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ABSTRACT:

Automatic identification of high-level repeatedusttures in 3D point clouds of building facades rigc@l for applications like

digitalization and building modelling. Indeed, irany architectural styles building fagades are gmeby arrangements of objects
into repeated patterns. In particular, facadesgarerally designed as the repetition of some fesicbabjects organized into

interlaced and\or concatenated grid structurestifgafrom this key observation, this paper presesm algorithm for Repeated
Structure Detection (RSD) in 3D point clouds of Hiry fagades. The presented methodology considty®é main phases. First,
in the point cloud segmentation stage (i) the bogdacade is decomposed into planar patches wdnielclassified by means of
some weak prior knowledge of urban buildings forawedl in a classification tree. Secondly (ii), ire thlement clustering phase
detected patches are grouped together by meansimwilarity function and pairwise transformatiorstlveen patches are computed.
Eventually (iii), in the structure regularity estition step the parameters of repeated grid pateensalculated by using a Least-

Squares optimization. Workability of the preserdapgroach is tested using some real data from stames.

1. INTRODUCTION

In recent years the application of terrestrial laseanning
(TLS) for the reconstruction of highly detailed arbscenes has
been continuously growing. Indeed, while airborreser
scanning can provide the global shape of buildifg®fs,
footprints, volumes), ground-based data TLS carexoited
for modelling their fagades. In this direction alswbile laser
scanning and photogrammetric systems have beenfasddta
collection because of their higher productivityidtout of the

functional reasons. In addition, the presence afescepetitive
patterns and symmetries are typical in almostrahitectonical
styles. These properties can be exploited in theletfing

process and the presence of regular patterns camsdxt to
recover missing information in correspondence @lugions as
well as to enhance automatic facade modelling.

State-of-art methods using structure repetitiomriman facades
can be classified intinteractive and automatic In the former
works (Zheng et al.,, 2010; Nan et al., 2010) ther dsstly

defines some basic fagade objects which are thappsd to

scope of this paper the comparison between differensimilar elements in the point cloud. The latter moels are more

techniques, but broadly speaking laser scanniagsimpler and
highly automated approach, resulting in a shoitee for data
acquisition and registration. However, the captyreiht clouds
are generally difficult to handle because they nmgjude a
large number of unwanted objects (like cars, pedes,
vegetation) and are affected by noise and outliEws. these
grounds, raw data are processed to generate veociels. The
complexity and the cost of manual modelling of Bing
facades fostered the development of several metfaydheir
automatic or semi-automatic segmentation. Howether state-
of-art automatic approaches cannot generally rélaehquality
and the completeness of manual models. This islyndire to
the fact that point clouds may typically exhibitgmificant
missing data due to occlusions. Moreover, the etita of
facade models requires the semantic interpretadioa very
large variety of possible architectural elemengpeahding on
the building typology, construction time, and stylhether
these tasks may be accomplished with ease (althdug
consuming) by trained human operators, they aréieat issue
for machine learning systems.

On the other hand, building fagades usually fealarge self-
similarities and relies on a regular repetition swime basic
patterns. The highly regular nature of buildingafdgs is widely
demonstrated and arises from manufacturing, aésttaetd

challenging, since there is no a priori knowled§sine, shape,
and location of elements describing the patternadiition,

facade elements can be incomplete or corrupted

imperfections and noise. For this reason automstiations

(Muller et al., 2007; Xiao et al., 2009) rely orethssumption
that the facade can be split into blocks formingsiagle

orthogonal grid of elements. Even if there are r&age number
of fagades satisfying this assumption, in many sasal facades
present a more complex structure. This work prasantnore
flexible strategy aimed at detecting in a fully auatic way

concatenated and\or interlaced grids of repetéleeents.

2. RELATED WORK

Given the large volume of work on building and fea
modelling, we refer the reader to the recent subyeiusialski
et al. (2012) for a comprehensive review. Here vié anly
focus on previous works addressing detection ofeatgu
patterns in building facades.

Detection of symmetries, repetitions and regulancstires in
building has been extensively studied in the fieldimage
analysis while point clouds received significarteation only

by

lately. Image-basednethods for fagade analysis can be based

either on single image analysis (Miiller et al., 20@usialski et
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al., 2010) or multi-view images jointly with thetexcted point
clouds (Xiao et al., 2009). In Lee and Nevatia (@he unique
characteristics of fagcade structures such as mguland
orthogonality are exploited in a statistical model detect
translational symmetries and repetitive window dties.
However, those techniques are largely based onsttang
assumption that a facade is governed by a singdléehi global
orthogonal lattice and on correlations between atguke
elements in the image.

Fewer approaches exist in the case the regulakéytification
is performed on largpoint clouds An automatic data-driven
fagade reconstruction using cell decompositiomiduced in
Becker and Haala (2009), which requires a coarsdulding
model as input. In Friedman and Stamos (2011) dadefor
detecting regularities in building facades is pnésd. However,
they mainly address on detecting one feature typg.,(
windows) and require scan points organized in 2iicad scan
lines. In Pauly et al. (2008) a general reguladigtection
method from 3D models is discussed. However, is tdse
similarities in the model are detected by considgra local
measure of the point cloud curvature, which is nlikely to
generate outliers. In Stamos and Allen (2002) windike
rectangular features are extracted by using 3D ddtgetion on
high-resolution point clouds but regularity is restforced. In
Triebel et al. (2006) a Markov Network approacht tleyuires
training is used to label points as windows. In xtheet al.
(2010) and Nan et al. (2010), 3D repetitive patemre
manually selected and automatically consolidatecHen et al.
(2011) facades are adaptively partitioned in hariab and
vertical planes based on the boundary featuretaofpregions.
However, wrong horizontal or vertical splitting magsult in
the erroneous identification in the fagade struetur

3. OVERVIEW OF THE RSD METHOD

In this work we present a completely automated ritlyo to
look for, detect and make use of repeated strustimrepoint
clouds of building fagades acquired by TLS. Thespnted
RSD method consists of three main phasespdint cloud
segmentation, (i) element clustering and (iii) structure
regularity estimatior(see the workflow in Fig. 1).

Stage (i) starts with the whole point cloud as ipplen detects
planar facade clusters and classifies them intadagbjects.
The segmentation strategy is based on a modified SN
(Fischer and Boles, 1981) implementation specifjcalined at
segmenting building facades. In particular, somestraints
based on buildings geometry are included into tfaegss to
guarantee that each detected planar clustersavikkspond to a
different facade element. Then, the detected dlsistae
automatically classified into facade objects (evgndows,
walls, doors, etc.) on the basis of some a prinovkedge of
facade geometry, which is organized into a clasifon tree.
Once fagcade elements are detected the aim of $igges
grouping the set of facade objects by means ofralasity
measure. During this phase, similarity is evaluabedween
pairs of patches and an initial estimation of thmilarity
transformation between objects is given. The gnogpis
achieved by a geometric registration followed byi@native
bottom-up clustering of fagcade objects.

In the final stage(iii), the parameters of the repeated fagade

patterns are automatically estimated. The way thsk is

representing the local periodicity in the vertieald horizontal
direction of fagade objects. Since to some exthatresult of
the regularity estimation is dependent on the eterolistering,
these steps are iterated until convergence.

| Input Point Cloud

Repeated Structure Detection

[

Structure Regularity
Estimation

—

Estimated Lattice
Structures

| Fagade segmentation I—)I Elementgrouping

Figure 1. Workflow of the presented RSD iterativpra@ch.

4. FACADE SEGMENTATION

The input to the processing framework is an undegghpoint
cloud coming from TLS survey of an urban buildiegdde. We
assume that the facade has a dominant planar weuct
characterized by a flat dominant surface and witieofacade’s
components having off-plane depth variations wigkpect to
this plane, either positive (outwards) and negafwewards).
This assumption is generally valid for modern binidd
architecture styles. The modelling of historicaémpises with
more involved geometry and decoration is not adeesn this
work (see e.g., Grussenmeyer et al., 1999). Ircése multiple
scans of the building facade have been gatheredgtheed to
be first aligned into a local Cartesian coordinatgtesm having
the Z-axis aligned to the ground up-vector. Theanat clusters
in the original unorganized fagade point cloud de¢ected by
using the automated approach presented in Prewtalal.
(2013). Here only some aspects mainly related to R&®
briefly described. In particular, the segmentatinethodology
can be divided in two main steps: (i) planar clustetection
and (ii) facade object classification.

4.1 Planar cluster detection

A first step towards the segmentation of the boidfacade is
to detect all its planar clusters. Detection ofafég objects is
accomplished by using a specifically designed niedif
RANSAC algorithm. This implementation is aimed atueidg
spurious results obtained by the standard sequéRABSAC.
Those bad-segmentation problems can be categoiized
under- and over-segmentation. Under-segmentatigernsgrally
due to the fact that points resulting in the maximeonsensus
to RANSAC may belong to different fagade objects.ypidal
example is represented by windows. Indeed, evéreif belong
to the same geometrical plane, each window reptesan
different architectonical component. Over-segménnatis
generally associated with noise or irregularitiastiie data.
Many facades presents irregularities, like outdofbs that are
not evaluated in the RANSAC inliers estimation. Thisy
result in a wrong subdivision of a single facadenant into
several objects.

Under-segmentation is reduced introducing infororatabout
point topology. Indeed, even if points are not ligualated by
any topological relationship in a point cloud, waencassume

afforded is inspired by thegeneralized Hough transform na noints belonging to the same object shouldficiently

(Ballard, 1981) and théattice voting schemef Pauly et al.
(2008). The information derived from the previotspsis used
to carry out a global optimization towards optiraignment of
facade elements. The final output is a series dficés

close each other while groups of points belongmglifferent
objects should have a gap area between them. Roreifison,
point cloud proximity is evaluated by using a Biary point
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occupancy raster mawhere occupied regions are representedo have a rough clustering of similar objects amaeduce the

by pixel value 1. To achieve this, points belongioghe same
plane are projected orthogonally to a bitmap. Alets in the
bitmap containing at least one projected pointamsigned the
value 1, while others are given value 0. This rastep allows
finding connected regions of pixels featuring valueThen all

points whose projection belongs to the same coerdect

component are grouped into the same cluster.

Once all planar elements are detected, the extrgdemes are
clustered together to reduce over-segmentationlgmrotObject
clustering is performed by evaluating three paranset (i)
similarity of normal vectors; (ii) perpendicularstince between
planes; and (iii) intersection between clusters.

4.2 Facade object detection

Planar clusters are then further automatically sifieésl into
facade object classes (e.g. wall, window, doorf,retz.). This
detection phase is important for further reguladigtection.
Indeed, during the object grouping phase simiksitbetween
objects are searched for only into each facades dleg. no
similarity is sought between a door and a windoM)s reduces
the computational time of the next phase and pitsvemong
structure detection. Classification of planar clisiato facade
objects is performed by using some recognitionsuerived
from the knowledge of urban scenes and fagade Frilor
particular, the following characteristics of eachjext are
evaluated: size, position and topology, orientation

The above object characteristics and priors areranped in a
classification tree which is used to guide the rensiutomatic
classification phase (Fig. 2).

Whole
Polygons

72 02 02 v
Non - Wall Main Wall Ground
| | | |

<>

| Wall attachment | |

Intrusion |

<>

sidewalls |

| Window / Door |

| Window | | Door |

Figure 2. Classification tree for facade objectedgdn.

5. ELEMENT CLUSTERING

Once the identified planar clusters are subdivited facade
classes, the goal of element grouping is to gatimeitar objects
together so as to identify repetitive elements. §hesuping is
achieved by a two-step clustering algorithm.

First, elements classified in the same facade ffeatlass are
clustered according to their shape (base and hefhhe
bounding box). Indeed, facade objects belonginghto same
feature may present significant geometric diffeesnand follow
different repetitive patterns. In Figure 3, a fegadith two
different types of windows is shown. This firstgsie performed

number of misclassifications. Indeed, it is unhkéhat objects
having a significant difference in the bounding bskape
present a high similarity between them. Once twjeabS and

S belonging to the same fagade feature are clustegether,

they are aligned to measure similarity between thEnis task
is performed by computing a rigid-body transformail; using

a standardterative Closest Poin{ICP) implementation (Besl
and McKay, 1992).
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Figure 3. Example of a fagade with two differenh#éow types

(red and green) on the left and clustering results

(right) using base and height of the bounding bbx o
detected objects.

In particular, the transformatiof; is restricted to be a
translational one. Indeed, in our work we are fowy®nly on
determining repeated structures that can be oftaibg
translating a base object. Similarity transformagionvolving
scaling and rotations are not addressed in thisrmpap

OnceS and§ are aligned, to tolerate poor quality input data w
quantize the space of the overlapping region of algned
slices and we compute the similarity betweand § in this
guantized space. Specifically, the aligned sli§esnd § are
embedded into a volumetric grid whose size is datexd by
the bounding box of the overlapping region B betwdentwo
slices (see Fig. 4b).
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Figure 4. Example of a volumetric representatiora efindow:
the original point cloud (a), the voxel splitting)(
and the final tensor representatigic).

The grid resolution is fixed a little bit largerath the mean
sampling distance in the point cloud. For each Itiesuvoxel
we define two functions/; and v, indicating the number of
points contained in the voxel froBiandS, respectively. At the
end, the original point clouds are quantized intateasor
representation (see Fig. 4c). Then #imilarity measurgSM)
between slice§ and§ is defined as (1):
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The adoptedSM is a generalization of thrormalized linear
correlation coefficient (). This means thaBM represents a
local similarity measure of point distributions tine region B
between the two considered obje§isndS. Like p, alsoSM
may range from -1 (full inverse correlation) to full( direct
correlation). For this reason we can assumeShMyalues close
to 1 indicate high similarity betwee® and§ while in the case
SM is close to zero or negative, these are assumebeto
different.

Once the similarity is measured for each pair afes| slices
having the maximum similarity are automatically stered by
using a bottom-up method as fare as no more chustan be
created. The clustering process is stopped 8Mils lower than
a user defined threshold (0.7 has been used itests). In this
way, elements with low similarity with respect tretothers in
the cluster are discarded, improving the robustnasghe
method.

6. ESTIMATION OF STRUCTURE REGULARITY

The next step estimates the structure regularityeéwh group
of previously detected elements. In particular va@ observe
that repeated elements in buildings generally faegular
lattice structures. A lattice structure can be definedeisof 2D
points arranged in a regular grid where columns enas
spacing may change. For this reason, a regulactateiof size

1

o
e I +1 2 +3 f 1

Figure 5. Example of a simple 1D regular structwith all
possible pairwise transformations (a-d) which farm
characteristic ~ cumulative  pattern  in  the
transformation space (e-f).

However, the set of pairwise transformatidipsetween objects
in a cluster defined in the previous step presengiatistical
variation in the distribution of the estimated sBmmations
due to noise in the model, local variations of siengwsition,
and non-perfect alignment within the ICP registratidase. All
these contributions lead to some inaccuracies ik th
transformation estimation. In addition, some transftions
may miss due to holes in the input data. For theasons, the
reliably detection of regular structures calls #ogrid fitting
approach that is robust against noise and holeghifoend, a
global optimization method based on the work of P& al.
(2008) has been applied. However, while in that kwtre
estimation procedure is aimed at detecting onlytaregular
lattices that are represented as the compositiotwof base
vectors (one for row and the other for column desion), our
methodology takes into account a more general gordtion
considering also the possibility that columns aods spacing
can vary within the lattice.

The unknowns grid position for a lattice structwfeM rows

.. wmand column coordinateéy, , i .. ~ The input data are
the centres;; (Xg, YG) of the clusters extracted from the set of
transformationsT; mapped in the transformation space (Fig.
6a).

To find the unknown grid positiong;, we applied an
optimization scheme combining tvemergy termsThe first one

MxN is a tuple &, Gun) whereS, is the basic repeated element taies into account the distance between the ggatitng; to

in the structure an@y is a transformation group acting &n

The transformation grou@yy has a lattice structure consisting

of M rows andN columns, where each elemag)t represented
by coordinateXg andYg, is a node of the lattice.
In order to estimate the transformation gr@ip, ageneralized

the transformatio; (Xg, Yg):

S " izzaf [(xg - xa ) +(vg, -Yc ] ®3)

Hough transformvoting scheme has been used. Indeed, &nereg; is the cluster centre closest to the grid locagipn

transformation spac®, containing the identity transformation,

representing all possible pairwise transformatisngenerated

The continuous variablg; is a weight measuring how reliably a
grid location is mapped to a cluster centre and viersa. They

Then, once two similar objec&and§ are detected (Fig. 5a-d), are included as additional unknowns in the optitiizaprocess
they vote in© for the transformatio; between them. The accounting for holes and outliers. Indeed, values; alose to
resultingvoting schem¢Fig. Se-f) has peaks in correspondencezerg indicate a hole or an outlier, while valuessel to 1
of locations that are used as nodes for the esémaif the  represent a reliable matching between transformatioister
lattice structurésyy. and grid location.
L Sy s The second energy term is aimed at maximizing thaber of
' I 1 valid correspondences between grid location andstetu

, centres:
Vo L E, = (-a})’ @
a. .
m The final objective function to be minimized is imefd as:
| E=yE. +A-N(E, (5)

wherey balances the two energy terms. In the tests choti¢ y
was fixed to 0.8. In order to find repeated siniiyain the

C.
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lattice structure, the spacing between consecuivemns and
rows are calculated and clustered. In the case goioie present
a similar spacing, in the minimization process ¢hadditional
constraints will be enforced. For example, in thasec the
spacing between columig;-YG,; andYG,1-YG,, are clustered
together, the following constraint equation is atlde the
minimization process:

(Y. -Y6)- (Y6, - Y6,)=0 (6)
To minimize the above objective function we used @auss-
Newton Least Squares technique (Triggs et al., R089can be
seen, the minimization process is non-linear asdteof initial
estimates of the size of the lattice in terms @fs@nd columns
is necessary as well as the initial values forgitie locationsg;.
In the first iteration, approximate values are dateed by
clustering inQ the pairwise transformation§; along the two
dominant directions of the lattice (Fig. 6). Degzttcluster
centres are used as approximations of the latee(Xg, > w
and columnYg,, » .. N coordinates.

35 -
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0 »
¥ ) .
0 1 3 6 0 15
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11
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o 0 . . -
0 15 3 35 s
c X [m]

Figure 6. Determination of first iteration approsta values.

The pairwise transformations initially estimated (a
are then clustered along the two dominant direstion

of the lattice (b-c) giving the initial estimateEthe
lattice structure.

Once the lattice is estimated, the algorithm opsréeratively
by performing a new element grouping in correspocdeof
each node of the lattice. The process halts whechaages in
the
iterations. In Figure 7 an example of lattice eation is shown.
In particular, the presented algorithm can effidierdetect
repeated features with non-rectangular latticeepast (Fig. 7b)
and may also deal with missing elements (Fig. Ta)the
second case it is possible to observe that the hiva the
bottom-left element is close to zero.

7. RESULTS AND PERFORMANCE EVALUATION

In this section some results of RSD application B @ban
facades are reported. All datasets were acquiragsing a Faro
Focus 3D laser scanner (www.faro.com), although

application of the presented approach is likelpecextended to
point clouds with lower data quality, for exampterf time-of-
flight or mobile laser scanners, and from densegamaatching.
Datasets presented in this paper refers to facafiééferent
complexity, style and scanning resolution. In mattr, the
scanning resolution, in terms of mean ground sargpdistance
ranges from 5 mm to 2 cm. Although several pararaédtave to
be setup in our procedure, only three of them reequoper
selection according to the specific dataset. Thst fone
concerns the RANSAC threshold for plane detectionciwhi

lattice nodes are observed between two sugeessi

involves mainly the data quality and in particulasise. In

experiments here a threshold value of 1 cm has bse.

The second one is the clustering threshold ands imore
influenced by the fagcade geometry and by the sfzies. In

tests a threshold of 20 cm has been selected. Howasmaller
value may be more adequate in the case of facaittegeatures
very close to each other. The last critical thrédh® SM The

default value of 0.7 generally provides good resliut in the
case of noisy input data this value should be desem to foster

grouping.
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Figure 7. Regularity structure superimposed to thiatpcloud

(left) and lattice estimation (right). Lattices tes

are coloured according to the associated weight

(white for 0 and black for 1).

In Figure 8, some examples for the presented appreae
reported. Figure 8b shows an example of a simpiiihg

where the repetition structure cannot be repreddnie regular
grid. The flexibility of this method in considerimgore complex
lattice structures gives the chance to easily sgrealso this
kind of regularity. Figure 8a shows an example vatdmplex
facade having multiple interlaced groups of repgaiements.
This RSD approach is also applicable to facades avith a few

theepetitions even along with one dimension (Fig. 8a)ce it is

largely insensitive to the number of repetitions.
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Figure 8. Results of RSD algorithm. Notice the retmtsion
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performance in low resolution regions (b-c).

In order to evaluate the performance, a manual eetation of
the automatically processed facades has been atishaetp In
particular, the fractions of commission errors (mgo
detections) and omission errors (missing detectiansthe
detection of lattice nodes have been evaluated meitpect of
manually detected nodes, which have been assumed
benchmarking values. In Table 1, some statisticbath kinds
of errors are presented, showing quite good results

Automatically detected Nodes 235
Correctly detected Nodes 235
Manually labelled Nodes 240

Commission error 0%
Omission error 21 %

Table 1. Commission and omission errors for repestieatture
detection.

8. CONCLUSION AND FUTURE WORK

This paper investigates the problem of finding eepd

structures in urban building facades by using b falitomatic

procedure termed agpeated structure detectiofiRSD). The
key observation is that facades with concatenated/oa

interlaced repeated elements are ubiquitous innusbanes. For
this reason, an effective solution for detectingnptex lattice

structures is described, which is based on antikergrouping

and lattice estimation steps. Due to the flexipildf this

approach, urban facades with various complexity axodlern

architectural can be handled. However, the RSD ndethamot

applicable to facades which cannot be detected fegtidinear

model, for example in the case of completely irtagpatterns
like in many historical buildings.
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