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ABSTRACT: 
 
Automatic identification of high-level repeated structures in 3D point clouds of building façades is crucial for applications like 
digitalization and building modelling. Indeed, in many architectural styles building façades are governed by arrangements of objects 
into repeated patterns. In particular, façades are generally designed as the repetition of some few basic objects organized into 
interlaced and\or concatenated grid structures. Starting from this key observation, this paper presents an algorithm for Repeated 
Structure Detection (RSD) in 3D point clouds of building façades. The presented methodology consists of three main phases. First, 
in the point cloud segmentation stage (i) the building façade is decomposed into planar patches which are classified by means of 
some weak prior knowledge of urban buildings formulated in a classification tree. Secondly (ii), in the element clustering phase 
detected patches are grouped together by means of a similarity function and pairwise transformations between patches are computed. 
Eventually (iii), in the structure regularity estimation step the parameters of repeated grid patterns are calculated by using a Least-
Squares optimization. Workability of the presented approach is tested using some real data from urban scenes.  
 
 

1. INTRODUCTION 

In recent years the application of terrestrial laser scanning 
(TLS) for the reconstruction of highly detailed urban scenes has 
been continuously growing. Indeed, while airborne laser 
scanning can provide the global shape of buildings (roofs, 
footprints, volumes), ground-based data TLS can be exploited 
for modelling their façades. In this direction also mobile laser 
scanning and photogrammetric systems have been used for data 
collection because of their higher productivity. It is out of the 
scope of this paper the comparison between different 
techniques, but broadly speaking laser scanning is a simpler and 
highly automated approach, resulting in a shorter time for data 
acquisition and registration. However, the captured point clouds 
are generally difficult to handle because they may include a 
large number of unwanted objects (like cars, pedestrians, 
vegetation) and are affected by noise and outliers. For these 
grounds, raw data are processed to generate vector models. The 
complexity and the cost of manual modelling of building 
façades fostered the development of several methods for their 
automatic or semi-automatic segmentation. However, the state-
of-art automatic approaches cannot generally reach the quality 
and the completeness of manual models. This is mainly due to 
the fact that point clouds may typically exhibit significant 
missing data due to occlusions. Moreover, the extraction of 
façade models requires the semantic interpretation of a very 
large variety of possible architectural elements, depending on 
the building typology, construction time, and style. Whether 
these tasks may be accomplished with ease (although time 
consuming) by trained human operators, they are a critical issue 
for machine learning systems. 
On the other hand, building façades usually feature large self-
similarities and relies on a regular repetition of some basic 
patterns. The highly regular nature of building façades is widely 
demonstrated and arises from manufacturing, aesthetic and 

functional reasons. In addition, the presence of some repetitive 
patterns and symmetries are typical in almost all architectonical 
styles. These properties can be exploited in the modelling 
process and the presence of regular patterns can be used to 
recover missing information in correspondence of occlusions as 
well as to enhance automatic façade modelling.  
State-of-art methods using structure repetition in urban façades 
can be classified into interactive and automatic. In the former 
works (Zheng et al., 2010; Nan et al., 2010) the user firstly 
defines some basic façade objects which are then snapped to 
similar elements in the point cloud. The latter methods are more 
challenging, since there is no a priori knowledge of size, shape, 
and location of elements describing the pattern. In addition, 
façade elements can be incomplete or corrupted by 
imperfections and noise. For this reason automatic solutions 
(Müller et al., 2007; Xiao et al., 2009) rely on the assumption 
that the façade can be split into blocks forming a single 
orthogonal grid of elements. Even if there are a certain number 
of façades satisfying this assumption, in many cases real façades 
present a more complex structure. This work presents a more 
flexible strategy aimed at detecting in a fully automatic way 
concatenated and\or interlaced grids of repetitive elements. 
  

2. RELATED WORK 

Given the large volume of work on building and façade 
modelling, we refer the reader to the recent survey by Musialski 
et al. (2012) for a comprehensive review. Here we will only 
focus on previous works addressing detection of repeated 
patterns in building façades. 
Detection of symmetries, repetitions and regular structures in 
building has been extensively studied in the field of image 
analysis while point clouds received significant attention only 
lately. Image-based methods for façade analysis can be based 
either on single image analysis (Müller et al., 2007; Musialski et 
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al., 2010) or multi-view images jointly with the extracted point 
clouds (Xiao et al., 2009). In Lee and Nevatia (2010) the unique 
characteristics of façade structures such as regularity and 
orthogonality are exploited in a statistical model to detect 
translational symmetries and repetitive window structures. 
However, those techniques are largely based on the strong 
assumption that a façade is governed by a single hidden global 
orthogonal lattice and on correlations between repeated 
elements in the image.  
Fewer approaches exist in the case the regularity identification 
is performed on large point clouds. An automatic data-driven 
façade reconstruction using cell decomposition is introduced in 
Becker and Haala (2009), which requires a coarse 3D building 
model as input. In Friedman and Stamos (2011) a method for 
detecting regularities in building façades is presented. However, 
they mainly address on detecting one feature type (e.g., 
windows) and require scan points organized in 2D vertical scan 
lines. In Pauly et al. (2008) a general regularity detection 
method from 3D models is discussed. However, in this case 
similarities in the model are detected by considering a local 
measure of the point cloud curvature, which is more likely to 
generate outliers. In Stamos and Allen (2002) window-like 
rectangular features are extracted by using 3D edge detection on 
high-resolution point clouds but regularity is not enforced. In 
Triebel et al. (2006) a Markov Network approach that requires 
training is used to label points as windows. In Zheng et al. 
(2010) and Nan et al. (2010), 3D repetitive patterns are 
manually selected and automatically consolidated. In Shen et al. 
(2011) façades are adaptively partitioned in horizontal and 
vertical planes based on the boundary features of planar regions. 
However, wrong horizontal or vertical splitting may result in 
the erroneous identification in the façade structure.  
 

3. OVERVIEW  OF THE RSD METHOD 

In this work we present a completely automated algorithm to 
look for, detect and make use of repeated structures in point 
clouds of building façades acquired by TLS. The presented 
RSD method consists of three main phases: (i) point cloud 
segmentation, (ii) element clustering, and (iii) structure 
regularity estimation (see the workflow in Fig. 1). 
Stage (i) starts with the whole point cloud as input, then detects 
planar façade clusters and classifies them into façade objects. 
The segmentation strategy is based on a modified RANSAC 
(Fischer and Boles, 1981) implementation specifically aimed at 
segmenting building façades. In particular, some constraints 
based on buildings geometry are included into the process to 
guarantee that each detected planar clusters will correspond to a 
different façade element. Then, the detected clusters are 
automatically classified into façade objects (e.g. windows, 
walls, doors, etc.) on the basis of some a priori knowledge of 
façade geometry, which is organized into a classification tree. 
Once façade elements are detected the aim of stage (ii) is 
grouping the set of façade objects by means of a similarity 
measure. During this phase, similarity is evaluated between 
pairs of patches and an initial estimation of the similarity 
transformation between objects is given. The grouping is 
achieved by a geometric registration followed by an iterative 
bottom-up clustering of façade objects. 
In the final stage (iii), the parameters of the repeated façade 
patterns are automatically estimated. The way this task is 
afforded is inspired by the generalized Hough transform 
(Ballard, 1981) and the lattice voting scheme of Pauly et al. 
(2008). The information derived from the previous step is used 
to carry out a global optimization towards optimal alignment of 
façade elements. The final output is a series of lattices 

representing the local periodicity in the vertical and horizontal 
direction of façade objects. Since to some extent the result of 
the regularity estimation is dependent on the element clustering, 
these steps are iterated until convergence. 
 

 
 

Figure 1. Workflow of the presented RSD iterative approach. 
 

4. FACADE SEGMENTATION 

The input to the processing framework is an unorganized point 
cloud coming from TLS survey of an urban building façade. We 
assume that the façade has a dominant planar structure, 
characterized by a flat dominant surface and with other façade’s 
components having off-plane depth variations with respect to 
this plane, either positive (outwards) and negative (onwards). 
This assumption is generally valid for modern building 
architecture styles. The modelling of historical premises with 
more involved geometry and decoration is not addressed in this 
work (see e.g., Grussenmeyer et al., 1999). In the case multiple 
scans of the building façade have been gathered, these need to 
be first aligned into a local Cartesian coordinate system having 
the Z-axis aligned to the ground up-vector. Then planar clusters 
in the original unorganized façade point cloud are detected by 
using the automated approach presented in Previtali et al. 
(2013). Here only some aspects mainly related to RSD are 
briefly described. In particular, the segmentation methodology 
can be divided in two main steps: (i) planar cluster detection 
and (ii) façade object classification. 
 
4.1 Planar cluster detection 

A first step towards the segmentation of the building façade is 
to detect all its planar clusters. Detection of façade objects is 
accomplished by using a specifically designed modified 
RANSAC algorithm. This implementation is aimed at reducing 
spurious results obtained by the standard sequential RANSAC. 
Those bad-segmentation problems can be categorized into 
under- and over-segmentation. Under-segmentation is generally 
due to the fact that points resulting in the maximum consensus 
to RANSAC may belong to different façade objects. A typical 
example is represented by windows. Indeed, even if they belong 
to the same geometrical plane, each window represents a 
different architectonical component. Over-segmentation is 
generally associated with noise or irregularities in the data. 
Many façades presents irregularities, like out-of-plumbs that are 
not evaluated in the RANSAC inliers estimation. This may 
result in a wrong subdivision of a single façade element into 
several objects.  
Under-segmentation is reduced introducing information about 
point topology. Indeed, even if points are not usually related by 
any topological relationship in a point cloud, we can assume 
that points belonging to the same object should be sufficiently 
close each other while groups of points belonging to different 
objects should have a gap area between them. For this reason, 
point cloud proximity is evaluated by using a 2D binary point 
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occupancy raster map where occupied regions are represented 
by pixel value 1. To achieve this, points belonging to the same 
plane are projected orthogonally to a bitmap. All pixels in the 
bitmap containing at least one projected point are assigned the 
value 1, while others are given value 0. This raster map allows 
finding connected regions of pixels featuring value 1. Then all 
points whose projection belongs to the same connected 
component are grouped into the same cluster. 
Once all planar elements are detected, the extracted planes are 
clustered together to reduce over-segmentation problem. Object 
clustering is performed by evaluating three parameters: (i) 
similarity of normal vectors; (ii) perpendicular distance between 
planes; and (iii) intersection between clusters. 
 
4.2 Façade object detection 

Planar clusters are then further automatically classified into 
façade object classes (e.g. wall, window, door, roof, etc.). This 
detection phase is important for further regularity detection. 
Indeed, during the object grouping phase similarities between 
objects are searched for only into each façade class (e.g. no 
similarity is sought between a door and a window). This reduces 
the computational time of the next phase and prevents wrong 
structure detection. Classification of planar clusters into façade 
objects is performed by using some recognition rules derived 
from the knowledge of urban scenes and façade priors. In 
particular, the following characteristics of each object are 
evaluated: size, position and topology, orientation. 
The above object characteristics and priors are summarized in a 
classification tree which is used to guide the entire automatic 
classification phase (Fig. 2). 
 

 
 

Figure 2. Classification tree for façade objects detection. 
 

5. ELEMENT CLUSTERING 

Once the identified planar clusters are subdivided into façade 
classes, the goal of element grouping is to gather similar objects 
together so as to identify repetitive elements. The grouping is 
achieved by a two-step clustering algorithm.  
First, elements classified in the same façade feature class are 
clustered according to their shape (base and height of the 
bounding box). Indeed, façade objects belonging to the same 
feature may present significant geometric differences and follow 
different repetitive patterns. In Figure 3, a façade with two 
different types of windows is shown. This first step is performed 

to have a rough clustering of similar objects and to reduce the 
number of misclassifications. Indeed, it is unlikely that objects 
having a significant difference in the bounding box shape 
present a high similarity between them. Once two objects Si and 
Sj belonging to the same façade feature are clustered together, 
they are aligned to measure similarity between them. This task 
is performed by computing a rigid-body transformation Tij using 
a standard Iterative Closest Point (ICP) implementation (Besl 
and McKay, 1992). 
 

 
 
Figure 3. Example of a façade with two different window types 

(red and green) on the left and clustering results 
(right) using base and height of the bounding box of 
detected objects.   

 
In particular, the transformation Tij is restricted to be a 
translational one. Indeed, in our work we are focusing only on 
determining repeated structures that can be obtained by 
translating a base object. Similarity transformations involving 
scaling and rotations are not addressed in this paper.   
Once Si and Sj are aligned, to tolerate poor quality input data we 
quantize the space of the overlapping region of the aligned 
slices and we compute the similarity between Si and Sj in this 
quantized space. Specifically, the aligned slices Si and Sj are 
embedded into a volumetric grid whose size is determined by 
the bounding box of the overlapping region B between the two 
slices (see Fig. 4b). 
 

a.  b.  
c.  

 
Figure 4. Example of a volumetric representation of a window: 

the original point cloud (a), the voxel splitting (b) 
and the final tensor representation vi (c). 

 
The grid resolution is fixed a little bit larger than the mean 
sampling distance in the point cloud. For each resulting voxel 
we define two functions vi and vj, indicating the number of 
points contained in the voxel from Si and Sj, respectively. At the 
end, the original point clouds are quantized into a tensor 
representation (see Fig. 4c). Then the similarity measure (SM) 
between slices Si and Sj is defined as (1): 
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(2) 

The adopted SM is a generalization of the normalized linear 
correlation coefficient (ρ). This means that SM represents a 
local similarity measure of point distributions in the region B 
between the two considered objects Si and Sj. Like ρ, also SM 
may range from -1 (full inverse correlation) to 1 (full direct 
correlation). For this reason we can assume that SM values close 
to 1 indicate high similarity between Si and Sj while in the case 
SM is close to zero or negative, these are assumed to be 
different. 
Once the similarity is measured for each pair of slices, slices 
having the maximum similarity are automatically clustered by 
using a bottom-up method as fare as no more clusters can be 
created. The clustering process is stopped until SM is lower than 
a user defined threshold (0.7 has been used in our tests). In this 
way, elements with low similarity with respect to the others in 
the cluster are discarded, improving the robustness of the 
method. 
 

6. ESTIMATION OF STRUCTURE REGULARITY  

The next step estimates the structure regularity for each group 
of previously detected elements. In particular we can observe 
that repeated elements in buildings generally form regular 
lattice structures. A lattice structure can be defined as set of 2D 
points arranged in a regular grid where columns and rows 
spacing may change. For this reason, a regular structure of size 
MxN is a tuple (S0, GMN) where S0 is the basic repeated element 
in the structure and GMN is a transformation group acting on S0. 
The transformation group GMN has a lattice structure consisting 
of M rows and N columns, where each element gij, represented 
by coordinates Xgi and Ygj, is a node of the lattice.  
In order to estimate the transformation group GMN a generalized 
Hough transform voting scheme has been used. Indeed, a 
transformation space Ω, containing the identity transformation, 
representing all possible pairwise transformations is generated. 
Then, once two similar objects Si and Sj are detected (Fig. 5a-d), 
they vote in Ω for the transformation Tij between them. The 
resulting voting scheme (Fig. 5e-f) has peaks in correspondence 
of locations that are used as nodes for the estimation of the 
lattice structure GMN. 

a. b.  

c. d.  

e. f.  
Figure 5. Example of a simple 1D regular structure with all 

possible pairwise transformations (a-d) which form a 
characteristic cumulative pattern in the 
transformation space (e-f). 

 
However, the set of pairwise transformations Tij between objects 
in a cluster defined in the previous step presents a statistical 
variation in the distribution of the estimated transformations 
due to noise in the model, local variations of sample position, 
and non-perfect alignment within the ICP registration phase. All 
these contributions lead to some inaccuracies in the 
transformation estimation. In addition, some transformations 
may miss due to holes in the input data. For these reasons, the 
reliably detection of regular structures calls for a grid fitting 
approach that is robust against noise and holes. To this end, a 
global optimization method based on the work of Pauly et al. 
(2008) has been applied. However, while in that work the 
estimation procedure is aimed at detecting only rectangular 
lattices that are represented as the composition of two base 
vectors (one for row and the other for column description), our 
methodology takes into account a more general configuration 
considering also the possibility that columns and rows spacing 
can vary within the lattice. 
The unknowns grid position for a lattice structure of M rows 
and N columns are represented by the row coordinates Xg1, 2,…, i, 

…, M and column coordinates Yg1, 2,…, i, …, N. The input data are 
the centres cij (Xci, Ycj) of the clusters extracted from the set of 
transformations Tij  mapped in the transformation space (Fig. 
6a). 
To find the unknown grid positions gij, we applied an 
optimization scheme combining two energy terms. The first one 
takes into account the distance between the grid location gij to 
the transformation cij (Xci, Ycj): 
 

( ) ( )[ ]∑∑ −+−=
i j

jjiiijC YcYgXcXgE 222α  
(3) 

 
where cij is the cluster centre closest to the grid location gij. 
The continuous variable αij is a weight measuring how reliably a 
grid location is mapped to a cluster centre and vice versa. They 
are included as additional unknowns in the optimization process 
accounting for holes and outliers. Indeed, values of αij close to 
zero indicate a hole or an outlier, while values close to 1 
represent a reliable matching between transformation cluster 
and grid location.  
The second energy term is aimed at maximizing the number of 
valid correspondences between grid location and cluster 
centres: 
  

22 )1( ijE αα −=  (4) 

 
The final objective function to be minimized is defined as: 
 

αγγ EEE C ⋅−+⋅= )1(  (5) 
 
where γ balances the two energy terms. In the tests carried out, γ 
was fixed to 0.8. In order to find repeated similarity in the 
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lattice structure, the spacing between consecutive columns and 
rows are calculated and clustered. In the case some grids present 
a similar spacing, in the minimization process these additional 
constraints will be enforced. For example, in the case the 
spacing between columns Ycj-Ycj+1 and Ycj+1-Ycj+2 are clustered 
together, the following constraint equation is added to the 
minimization process: 
 

( ) ( ) 0121 =−−− +++ iiii YcYcYcYc  (6) 
 
To minimize the above objective function we used the Gauss-
Newton Least Squares technique (Triggs et al., 2000). As can be 
seen, the minimization process is non-linear and a set of initial 
estimates of the size of the lattice in terms of rows and columns 
is necessary as well as the initial values for the grid locations gij . 
In the first iteration, approximate values are determined by 
clustering in Ω the pairwise transformations Tij along the two 
dominant directions of the lattice (Fig. 6). Detected cluster 
centres are used as approximations of the lattice row (Xg1, 2,…,M) 
and column (Yg1, 2,…,N) coordinates. 
 

a.  b.  

c.  
Figure 6. Determination of first iteration approximate values. 

The pairwise transformations initially estimated (a) 
are then clustered along the two dominant directions 
of the lattice (b-c) giving the initial estimates of the 
lattice structure. 

 
Once the lattice is estimated, the algorithm operates iteratively 
by performing a new element grouping in correspondence of 
each node of the lattice. The process halts when no changes in 
the lattice nodes are observed between two successive 
iterations. In Figure 7 an example of lattice estimation is shown. 
In particular, the presented algorithm can efficiently detect 
repeated features with non-rectangular lattice patterns (Fig. 7b) 
and may also deal with missing elements (Fig. 7a). In the 
second case it is possible to observe that the weight to the 
bottom-left element is close to zero. 
 

7. RESULTS AND PERFORMANCE EVALUATION 

In this section some results of RSD application to 3D urban 
facades are reported. All datasets were acquired by using a Faro 
Focus 3D laser scanner (www.faro.com), although the 
application of the presented approach is likely to be extended to 
point clouds with lower data quality, for example from time-of-
flight or mobile laser scanners, and from dense image matching. 
Datasets presented in this paper refers to facades of different 
complexity, style and scanning resolution. In particular, the 
scanning resolution, in terms of mean ground sampling distance 
ranges from 5 mm to 2 cm. Although several parameters have to 
be setup in our procedure, only three of them need a proper 
selection according to the specific dataset. The first one 
concerns the RANSAC threshold for plane detection which 

involves mainly the data quality and in particular noise. In 
experiments here a threshold value of 1 cm has been used.  
The second one is the clustering threshold and it is more 
influenced by the façade geometry and by the size of tiles. In 
tests a threshold of 20 cm has been selected. However, a smaller 
value may be more adequate in the case of façades with features 
very close to each other. The last critical threshold is SM. The 
default value of 0.7 generally provides good results, but in the 
case of noisy input data this value should be decreased to foster 
grouping.   
 

a.  
 

b.  

 

c.  

 

Figure 7. Regularity structure superimposed to the point cloud 
(left) and lattice estimation (right). Lattices centres 
are coloured according to the associated weight 
(white for 0 and black for 1).  

 
In Figure 8, some examples for the presented approach are 
reported. Figure 8b shows an example of a simple building 
where the repetition structure cannot be represented by a regular 
grid. The flexibility of this method in considering more complex 
lattice structures gives the chance to easily represent also this 
kind of regularity. Figure 8a shows an example with complex 
façade having multiple interlaced groups of repeated elements. 
This RSD approach is also applicable to façades with only a few 
repetitions even along with one dimension (Fig. 8c), since it is 
largely insensitive to the number of repetitions. 
 

a.  
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b. c.  
Figure 8. Results of RSD algorithm. Notice the reconstruction 

of fully occluded windows (a) and the satisfactory 
performance in low resolution regions (b-c). 

 
In order to evaluate the performance, a manual segmentation of 
the automatically processed facades has been accomplished. In 
particular, the fractions of commission errors (wrong 
detections) and omission errors (missing detections) in the 
detection of lattice nodes have been evaluated with respect of 
manually detected nodes, which have been assumed as 
benchmarking values. In Table 1, some statistics on both kinds 
of errors are presented, showing quite good results. 
 

Automatically detected Nodes 235 
Correctly detected Nodes 235 
Manually labelled Nodes 240 

Commission error 0 % 
Omission error 2.1 % 

Table 1. Commission and omission errors for repeated structure 
detection.  
 

8. CONCLUSION AND FUTURE WORK 

This paper investigates the problem of finding repeated 
structures in urban building facades by using a fully automatic 
procedure termed as repeated structure detection (RSD). The 
key observation is that facades with concatenated and/or 
interlaced repeated elements are ubiquitous in urban scenes. For 
this reason, an effective solution for detecting complex lattice 
structures is described, which is based on an iterative grouping 
and lattice estimation steps. Due to the flexibility of this 
approach, urban facades with various complexity and modern 
architectural can be handled. However, the RSD method is not 
applicable to facades which cannot be detected by a rectilinear 
model, for example in the case of completely irregular patterns 
like in many historical buildings.  
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