconis, 1981), namely 

that which preserves information with the fewest bins, cannot 

be utilised in estimation of the pdf in MI-based methods due to 

ignoring the effect of number of bins on the statistical similarity 

between the datasets. Therefore, the optimum number of bins is 

defined based on the number yielding the maximum value of 

MI, as well as the sharpest convergence surface that is measured 

by the kurtosis value. While the higher number of bin might 

highlight the role of noise, a lower number of bins can reduce 

the MI value through a loss of fine detail information. 

  

3.4 Transformation Model 

In order to register the overlapping images, a search for the 

maximum value of MI is required. Conventionally, one of the 

images is assumed as ‘fixed’ and the other as ‘moving’. The 

moving image is transformed under different values of 

transformation model parameters to find the maximum value of 

MI. This approach may not be feasible in the registration of 

high resolution satellite and aerial imagery with LiDAR point 

clouds due to the high cost of computation, particularly in the 

case of transformation models with a high number of 

parameters. Therefore, a new approach that determines the 

similarity of the fixed and moving image in well-distributed 

small patches, called templates, is adopted. Then, the centres of 

the templates are used in the computation of transformation 

parameters. Only a 2D search for maximum MI is required and 

this decreases the risk of failure in the registration. Furthermore, 

an overdetermined solution for the parameters of registration 

supports the detection of blunders in template transformation, 

which improves the robustness and reliability of registration. 

  

4. IMPLEMENTATION  

In the reported implementation, a multi-resolution strategy 

based on a Gaussian pyramid is adopted to increase the speed of 

computation and provide more reliable results. The flow chart 

for registration is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of registration process. 

       

In the estimation of the pdf, the use of 32 bins achieved the 

maximum value of MI and the sharpest peak. Also, the 3D 

affine transformation (Yamakawa and Fraser, 2004) and 

collinearity equations were adopted as projection models for the 

satellite and aerial imagery, respectively. LiDAR point clouds 

were then back-projected to image space using the projection 

model to bring the data into the same coordinate system.  

 

For every template, the search for the maximum value of 

combined MI starts with the use of Powell’s optimisation 

method in the x and y directions, because of its performance 

and accuracy in MI-based registration (Maes et al., 1999). The 

obtained coordinates of templates are used for the estimation of 

the parameters of 3D affine transformation for satellite imagery, 

and of the exterior orientation parameters (EOPs) of the aerial 

imagery. Templates with detected blunders are removed from 

computation of parameters. Finally, in order to achieve sub-

pixel accuracy for registration, the process of template matching 

and computation of parameters is iterated and the parameters 

with the minimum improvement in position of templates are 

considered as optimal values. This yields the final 3D affine 

parameters or EOPs for the imagery at the lowest level (highest 

resolution) of the pyramid. The use of this strategy greatly 
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improves the speed of computation and robustness of 

registration. Since the LiDAR point cloud is considered as the 

reference data, registration of satellite and aerial imagery also 

implies geo-referencing. 

 

5. EXPERIMENTAL RESULTS AND DISCUSSION  

This section presents selected experimental results obtained 

with the proposed local Combined MI-based registration 

method. Two experimental registrations, namely the registration 

of, first, a satellite image and, second, an aerial image to LiDAR 

are reported.  

 

5.1 Registration of a satellite image to LiDAR data 

The imagery for first experimental dataset comprised a 

WorldView2 level 1A satellite image, acquired in 2010 and 

shown in Figure 3, covering the South Wharf area (2.5 km by 6 

km) of Melbourne, Australia. The corresponding LiDAR point 

cloud, with intensity data, was acquired in 2007 at a density of 

4 pts/m2. It is noteworthy that the WorldView2 image and 

LiDAR data were acquired three years apart, and changes had 

occurred within the scene. In addition, the satellite imagery was 

affected by perspective distortion, occlusions and some 

shadowing  

 

 
 

 
 

 
 

Figure 3. Satellite image (top), colour-coded LiDAR DSM 

(middle) and LiDAR intensity image (bottom).        

 

An array of 2 by 6 well-distributed templates with 250 by 250 

pixels was utilised to estimate the parameters of 3D affine 

transformation. An example of a favourable template and the 

corresponding peaks for the MI and CMI of the WorldView2 

imagery with LiDAR data are shown in Figure 4. Also, the 

results of registration of imagery and LiDAR data of the 

template are shown in Figure 5. Since the LiDAR intensity 

image provides more common regions with the satellite image, 

its MI peak is sharper than the MI peak for the image and 

LiDAR DSM. The CMI, which uses both the LiDAR point 

cloud and intensity data, yielded a higher value of MI as well as 

a sharper peak. A colourisation of the LiDAR point cloud with 

registered pansharpened satellite image is shown in Figure 6 to 

illustrate the quality of registration.  

 

   
 

   
 

   
 

Figure 4. Satellite image, LiDAR DSM and intensity image (left 

column). Also, MI convergence surface of LiDAR DSM and 

intensity image and CMI convergence surface of image and 

LiDAR data for translation in x and y directions (right column).      

 

   
 

Figure 5. Registered WorldView2 image (green) with LiDAR 

(magenta) DSM and intensity image (left and right).      

 

 
 

Figure 6. LiDAR point cloud colourised by registered image. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-229-2013 232



 

5.2 Registration of an aerial image to LiDAR data 

The second experimental dataset covered a 2 km x 2 km 

suburban area of Bathurst, New South Wales, Australia. It 

comprised 20 cm ground sample distance (GSD) aerial imagery 

and a LiDAR point cloud with a density of 4 pts/m2 acquired in 

2011, again with intensity data. The aerial image and its 

corresponding LiDAR DSM and intensity image are shown in 

Figure 7. 

 

   
 

Figure 7. Aerial image (left), colour-coded LiDAR DSM 

(middle) and LiDAR intensity image (right). 

 

It is noteworthy that the resolution of the dataset is sufficiently 

high to clearly demonstrate natural and artificial (man-made) 

objects in the aerial image and LiDAR data. The LiDAR points 

were initially back-projected to the image coordinate system, 

and in this case the LiDAR data was in the form of a raster 

DSM.  

 

As shown in Figure 7, the LiDAR DSM highlights areas of 

significant elevation difference, whereas it provides limited 

information for matching to imagery in flat areas. LiDAR 

intensity data, on the other hand, offers more information for 

similarity determination with the aerial image, e.g. roads. The 

complementary nature of the LiDAR DSM and intensity image 

is favourably exploited in the determination of similarity 

between the aerial imagery and LiDAR data in the proposed 

CMI method.  

 

An array of 6 by 4 well-distributed templates with 500 by 500 

pixels was used to estimate the EOPs of the aerial image. An 

example template, demonstrating a natural scene, and the 

corresponding peaks for the MI and CMI of the aerial imagery 

with LiDAR data are shown in Figure 8. The convergence 

surface of MI of the image and LiDAR DSM does not provide a 

distinct peak and fails in finding sufficient similarity between 

the image and LiDAR DSM. The LiDAR intensity image, 

which contains more common region with the optical image, 

provides a distinct and sharp peak.  The CMI, which exploits 

both LiDAR DSM and intensity data, offers the sharpest peak 

with the highest value of MI. It is clear that a sharper peak of 

MI speeds up the optimization procedure and increases the 

reliability and robustness of registration via avoidance of local 

maxima. MI of image with LiDAR DSM and intensity data 

succeeded for 50% and 90% of the templates, respectively. The 

CMI approach, on the other hand, achieved true registration in 

98% of the templates. Nevertheless the CMI increases the 

success rate of MI-based registration method; it may still fail for 

individual templates that do not contain sufficient information. 

These must be removed in the process of estimating 

transformation parameters. The results of registration of the 

optical image to LiDAR DSM and intensity data, shown in 

Figure 9, indicate a precise match between corresponding 

features in the dataset. 

  
 

   
 

   
 

Figure 8. Aerial image, LiDAR DSM and intensity image (left 

column). Also, MI convergence surface of LiDAR DSM and 

intensity image and CMI convergence surface of image and 

LiDAR data for translation in x and y directions (right column).      

 

   
 

Figure 9. Registered aerial image (green) with LiDAR 

(magenta) DSM and intensity image (left and right).      

 

In addition, a small cut out portion of the overlaid, back-

projected LiDAR point cloud and aerial image is shown in 

Figure 10.  

 

   
 

Figure 10. Overlay of back-projected LiDAR point clouds and 

aerial image before and after registration (left and right).      
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As shown in Figure 10, natural and artificial features of LiDAR 

and imagery data are matched very well, which indicate the 

quality of registration. Finally, a colourisation of LiDAR point 

cloud with registered colour image is shown in Figure 11. 

 

 
 

Figure 11. Colourised LiDAR point cloud.      

 

6. CONCLUSIONS 

The ability of the proposed local combined mutual information 

for the registration of optical imagery and LiDAR data has been 

highlighted in this paper. It should be recalled that such a 3D 

point cloud-to-2D image registration cannot be readily handled 

by conventional feature-based or area-based matching methods. 

Based on testing involving a high number of datasets, it has 

been observed that MI can fail to deliver acceptable results for 

the registration of optical imagery to 3D LiDAR point clouds, 

especially of course when there is limited elevation variation 

within the point cloud. However, with the CMI method, which 

employs both LiDAR point cloud and intensity data, it has been 

found that more robust registration performance is achieved. 

Also, the proposed method of selecting the optimal number of 

bins for estimation of the pdf has increased the value of 

similarity measures and the speed of computation. Moreover, 

the use of local similarity measures can produce a robust 

registration even in the presence of blunders within 

transformation of templates. The proposed approach provides 

more robust results than conventional MI, and can be used as an 

efficient tool for automated registration of multi-sensor, multi-

temporal and multi-resolution remote sensing data for a wide 

range of applications. 
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