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ABSTRACT:

Although many studies have demonstrated the utlityirborne lidar for forest inventory, the acqtiis and processing of the data
can be cost prohibitive for small areas. In sugdesait may be possible to emulate lidar metrigsgusiore affordable optical data.
This study explored processing methods for pratictidar metrics using SPOT-5 textural data. Midtifinear regression (MLR)
was compared with non-linear machine learning teghes including multi-layer perceptron (MLP) auifil neural networks
(ANN), rational basis function (RBF) ANN and regressiree (RT). For this purpose, 11 grey level cado@mnce matrix (GLCM)
indices were calculated for bands, band ratiospaimtipal components (PCs) of SPOT-5 multispectriElge. SPOT-5 metrics were
correlated with 25 lidar metrics collected ovePimus radiataplantation. After dimensionality reduction, randdamest feature
selection was applied to select the most relev®@TB5 textural attributes for inferring each lidaetric. The results showed that
the non-linear methods including MLP and RBF methadsmore promising for modelling lidar metrics wgs®POT-5 data than
MLR and RT.

1. INTRODUCTION (Pascual et al., 2008), coefficient of variationt¢Rie et al.,
1993), skewness, and percentiles of lidar-deriveshopy
The quantification of forest structure is utilistedt many forest  heights (Shamsoddini et al., 2013b), are also Uséfu
management purposes including the assessment aigiiaity  estimating structural parameters when lidar dataused
and wood volume based on parameters such as basaktand individually or in synergy with other remotely sedsdata.
volume, and stocking (Wulder, 1998). Accurate gifieation  various studies have shown that spectral derivatiaad
of forest structure variables and their charadiessassist local textural information extracted from optical datancde
or global decisions on forest harvesting, managénam correlated with lidar metrics (Pascual et al., 200hen and
protection (Boyd and Danson, 2005). Hay, 2011). The grey level co-occurrence matrix Q®L)
method is one approach that has been frequentty insirest
Airborne lidar has been shown to be an efficiettadaurce for  structure mapping (Ota et al., 2011). This metlsodsied in this
quantification of forest variables (Popescu et2002; Bortolot  study to extract the textural information of SPOT-5
and Wynne, 2005) as well as fusion with other typeslata, multispectral data.
especially optical data (McCombs et al., 2003; Popes al.,
2004); however, the use of lidar data is constchidee to the  Several non-linear machine learning methods, sush a
high data acquisition cost, time-consuming data@ssing, and multilayer perceptron ANN (called MLP hereafteddial basis
limited existing coverage (Sexton et al., 2009)isTéan be a function ANN (called RBF hereafter), and decision or
particular issue for small isolated estates whiennot take regression tree have been commonly used for differ@mote
advantage of economies of scale afforded with ldidar  sensing applications, especially for land coverssification
projects. In order to overcome these limitatiogent remote  (Atkinson and Tatnall, 1997; Keramitsoglou et 2005; Hsieh,
sensing studies have aimed to predict lidar metrsisg optical  2009), as well as for estimating different struatuysarameters
data with different resolutions (Hilker et al., Z)0Chen and  of forests (Shamsoddini et al., 2011; Gémez et 2012).
Hay, 2011) for the areas which lack lidar coverage. However, most lidar metric prediction studies hdweused
only on MLR, and hence there is a need to compaie th
Lidar-derived mean and maximum canopy heights arepproach with other alternatives such as non-limeadelling
commonly the main lidar metrics modelled using atipie-  methods, including machine learning techniques suash
linear regression (called MLR hereafter) modellingp@ach  regression tree (called RT hereafter), MLP, and RBB. T
(Wulder and Seemann, 2003; Hilker et al., 2008).&wbrding  undertake such an analysis, a plot-based methoduses to
to other studies, although mean and maximum cahefghts  investigate the performance of textural attribupésSPOT-5
are useful parameters for quantifying the strucbfr¢he pine  multispectral data for predicting 25 lidar metrigsing non-

forests or plantations (Pascual et al., 2008), rditlar-derived  [inear and linear methods. Hence the aims of thjsepare to:
height metrics such as variance (Zimble et al.,320@nhedian
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« Evaluate the utility of SPOT-5 textural data for did not show significant correlation after remowail path

predicting lidar metrics.

e Compare MLR as a common modelling method with

radiance.

non-linear machine learning techniques includingAirborne lidar data supplied by FNSW was acquiredJily,
MLP, RBF, and RT for predicting lidar metrics using 2008 using a HARRIER 56/G3 fully-integrated sensorhwit

optical data.

In the next sections, the study area and remottges] data
used for this study are explained. Then, the meilogy and
results are given and finally the results are dised and the
paper is concluded by the last section.

2. STUDY AREA AND DATA
2.1 Study Area

The study area covers a 5000 ha Pinus radiatagpi@mtfrom
35° 23 35" S to 35° 2054’ latitude, and 147° 388’ E to 148°
04 02' E longitude, located within Green Hills State Ftre
(SF), near the town of Batlow in New South Walesstfalia.
Green Hills SF includes 835 compartments with apianted
area of 20,400 ha. Figure 1 shows the study area taise
colour composite image of SPOT-5.

Figure 1. The study area shown on false colour omitg
SPOT-5 image; the yellow rectangle shows the boynafa
5000 ha study area used for this research whilgrisen line
shows a part of Green Hills FS boundary.

2.2 Remotely Sensed Data and Pre-processing

Multispectral SPOT-5 imagery, including green, retgar
infrared (NIR) and shortwave infrared (SWIR) bandsisw
acquired on 5 April 2008. The orthorectified SPO@dia was
provided with spatial resolution of 10 m; the SWIRage
whose pixel size was originally 20 m, was resampted0 m.
The orthorectified SPOT-5 multispectral image wegistered
to an orthorectified WV-2 image (2 m pixel resotumj based
on 50 identified common points using a first orgetynomial
function followed by nearest neighbour resamplingthod.
Registration accuracy was estimated to be better ik pixel.
A Dark object subtract method (DOS3) was exploited
atmospherically correct the optical data and digitambers
were converted to reflectance values. The valuead (i),
which is the incident angle between the sun andra&dntal
surface, was calculated according to Riano et 803p There
was no need for topographic correction as the exatioin of
the relationship between cos (i) and the radiarfoeaoh band

LMS-Q560 laser scanner (Riegl, Austria). The actjoisi
parameters were set to achieve a pulse rate 008&J2, 60 cm
footprint size and 2 pulses pef mith a maximum scan angle
of 15°. Following the collection of the lidar data, 0.5 m
resolution DTM was generated by applying a standard
triangular irregular networks (TIN) modelling teéhue. A
digital surface model (DSM) with matching pixel o&gtion was
generated by selecting the highest lidar point alem value
per cell. Finally, the DTM was subtracted from tB&M to
construct a canopy height model (CHM). The qualifytte
CHM was further improved by removing canopy pittinased
on a new method developed by Shamsoddini et all3(20
which incorporated an adaptive mean filter (AMF}hin a 7x7
search window.

2.3 SampleDesign

Sampling data was required for model training aasting
purposes and to produce a validation dataset fiustg the
machine learner parameters and feature selectidhocheThe
sample population within the plantation estate wafined
using existing Geographic Information System (Gi&xtor
layers supplied by FNSW. Stand information suchgesind
slope, age class and thinning condition was usedratifiy the
forest based on a previous FNSW study (Stone et2@ll0;
Turner et al., 2011). Irrelevant areas such aslygpice stands,
bare and grass lands were also masked out usinga@®SLidar
samples were collected in three different stratduthing: slope
(less than 10°, more than 10 and less than 20°n@oré than
20°); thinning condition (unthinned, first thinnirand second
thinning); and tree age (less than 20 years ance rtian 20
years) using the GIS map of the plantation.

The potential issue of spatial autocorrelation afiolg the
assumption of sample independence (Congalton anénGre
2009) has been shown to be a function of the dpasalution
of remotely sensed data, the scale of study, aedckgses of
coniferous stands (Cohen et al.,, 1990; Hypp&anen,6)199
Therefore, it was required to examine spatial autetation for
all the remotely sensed datasets and strata tandete the
minimum separation between samples to preventdbercence
of autocorrelation. Semi-variograms are the mosmroon
method for determining the minimum distance at Whspatial
autocorrelation is expected to occur among pixéleemotely
sensed data (Hyppanen, 1996; Popescu et al., 200wW.
thinning conditions and age classes are factomci@iiy the
autocorrelation distance over pine plantations iffsn and
Danson, 1988; Cohen et al., 1990; Mason et al., R0B@r this
reason, three sites including three age classes emrsidered
along with two extreme thinning conditions, unthfednand
second thinning by the random-systematic methad.required
to calculate the semi-variograms for the opticahge band
which reveals more information of the plantatiomusture
(Pascual et al., 2010). According to the findingSleamsoddini
et al. (2012), the NIR band of SPOT-5 is relativiighly
correlated with the structural parameters of thee gilantation,
especially mean height. For this reason this baasl selected
along with lidar-derived CHM for calculating a sewairiogram
over the selected areas.
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After determining the required distance for sanqulection of
70 m, a systematic-random sampling approach wad tse
select sample plots. The collection of training &t samples
was conducted with following considerations:

e A minimum of 10 random samples per stratum.

« A 50 m buffer from non-target features such as soad

and eucalyptus patches within each stratum.

e A minimum distance of 70 m to 90 m between
training and test samples, as well as validatiod an
test samples, to avoid the occurrence of spatial

autocorrelation.

Based on the above criteria a total of 171 trairsiagples, 100
test samples, and 75 validation samples were sdl@gthin the
different strata. Moreover, 61 field plots collatte the study
area in 2008 and described in Shamsoddini et @lL32) were
used as test samples along with 100 test sampliexted on
the image.

3. METHODOLOGY
3.1 Attribute Extraction

Statistical attributes were calculated for the exid samples
within 30 m radius plots as discussed in Shamsadetiral.
(2013a). Lidar metrics included meaMKE); median i);
maximum MAX); standard deviatio&); variance VAR

1- Fitting Random Forest (RF) for the dependent

variable using all independent attributes and dateu

mean square error (MSE) that is derived from the

fitted model for the validation dataset.
2-
predicted and measured values.
Calculating the variable importance of
independent attribute using permutation.

each

less important. These are determined by
multiplication of the total number of attributesdan

dropped number which is set to 0.2 (i.e. 20% of the

attributes).
5- Repeating step 1 to 4 but avoid repeating step 3.
To smooth out the results derived from each RF, stepas
repeated 10 times for each epoch and the averdge wd
MSEs derived for 10 trials was used. Traditionalthe
minimum number of attributes providing a minimunteraf
error is selected as suitable attributes. Alsis tecommended
to use the minimum MSE value plus one standardatiewi of
MSEs, which is called error range, for selecting tfinal
number of attributes. But, in this study the secoaddition is
also applied along with the first condition for exding the
suitable number of attributes. After calculatinge thbsolute
residuals for each random forest (step 2), a paiagaples t-test
was used to examine whether the difference of vesidets
derived from a different number of attributes wagn#icant,

coefficient of variation CV); relative range, range divided by provided MSEs were within the error range. If thffedence
the mean,RRA); standard error of the mean- standard deviatiorwas significant for all residual sets, then the bem of

divided by the square root of the number of pixdBEM);
skewness §K), and kurtosis KU). Moreover, all pixels
representing heights which were above the mearhheiihin
each plot were also used to calculate the mean,iamed
standard deviation, variance, rang®u), coefficient of
variation, skewness and kurtosis values above rfuaroted by
the subscripiAM). In addition, 10", 20", 30", 40", 60", 80",

attributes which present the minimum rate of ewas selected.
Otherwise, among those attribute sets presentloger rate of
error without a significant difference in predicticerror, the
attribute set which contains the lower number oitattes was
selected.

The number of iterations was the only parameteusadd prior

and 90" percentilesof height were calculated. For SPOT-5, 11 to using RF. Consequently, in order to find the &létamumber

GLCM indices, as used in Shamsoddini (2012), weleutzted
for four window sizes, 3x3, 5x5, 7x7, and 9x9, dad four
orientations, § 45, 90 and 135 According to Shamsoddini et
al. (2013a), bands, band ratios and principal carapts (PCs)
provide different types of information. For thisasen, the
textural indices were calculated for bands, batidsand PCs
derived from SPOT-5 multispectral image.

3.2 Dimensionality Reduction and Feature Selection

Due to the large amount of redundancy among thergésd
textural attributes of SPOT-5 data, the numbertivibaites was
reduced based on the absolute value of the Peamsoslation
coefficient calculated for each possible pair dfilatites. Then
the summation of the absolute value of the coimelat
coefficient derived for the examination of the tmlaship
between each attribute with the others was caledlaach pair
of attributes whose correlation coefficient washeigthan 0.90
were considered to be redundant and the one whutsé t
correlation coefficient was higher than the oth@swemoved.
This reduction process identified 403 attributes &OT-5
data.

A Random forest feature selection method (RFFS) vezsl u
before applying the machine learning methods is ¢hidy. To
implement the RFFS method the following steps weilesed
(Svetnik et al., 2004):

of trees for each random forest, the number ohiitens was set
to 10, 50, 100, 200, and 300. After the selectibthe suitable
attributes for each number of iterations, the detbattributes
were tested on a validation dataset to calculageptiediction
accuracy of each set of attributes for each lidatrimm The set
of attributes which provided the most accurate iotexhs over
the validation samples for each lidar metric wakeded as
suitable attributes for that lidar metric. The riegd program
was coded in MATLAB 7.9.0.

3.3 Modelling

The textural attributes selected by RFFS methodeémh lidar
metric were provided for the four modelling method4l R,

MLP, RBF, and RT. As mentioned, MLR has been the common

method for modelling lidar metrics using opticatalaMLP is a
form of artificial neural network (ANN) applied faupervised
and unsupervised learning. Predictor data (,..,%) and
response datay{y,,...,y,) are provided for supervised learning
with the aim to minimise an objective function (alsalled cost
function or error function). The MLP architectuseformed by
a number of interconnected nodes (or neurons) wiaih
simple processors of weighted inputs. In genetad MLP
architecture contains three layers, input, hidded autput
layers (Atkinson and Tatnall, 1997). There areeddht types of
activation functions such as Gaussian, sigmoid,eHyglic
tangent and sinusoidal functions used in hiddeerlaj MLP
(Tan et al., 2011). In this paper, a Gaussian afitim function
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was used (Tan et al.,, 2011). The implementationMaP
requires five parameters to be adjusted prior firtmeng the
training step, the number of epochs, desired vauerror,
number of neurons, learning rate, and momentumnpeteas
(Atkinson and Tatnall, 1997). RBF is a common nenedork
method (Benmokhtar and Huet, 2006) which approxisaie
unknown function using a weighted sum of h-dimenalo
radial activation functions (Benoudjit and Verleys@003). A
gradient descendent algorithm proposed by Karaigafir99)
was used for RBF training and determining the censmed
widths of RBF along with their weight and bias. Primor
starting the RBF training six parameters includihg, learning
rate of the weights and bias, the learning ratthefcentroids,
the learning rate of widths, the number of censpttie number
of iterations, and the desired error were adjustée. MLP and
RBF parameters were adjusted using a validation elatasa
recursive process which alters the value of eacanpater until
it reaches the minimum value for the predictionoerfThis
process was repeated 10 times for each value bfs@ameter
and the average root mean square error (RMSE) wet fos
selecting the appropriate values.

RT aims to recursively partition the input samplesibinary
manner (Steinberg and Colla, 1997). The algorithemtstfrom
the root node where all samples are provided ferttaining.
The root node is split into two child nodes whiale durther
split into child nodes. The process of the splitticontinues
until no further splitting is allowed due to thekaof samples
(Steinberg and Colla, 1997). After constructing thaximum
size of the tree, there is a ‘pruning phase’ regflito improve
the generalization capability of the trees. Thehodtproposed
by Drucker (1997) was used to prune the construcess.

3.4 Assessment and Comparison

After developing different models for predicting 2&lar
metrics based on the training dataset, the RMSEcaafiicient

of determination %) were calculated to determine the accuracy %

of the lidar metric predictions of 161 test samplEse RMSE
derived from each lidar metric was divided by theam of the
measured values of that lidar metric and multipligd100 to
show the relative percentage error. To compareeraifft
methods, the absolute residuals between the pi@uscand
field measurements were calculated and the paasples t-
test was applied to examine whether the differdreteveen the
predictions derived from different algorithms wesignificant.
To determine which algorithm was more efficientrthathers,
lidar metrics with errors of prediction significantifferent for
two machine learning algorithms were utilized tdcakate the
scoring matrix equation (Shamsoddini et al., 2013b)

4. RESULTSAND DISCUSSION

As stated in Section 3.2, RFFS was applied on tkeura
attributes derived from SPOT-5 data and the siétaltributes
for predicting each lidar metric were selectédean (ME),

homogeneity(HOM), and contrast (CON) were selected by

RFFS more than the other extracted textural ateduaerived
from SPOT-5. According to Shamsoddini et al. (2052d
Shamsoddini et al. (2013a), the performance of @M

indices is a function of the spectral layer fromishhthese
attributes are calculated. The attributes whichewselected
from SPOT-5 data were mostly band ratios, espgctalbse
derived from the ratio of SWIR and the other bantts.
addition, the red band and its band ratios werectedl more

often than the other bands of SPOT-5. Pascual.ef2all0)
showed that the SWIR-related indices of Landsat ETafe
strongly correlated with lidar metrics. Also, theefulness of
the red band of medium resolution data was shown by
Donoghue and Watt (2006) for predicting lidar-dedwheights
using Landsat ETM+, respectively.

The performance of MLP, RBF, and RT were compared with
the more commonly used MLR method. The same at&thas
those used for non-linear machine learners wergiged for

the MLR. The results oR? and the relative error derived from
individual machine learners for some of the lidaetrc which
were predicted more accurate than the others uSP@T-5
textural data are shown in Figure 2.
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Figure 2. ) and p) are respectiveli®® and relative error
results derived from individual machine learnersig$SPOT-5
textural data. The colour of the box surroundirg\thlues
refers to the method used to derive the value éngid box.

According to Figure 2, the performance of differenéthods
varies for each lidar metric; however, Figur@)2gemonstrates
that the variations of most of the lidar metrice a&xplained
better using the MLP and RT methods, while Figut®) &hows
most of lidar metrics predicted by MLR method hawevér
relative error values than those derived from ttheelomethods.
Figure 26) indicates that the higheBFf values among different
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lidar metrics were derived from MLP fo8Ty and VAR

Reference

Moreover, according to Figuretd( the lowest relative errors of Atkinson, P. M. & Danson, F. M., 1988. Spatial desion for

11.6% and 16.8% pertain 88U,y and MAX when MLR is

utilised. To determine the best method among thedigidual

machine learners, the paired-samples t-test wasl dse

examining whether the prediction error of two methdéor each
lidar metric is statistically significant. The soay matrix was
then calculated using lidar metrics with signifitatifferences
in prediction error, to compare the relative perfance of each
method. Table 1 shows the results of the scoringix@nalysis
for each method.

Method MLP RBF RT RFFS+MLR  Total
MLP 0 8.7 18.6 -3.1 24.2
RBF -8.7 0 10.2 13.9 154
RT -18.6 -10.2 0 -2.8 -31.9
RFFS+MLR 3.1 -13.9 2.8 0 -8.0

Table 1. Scoring matrix results for comparing indixal machine
learners over the lidar metrics predicted using BBQ@extural data in
percentage

As Table 1 shows for SPOT-5 data, among non-lingzthods,
MLP performs statistically significantly up to 9%nd 19%
better than RBF and RT, respectively. Also, RBF is thly o
non-linear machine learner which performs signiftta13.9%
better than MLR. Regarding the overall performansesteown
in the last column of Table 1 in bold and italixttethe best
performing method among individual machine learrigefgLP,
whereas the weakest machine learner is RT. Alsoptieeall
performance of MLP and RBF is significantly bettemarth
multiple-linear regression when SPOT-5 data arel.uéeseems
that the relationship between textural attributesiveed from
SPOT-5 data and lidar metrics is defined as a morat
relationship rather than a linear relationship. fus reason
non-linear methods including MLP and RBF performettdoe
than MLR; however, the inherent weakness of RT, wiisch
non-linear regression method, should not be ignored

5. CONCLUSION

In this study the performance of the different typé machine

learners including MLP, RBF, and RT were compared with

MLR for predicting 25 different lidar metrics usirtgxtural
information of SPOT-5 multispectral image. Priouting these
machine learning approaches, the RFFS method wae@pp
select the most suitable textural attributes oficaptdata for
predicting lidar metrics.Correlation, contrast and mean,
selected as the suitable textural attributes by lREFS and
stepwise methods, are the most useful GLCM indiak, the
SWIR and red bands of SPOT-5 data and their ratits tive
other bands are useful for predicting lidar metrismong 25

lidar metrics, KUay and MAX were predicted with higher

accuracy compared to the others. In overall, Thé’Nitethods
performed better than the other individual machiearners
including MLR for predicting lidar metrics using SP3

remote sensing of forest plantations. In: Procegslirof
Geoscience and Remote Sensing Symposium, IGARSS.,'88,
pp. 221-223.

Atkinson, P. M., & Tatnall, A. R. L., 1997. Introdiimn neural
networks in remote sensinénternational Journal of Remote
Sensing18, pp. 699 - 709.

Benmokhtar, R., & Huet, B., 2006. Neural network camiig
classifier based on Dempster-Shafer theory for séma
indexing in video contenin: Cham, T.-J., Cai, J., Dorai, C.,
Rajan, D., Chua, T.-S. & Chia, L.-T. (edsfdvances in
Multimedia Modeling Springer Berlin Heidelberg.

Benoudjit, N., & Verleysen, M., 2003. On the kermatiths in
radial-basis function network®leural Processing Letterd,8,
pp. 139-154.

Bortolot, Z. J., & Wynne, R. H., 2005. Estimating det
biomass using small footprint LIDAR data: An indivil tree-
based approach that incorporates training d&RS Journal
of Photogrammetry and Remote Sensi$y,pp. 342-360.

Boyd, D. S., & Danson, F. M., 2005. Satellite remsgtasing of
forest resources: three decades of research denefdp
Progress in Physical Geograph39, 1-26.

Chen, G. & Hay, G. J., 2011. An airborne lidar sanpl
strategy to model forest canopy height from Quidkbnagery
and GEOBIA.Remote Sensing of Environmeht5, pp. 1532-
1542.

Congalton, R. G., & Green, K, 2008ssessing the accuracy of
remotely sensed data: principles and practi¢escond ed.).
CRC Press, Boca Raton.

Cohen, W. B., Spies, T. A., & Bradshaw, G. A., 1990.
Semivariograms of digital imagery for analysis abnifer
canopy structureRemote Sensing of Environmedd, pp. 167-
178.

Donoghue, D. N. M. & Watt, P. J., 2006. Using LiDAR
compare forest height estimates from IKONOS anddkah
ETM+ data in Sitka spruce plantation foresisternational
Journal of Remote Sensirgj/, pp. 2161-2175.

Drucker, H. 1997. Improving regressors using bogsti
techniques. Proceedings of the Fourteenth International
Conference on Machine LearningMorgan Kaufmann
Publishers Inc., San Francisco.

GoOmez, C., Wulder, M. A., Montes, F., & DelgadoAJ.2012.
Modeling forest structural parameters in the Meadieean
pines of central Spain using QuickBird-2 imagery and

textural data; however, RBF was the only method whiclclassification and regression tree analysis (CARA®mote

performed better than MLR.

Acknowledgement

Lidar-derived data utilized in this study was kingdlupplied by
Dr. Christine Stone from the New South Wales Depeantnof
Industry and Investment (IINSW) and Forests NSW $W,
with partial sponsorship from the Forest and WoaddBcts
Australia (FWPA). Moreover, the authors wish to regs
appreciation to SPOT Imaging Services, NSW for [gliog
SPOT-5 image.

Sensing4, pp. 135-159.

Hilker, T., Wulder, M. A. & Coops, N. C., 2008. Updabf
forest inventory data with lidar and high spatiakalution
satellite imageryCanadian Journal of Remote Sensifd, pp.
5-12.

Hsieh, W. W., 2009.Machine learning methods in the
environmental sciences Cambridge University Press,
Cambridge

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

doi:10.5194/isprsannals-11-5-W2-259-2013

263



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 — 13 November 2013, Antalya, Turkey

Hyppanen, H., 1996. Spatial autocorrelation andhwgitspatial
resolution of optical remote sensing data in borakst
environmentlInternational Journal of Remote Sensiig, pp.
3441-3452.

Karayiannis, N. B., 1999. Reformulated radial basiral
networks trained by gradient descetEEE Transactions on
Neural Networks10, pp. 657-671.

Keramitsoglou, I., Sarimveis, H., Kiranoudis, C. &.Sifakis,
N., 2005. Radial basis function neural networks sifestion
using very high spatial resolution satellite imageman
application to the habitat area of Lake Kerkini €€ce).
International Journal of Remote Sensi@§, pp. 1861 - 1880.

Mason, W. L., Connolly, T., Pommerening, A., & EddsyC.,
2007. Spatial structure of semi-natural and plémastands of
Scots pine (Pinus sylvestris L.) in northern Scuatldorestry,
80, pp. 567-586.

McCombs, J. W., Roberts, S. D. & Evans, D. L., 2003.

Influence of fusing lidar and multispectral imagery remotely
sensed estimates of stand density and mean trghthiai a
managed Loblolly pine plantatioRorest Science49, pp. 457-
466.

Ota, T., Mizoue, N., & Yoshida, S., 2011. Influenakusing
texture information in remote sensed data on treracy of
forest type classification at different levels pasal resolution.
Journal of Forest Research6, pp.432-437.

Pascual, C., Garcia-Abril, A., Garcia-Montero, L, ®artin-

Sexton, J. O., Bax, T., Siqueira, P., Swenson, & Hensley,

S., 2009. A comparison of lidar, radar, and fieldasurements
of canopy height in pine and hardwood forests oftlseastern
North America. Forest Ecology and Managemergs7, pp.

1136-1147.

Shamsoddini, A. 2012. Radar backscatter and optéaural
indices fusion for pine plantation structure mapgpiim: ISPRS
Annals of the Photogrammetry, Remote Sensing andiabpa
Information Sciences, Melbournke7, pp. 309-314.

Shamsoddini, A., Trinder, J. C., & Turner, R., 2011.
Biophysical parameter estimation of a pine plantatfoom
satellite images using artificial neural networksin:
Proceedings of the #4international Symposium for Remote
Sensing of the Environment (ISRSE34), Australia,lpg.

Shamsoddini, A., Trinder, J. C., & Turner, R., 201IRCH-5
multispectral image for pine plantation structurapping. In:
ACRSC2012 proceeding, Thailand, pp. 1-10.

Shamsoddini, A., Trinder, J. C., & Turner, R., 201®ne
plantation structure mapping using WorldView-2 riggectral
image.International Journal of Remote Sensirdg, pp. 3986-
4007.

Shamsoddini, A., Turner, R. & Trinder, J. C., 201i8fpproving
lidar-based forest structure mapping with crowrelepit
removal.Journal of Spatial Scienc&8, pp. 29-51.

Steinberg, D., & Colla, P., 1997. CART: classificatiand
regression treesThe Top Ten Algorithms in Data Mining,

Fernandez, S., & Cohen, W. B., 2008. Object-basedi-semChapman & Hall/CRC data mining and knowledge discovery

automatic approach for forest structure charac8dm using
lidar data in heterogeneous Pinus sylvestris stafdsest
Ecology and Managemem55, pp. 3677-3685.

Pascual, C., Garcia-Abril, A., Cohen, W. B., & Martin-

Fernandez, S., 2010. Relationship between LiDARveeri
forest canopy height and Landsat imadeternational Journal
of Remote Sensingl, pp. 1261-1280.

series pp. 179-201.

Stone, C., Turner, R., Kathuria, A., Carney, C., Wagrsk,,
Penman, T., Bi, H., Fox, J. & Watt, D., 2010. Adoptiof new
airborne technologies for improving efficienciesdaaccuracy
of estimating standing volume and yield modellimg Rinus
radiata plantations (PNC058-0809). Final Report fier Forest
& Wood Products Australia Project PNC0-0809. Avdiabn
the FWPA website www.fwpa.com.au

Popescu, S. C., Wynne, R. H., & Nelson, R. F., 2002.

Estimating plot-level tree heights with lidar: Ibd#tering with
a canopy-height based variable window siZemputers and
Electronics in Agriculture37, pp. 71-95.

Popescu, S., C., Wynne, R., H. & Scrivani, J., AQZ0usion
of small-footprint lidar and multispectral dataestimate plot-
level volume and biomass in deciduous and pinesferén
Virginia, USA. Forest Sciences0, pp. 551-565.

Riano, D., Chuvieco, E., Salas, J., & Aguado, I., 200
Assessment of different topographic correctionkandsat-TM
data for mapping vegetation typeHEEE Transactions on
Geoscience and Remote Sens#fy pp. 1056-1061.

Ritchie, J. C., Evans, D. L., Jacobs, D., EveritHJ& Weltz,
M. A., 1993. Measuring canopy structure with arbaine laser
altimeter.Transactions of the ASAB6, pp. 1235-1238.

Svetnik, V., Liaw, A., Tong, C. & Wang, T., 2004. plcation
of Breiman’s random forest to modeling structuravégt
relationships of pharmaceutical molecules.ROLI, F., Kittler,
J. & Windeatt, T. (eds.Multiple Classifier Systemspringer
Berlin Heidelberg.

Tan, T., Teo, J., & Anthony, P., 2011. A compamtiv
investigation of non-linear activation functions ineural
controllers for search-based game Al engineerifdificial
Intelligence Revieypp. 1-25.

Turner, R., Stone, C., Kathuria, A. & Penman, T.1R0
Towards an operational lidar resource inventorycess in
Australian softwood plantations. In: Proceedingsting 34"
International Symposium for Remote Sensing of
Environment (ISRSE34), Sydney, Australia, 10-15 Ap@i11.

the

Wulder, M. 1998. Optical remote-sensing technigf@sthe
assessment of forest inventory and biophysical meters.
Progress in Physical Geograph32, pp. 449-476.

Wulder, M. A., & Seemann, D., 2003. Forest inventbeight
update through the integration of lidar data widgreented
Landsat imageryCanadian Journal of Remote Sensirgp,
pp.536-543.

Zimble, D. A., Evans, D. L., Carlson, G. C., Parker, C.,
Grado, S. C., & Gerard, P. D., 2003. Characteriziagical
forest structure using small-footprint airborne AR. Remote
Sensing of Environmer87, pp. 171-182.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

doi:10.5194/isprsannals-11-5-W2-259-2013

264



