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ABSTRACT: 
 
Although many studies have demonstrated the utility of airborne lidar for forest inventory, the acquisition and processing of the data 
can be cost prohibitive for small areas. In such cases, it may be possible to emulate lidar metrics using more affordable optical data. 
This study explored processing methods for predicting lidar metrics using SPOT-5 textural data. Multiple-linear regression (MLR) 
was compared with non-linear machine learning techniques including multi-layer perceptron (MLP) artificial neural networks 
(ANN), rational basis function (RBF) ANN and regression tree (RT). For this purpose, 11 grey level co-occurrence matrix (GLCM) 
indices were calculated for bands, band ratios and principal components (PCs) of SPOT-5 multispectral image. SPOT-5 metrics were 
correlated with 25 lidar metrics collected over a Pinus radiata plantation. After dimensionality reduction, random forest feature 
selection was applied to select the most relevant SPOT-5 textural attributes for inferring each lidar metric. The results showed that 
the non-linear methods including MLP and RBF methods are more promising for modelling lidar metrics using SPOT-5 data than 
MLR and RT. 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

The quantification of forest structure is utilised for many forest 
management purposes including the assessment of productivity 
and wood volume based on parameters such as basal area, stand 
volume, and stocking (Wulder, 1998). Accurate quantification 
of forest structure variables and their characteristics assist local 
or global decisions on forest harvesting, management and 
protection (Boyd and Danson, 2005).  
 
Airborne lidar has been shown to be an efficient data source for 
quantification of forest variables (Popescu et al., 2002; Bortolot 
and Wynne, 2005) as well as fusion with other types of data, 
especially optical data (McCombs et al., 2003; Popescu et al., 
2004); however, the use of lidar data is constrained due to the 
high data acquisition cost, time-consuming data processing, and 
limited existing coverage (Sexton et al., 2009). This can be a 
particular issue for small isolated estates which cannot take 
advantage of economies of scale afforded with large lidar 
projects. In order to overcome these limitations, recent remote 
sensing studies have aimed to predict lidar metrics using optical 
data with different resolutions (Hilker et al., 2008; Chen and 
Hay, 2011) for the areas which lack lidar coverage.  
 
Lidar-derived mean and maximum canopy heights are 
commonly the main lidar metrics modelled using a multiple-
linear regression (called MLR hereafter) modelling approach 
(Wulder and Seemann, 2003; Hilker et al., 2008). But according 
to other studies, although mean and maximum canopy heights 
are useful parameters for quantifying the structure of the pine 
forests or plantations (Pascual et al., 2008), other lidar-derived 
height metrics such as variance (Zimble et al., 2003), median 

(Pascual et al., 2008), coefficient of variation (Ritchie et al., 
1993), skewness, and percentiles of lidar-derived canopy 
heights (Shamsoddini et al., 2013b), are also useful for 
estimating structural parameters when lidar data is used 
individually or in synergy with other remotely sensed data. 
Various studies have shown that spectral derivatives and 
textural information extracted from optical data can be 
correlated with lidar metrics (Pascual et al., 2010; Chen and 
Hay, 2011). The grey level co-occurrence matrix (GLCM) 
method is one approach that has been frequently used in forest 
structure mapping (Ota et al., 2011). This method is used in this 
study to extract the textural information of SPOT-5 
multispectral data.  
 
Several non-linear machine learning methods, such as 
multilayer perceptron ANN (called MLP hereafter), radial basis 
function ANN (called RBF hereafter), and decision or 
regression tree have been commonly used for different remote 
sensing applications, especially for land cover classification 
(Atkinson and Tatnall, 1997; Keramitsoglou et al., 2005; Hsieh, 
2009), as well as for estimating different structural parameters 
of forests (Shamsoddini et al., 2011; Gómez et al., 2012). 
However, most lidar metric prediction studies have focused 
only on MLR, and hence there is a need to compare this 
approach with other alternatives such as non-linear modelling 
methods, including machine learning techniques such as 
regression tree (called RT hereafter), MLP, and RBF. To 
undertake such an analysis, a plot-based method was used to 
investigate the performance of textural attributes of SPOT-5 
multispectral data for predicting 25 lidar metrics using non-
linear and linear methods. Hence the aims of this paper are to: 
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• Evaluate the utility of SPOT-5 textural data for 
predicting lidar metrics. 

• Compare MLR as a common modelling method with 
non-linear machine learning techniques including 
MLP, RBF, and RT for predicting lidar metrics using 
optical data. 

In the next sections, the study area and remotely sensed data 
used for this study are explained. Then, the methodology and 
results are given and finally the results are discussed and the 
paper is concluded by the last section. 
 

2. STUDY AREA AND DATA 

2.1 Study Area 

The study area covers a 5000 ha Pinus radiata plantation from 
35° 23/ 35// S to 35° 29/ 58// latitude, and 147° 58/ 48// E to 148° 
04/ 02// E longitude, located within Green Hills State Forest 
(SF), near the town of Batlow in New South Wales, Australia. 
Green Hills SF includes 835 compartments with a net planted 
area of 20,400 ha. Figure 1 shows the study area on a false 
colour composite image of SPOT-5. 
 

 
Figure 1. The study area shown on false colour composite 

SPOT-5 image; the yellow rectangle shows the boundary of 
5000 ha study area used for this research while the green line 

shows a part of Green Hills FS boundary. 
 
2.2 Remotely Sensed Data and Pre-processing 

Multispectral SPOT-5 imagery, including green, red, near 
infrared (NIR) and shortwave infrared (SWIR) bands, was 
acquired on 5 April 2008. The orthorectified SPOT-5 data was 
provided with spatial resolution of 10 m; the SWIR image 
whose pixel size was originally 20 m, was resampled to 10 m. 
The orthorectified SPOT-5 multispectral image was registered 
to an orthorectified WV-2 image (2 m pixel resolution) based 
on 50 identified common points using a first order polynomial 
function followed by nearest neighbour resampling method. 
Registration accuracy was estimated to be better than half pixel. 
A Dark object subtract method (DOS3) was exploited to 
atmospherically correct the optical data and digital numbers 
were converted to reflectance values. The value of cos (i), 
which is the incident angle between the sun and a horizontal 
surface, was calculated according to Riano et al. (2003). There 
was no need for topographic correction as the examination of 
the relationship between cos (i) and the radiance of each band 

did not show significant correlation after removal of path 
radiance. 
 
Airborne lidar data supplied by FNSW was acquired in July, 
2008 using a HARRIER 56/G3 fully-integrated sensor with 
LMS-Q560 laser scanner (Riegl, Austria). The acquisition 
parameters were set to achieve a pulse rate of 88,000 Hz, 60 cm 
footprint size and 2 pulses per m2 with a maximum scan angle 
of 15°. Following the collection of the lidar data, a 0.5 m 
resolution DTM was generated by applying a standard 
triangular irregular networks (TIN) modelling technique. A 
digital surface model (DSM) with matching pixel resolution was 
generated by selecting the highest lidar point elevation value 
per cell. Finally, the DTM was subtracted from the DSM to 
construct a canopy height model (CHM). The quality of the 
CHM was further improved by removing canopy pitting based 
on a new method developed by Shamsoddini et al. (2013b) 
which incorporated an adaptive mean filter (AMF) within a 7×7 
search window.  
 
2.3 Sample Design 

Sampling data was required for model training and testing 
purposes and to produce a validation dataset for adjusting the 
machine learner parameters and feature selection method. The 
sample population within the plantation estate was defined 
using existing Geographic Information System (GIS) vector 
layers supplied by FNSW. Stand information such as ground 
slope, age class and thinning condition was used to stratifiy the 
forest based on a previous FNSW study (Stone et al., 2010; 
Turner et al., 2011). Irrelevant areas such as eucalyptus stands, 
bare and grass lands were also masked out using GIS data. Lidar 
samples were collected in three different strata including: slope 
(less than 10°, more than 10 and less than 20°, and more than 
20°); thinning condition (unthinned, first thinning and second 
thinning); and tree age (less than 20 years and more than 20 
years) using the GIS map of the plantation. 
  
The potential issue of spatial autocorrelation violating the 
assumption of sample independence (Congalton and Green, 
2009) has been shown to be a function of the spatial resolution 
of remotely sensed data, the scale of study, and age classes of 
coniferous stands (Cohen et al., 1990; Hyppänen, 1996). 
Therefore, it was required to examine spatial autocorrelation for 
all the remotely sensed datasets and strata to determine the 
minimum separation between samples to prevent the occurrence 
of autocorrelation. Semi-variograms are the most common 
method for determining the minimum distance at which spatial 
autocorrelation is expected to occur among pixels of remotely 
sensed data (Hyppänen, 1996; Popescu et al., 2004). The 
thinning conditions and age classes are factors affecting the 
autocorrelation distance over pine plantations (Atkinson and 
Danson, 1988; Cohen et al., 1990; Mason et al., 2007).  For this 
reason, three sites including three age classes were considered 
along with two extreme thinning conditions, unthinned and 
second thinning by the random-systematic method. It is required 
to calculate the semi-variograms for the optical image band 
which reveals more information of the plantation structure 
(Pascual et al., 2010). According to the findings of Shamsoddini 
et al. (2012), the NIR band of SPOT-5 is relatively highly 
correlated with the structural parameters of the pine plantation, 
especially mean height.  For this reason this band was selected 
along with lidar-derived CHM for calculating a semi-variogram 
over the selected areas.  
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After determining the required distance for sample collection of 
70 m, a systematic-random sampling approach was used to 
select sample plots. The collection of training and test samples 
was conducted with following considerations: 

• A minimum of 10 random samples per stratum. 
• A 50 m buffer from non-target features such as roads 

and eucalyptus patches within each stratum. 
• A minimum distance of 70 m to 90 m between 

training and test samples, as well as validation and 
test samples, to avoid the occurrence of spatial 
autocorrelation. 
 

Based on the above criteria a total of 171 training samples, 100 
test samples, and 75 validation samples were selected within the 
different strata. Moreover, 61 field plots collected in the study 
area in 2008 and described in Shamsoddini et al. (2013a) were 
used as test samples along with 100 test samples collected on 
the image.  
 

3. METHODOLOGY 

3.1 Attribute Extraction 

Statistical attributes were calculated for the collected samples 
within 30 m radius plots as discussed in Shamsoddini et al. 
(2013a). Lidar metrics included mean (ME); median (M); 
maximum (MAX); standard deviation(ST); variance (VAR); 
coefficient of variation (CV); relative range, range divided by 
the mean, (RRA); standard error of the mean- standard deviation 
divided by the square root of the number of pixels- (SEM); 
skewness (SK), and kurtosis (KU). Moreover, all pixels 
representing heights which were above the mean height within 
each plot were also used to calculate the mean, median, 
standard deviation, variance, range (RAM), coefficient of 
variation, skewness and kurtosis values above mean (denoted by 
the subscript AM). In addition, 10th, 20th, 30th, 40th, 60th, 80th, 
and 90th percentiles of height were calculated. For SPOT-5, 11 
GLCM indices, as used in Shamsoddini (2012), were calculated 
for four window sizes, 3×3, 5×5, 7×7, and 9×9, and for four 
orientations, 0°, 45°, 90° and 135°. According to Shamsoddini et 
al. (2013a), bands, band ratios and principal components (PCs) 
provide different types of information. For this reason, the 
textural indices were calculated for bands, band ratios and PCs 
derived from SPOT-5 multispectral image. 
 
3.2 Dimensionality Reduction and Feature Selection 

Due to the large amount of redundancy among the generated 
textural attributes of SPOT-5 data, the number of attributes was 
reduced based on the absolute value of the Pearson correlation 
coefficient calculated for each possible pair of attributes. Then 
the summation of the absolute value of the correlation 
coefficient derived for the examination of the relationship 
between each attribute with the others was calculated. Each pair 
of attributes whose correlation coefficient was higher than 0.90 
were considered to be redundant and the one whose total 
correlation coefficient was higher than the other was removed. 
This reduction process identified 403 attributes for SPOT-5 
data. 
 
A Random forest feature selection method (RFFS) was used 
before applying the machine learning methods in this study. To 
implement the RFFS method the following steps were utilised 
(Svetnik et al., 2004): 

1- Fitting Random Forest (RF) for the dependent 
variable using all independent attributes and calculate 
mean square error (MSE) that is derived from the 
fitted model for the validation dataset.  

2- Calculating the absolute values of residuals of the 
predicted and measured values. 

3- Calculating the variable importance of each 
independent attribute using permutation. 

4- Removing a suitable number of attributes which are 
less important. These are determined by 
multiplication of the total number of attributes and 
dropped number which is set to 0.2 (i.e. 20% of the 
attributes). 

5- Repeating step 1 to 4 but avoid repeating step 3. 
 

To smooth out the results derived from each RF, step 1 was 
repeated 10 times for each epoch and the average value of 
MSEs derived for 10 trials was used. Traditionally, the 
minimum number of attributes providing a minimum rate of 
error is selected as suitable attributes. Also, it is recommended 
to use the minimum MSE value plus one standard deviation of 
MSEs, which is called error range, for selecting the final 
number of attributes. But, in this study the second condition is 
also applied along with the first condition for selecting the 
suitable number of attributes. After calculating the absolute 
residuals for each random forest (step 2), a paired-samples t-test 
was used to examine whether the difference of residual sets 
derived from a different number of attributes was significant, 
provided MSEs were within the error range. If the difference 
was significant for all residual sets, then the number of 
attributes which present the minimum rate of error was selected. 
Otherwise, among those attribute sets presenting a lower rate of 
error without a significant difference in prediction error, the 
attribute set which contains the lower number of attributes was 
selected.  
 
The number of iterations was the only parameter adjusted prior 
to using RF. Consequently, in order to find the suitable number 
of trees for each random forest, the number of iterations was set 
to 10, 50, 100, 200, and 300. After the selection of the suitable 
attributes for each number of iterations, the selected attributes 
were tested on a validation dataset to calculate the prediction 
accuracy of each set of attributes for each lidar metric. The set 
of attributes which provided the most accurate predictions over 
the validation samples for each lidar metric was selected as 
suitable attributes for that lidar metric. The required program 
was coded in MATLAB 7.9.0. 
 
3.3 Modelling 

The textural attributes selected by RFFS method for each lidar 
metric were provided for the four modelling methods, MLR, 
MLP, RBF, and RT. As mentioned, MLR has been the common 
method for modelling lidar metrics using optical data. MLP is a 
form of artificial neural network (ANN) applied for supervised 
and unsupervised learning. Predictor data (x1, x2,..,xn) and 
response data (y1,y2,…,yn) are provided for supervised learning 
with the aim to minimise an objective function (also called cost 
function or error function). The MLP architecture is formed by 
a number of interconnected nodes (or neurons) which are 
simple processors of weighted inputs. In general, the MLP 
architecture contains three layers, input, hidden and output 
layers (Atkinson and Tatnall, 1997). There are different types of 
activation functions such as Gaussian, sigmoid, hyperbolic 
tangent and sinusoidal functions used in hidden layer of MLP 
(Tan et al., 2011). In this paper, a Gaussian activation function 
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was used (Tan et al., 2011). The implementation of MLP 
requires five parameters to be adjusted prior to beginning the 
training step, the number of epochs, desired value of error, 
number of neurons, learning rate, and momentum parameters 
(Atkinson and Tatnall, 1997). RBF is a common neural network 
method (Benmokhtar and Huet, 2006) which approximates an 
unknown function using a weighted sum of h-dimensional 
radial activation functions (Benoudjit and Verleysen, 2003). A 
gradient descendent algorithm proposed by Karayiannis (1999) 
was used for RBF training and determining the centres and 
widths of RBF along with their weight and bias. Prior to 
starting the RBF training  six parameters including, the learning 
rate of the weights and bias, the learning rate of the centroids, 
the learning rate of widths, the number of centroids, the number 
of iterations, and the desired error were adjusted. The MLP and 
RBF parameters were adjusted using a validation dataset in a 
recursive process which alters the value of each parameter until 
it reaches the minimum value for the prediction error. This 
process was repeated 10 times for each value of each parameter 
and the average root mean square error (RMSE) was used for 
selecting the appropriate values. 
 
RT aims to recursively partition the input samples in a binary 
manner (Steinberg and Colla, 1997). The algorithm starts from 
the root node where all samples are provided for the training. 
The root node is split into two child nodes which are further 
split into child nodes. The process of the splitting continues 
until no further splitting is allowed due to the lack of samples 
(Steinberg and Colla, 1997). After constructing the maximum 
size of the tree, there is a ‘pruning phase’ required to improve 
the generalization capability of the trees. The method proposed 
by Drucker (1997) was used to prune the constructed trees.  
 
3.4 Assessment and Comparison 

After developing different models for predicting 25 lidar 
metrics based on the training dataset, the RMSE and coefficient 
of determination (R2) were calculated to determine the accuracy 
of the lidar metric predictions of 161 test samples. The RMSE 
derived from each lidar metric was divided by the mean of the 
measured values of that lidar metric and multiplied by 100 to 
show the relative percentage error. To compare different 
methods, the absolute residuals between the predictions and 
field measurements were calculated and the paired-samples t-
test was applied to examine whether the difference between the 
predictions derived from different algorithms were significant. 
To determine which algorithm was more efficient than others, 
lidar metrics with errors of prediction significantly different for 
two machine learning algorithms were utilized to calculate the 
scoring matrix equation (Shamsoddini et al., 2013b). 
 

4. RESULTS AND DISCUSSION 

As stated in Section 3.2, RFFS was applied on the textural 
attributes derived from SPOT-5 data and the suitable attributes 
for predicting each lidar metric were selected. Mean (ME), 
homogeneity (HOM), and contrast (CON) were selected by 
RFFS more than the other extracted textural attributes derived 
from SPOT-5. According to Shamsoddini et al. (2012) and 
Shamsoddini et al. (2013a), the performance of the GLCM 
indices is a function of the spectral layer from which these 
attributes are calculated. The attributes which were selected 
from SPOT-5 data were mostly band ratios, especially those 
derived from the ratio of SWIR and the other bands. In 
addition, the red band and its band ratios were selected more 

often than the other bands of SPOT-5. Pascual et al. (2010) 
showed that the SWIR-related indices of Landsat ETM+ are 
strongly correlated with lidar metrics. Also, the usefulness of 
the red band of medium resolution data was shown by 
Donoghue and Watt (2006) for predicting lidar-derived heights 
using Landsat ETM+, respectively. 
The performance of MLP, RBF, and RT were compared with 
the more commonly used MLR method. The same attributes as 
those used for non-linear machine learners were provided for 
the MLR. The results of R2 and the relative error derived from 
individual machine learners for some of the lidar metric which 
were predicted more accurate than the others using SPOT-5 
textural data are shown in Figure 2. 
 

 
(a) 

 
(b) 

Figure 2. (a) and (b) are respectively R2 and relative error 
results derived from individual machine learners using SPOT-5 

textural data. The colour of the box surrounding the values 
refers to the method used to derive the value inside the box. 

 
According to Figure 2, the performance of different methods 
varies for each lidar metric; however, Figure 2(a) demonstrates 
that the variations of most of the lidar metrics are explained 
better using the MLP and RT methods, while Figure 2(b) shows 
most of lidar metrics predicted by MLR method have lower 
relative error values than those derived from the other methods.  
Figure 2(a) indicates that the highest R2 values among different 
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lidar metrics were derived from MLP for STAM and VAR. 
Moreover, according to Figure 2(b), the lowest relative errors of 
11.6% and 16.8% pertain to KUAM and MAX when MLR is 
utilised. To determine the best method among these individual 
machine learners, the paired-samples t-test was used for 
examining whether the prediction error of two methods for each 
lidar metric is statistically significant. The scoring matrix was 
then calculated using lidar metrics with significant differences 
in prediction error, to compare the relative performance of each 
method. Table 1 shows the results of the scoring matrix analysis 
for each method. 
 
Method MLP RBF RT RFFS+MLR Total 
MLP 0 8.7 18.6 -3.1 24.2 
RBF -8.7 0 10.2 13.9 15.4 
RT -18.6 -10.2 0 -2.8 -31.6 
RFFS+MLR 3.1 -13.9 2.8 0 -8.0 

Table 1. Scoring matrix results for comparing individual machine 
learners over the lidar metrics predicted using SPOT-5 textural data in 

percentage 

As Table 1 shows for SPOT-5 data, among non-linear methods, 
MLP performs statistically significantly up to 9% and 19% 
better than RBF and RT, respectively. Also, RBF is the only 
non-linear machine learner which performs significantly 13.9% 
better than MLR. Regarding the overall performance, as shown 
in the last column of Table 1 in bold and italic text, the best 
performing method among individual machine learners is MLP, 
whereas the weakest machine learner is RT. Also, the overall 
performance of MLP and RBF is significantly better than 
multiple-linear regression when SPOT-5 data are used. It seems 
that the relationship between textural attributes derived from 
SPOT-5 data and lidar metrics is defined as a non-linear 
relationship rather than a linear relationship. For this reason 
non-linear methods including MLP and RBF performed better 
than MLR; however, the inherent weakness of RT, which is a 
non-linear regression method, should not be ignored. 
 

5. CONCLUSION 

In this study the performance of the different types of machine 
learners including MLP, RBF, and RT were compared with 
MLR for predicting 25 different lidar metrics using textural 
information of SPOT-5 multispectral image. Prior to using these 
machine learning approaches, the RFFS method was applied to 
select the most suitable textural attributes of optical data for 
predicting lidar metrics. Correlation, contrast, and mean, 
selected as the suitable textural attributes by both RFFS and 
stepwise methods, are the most useful GLCM indices. Also, the 
SWIR and red bands of SPOT-5 data and their ratios with the 
other bands are useful for predicting lidar metrics. Among 25 
lidar metrics, KUAM and MAX were predicted with higher 
accuracy compared to the others. In overall, The MLP methods 
performed better than the other individual machine learners 
including MLR for predicting lidar metrics using SPOT-5 
textural data; however, RBF was the only method which 
performed better than MLR.  
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