
AUTOMATIC REGISTRATION OF IPHONE IMAGES TO LASER POINT CLOUDS OF
URBAN STRUCTURES USING SHAPE FEATURES

Beril Sirmacek, Roderik Lindenbergh, Massimo Menenti

Department of Geoscience and Remote Sensing, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands
(B.Sirmacek, R.C.Lindenbergh, M.Menenti)@tudelft.nl

Commission I/3

KEY WORDS: Feature Extraction, Feature Matching, Registration, Point Clouds, LIDAR, Mobile Mapping, Smartphone, iPhone,
Texture Mapping, Facade Detection, 3D City Models, Building Modelling, Localization, GPS, Airborne Laser Scanning, Derivative
Filters

ABSTRACT:

Fusion of 3D airborne laser (LIDAR) data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating.
The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this
article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images
which are taken in front of the interested urban structure by the application user and the high resolution LIDAR point clouds of the
acquired by an airborne laser sensor. After finding the photo capturing position and orientation from the iPhone photograph metafile,
we automatically select the area of interest in the point cloud and transform it into a range image which has only grayscale intensity
levels according to the distance from the image acquisition position. We benefit from local features for registering the iPhone image to
the generated range image. In this article, we have applied the registration process based on local feature extraction and graph matching.
Finally, the registration result is used for facade texture mapping on the 3D building surface mesh which is generated from the LIDAR
point cloud. Our experimental results indicate possible usage of the proposed algorithm framework for 3D urban map updating and
enhancing purposes.

1 INTRODUCTION

Modelling 3D urban structures gained popularity in urban mon-
itoring, safety, planning, entertainment and commercial applica-
tions. 3D models are valuable especially for simulations. Most of
the time models are generated from airborne or satellite sensors
and the representations are improved by texture mapping. As
in previous studies of Mastin et al. (2009) and Kaminsky et al.
(2009), this mapping is mostly done using optical aerial or satel-
lite images and texture mapping is applied onto 3D models of the
scene. 3D models are either generated by multiple view stereo
images using triangulation techniques. Some of the researchers
generated 3D models manually. Recently, advances in airborne
laser radar (LIDAR) imaging technology have made the acquisi-
tion of high resolution digital elevation models more efficient and
cost effective.

One challenge in creating realistic models is registering 2D op-
tical imagery with the 3D LIDAR imagery. This can be formu-
lated as a camera pose estimation problem where the transforma-
tion between 3D LIDAR coordinates and 2D image coordinates is
characterized by camera parameters. Manual camera pose selec-
tion is difcult as it requires simultaneous renement of numerous
camera parameters. Registration can be applied more efciently by
manually selecting pairs of correspondence points, but this work
might become tedious for situations where many images must be
registered to create large 3D urban models. Some methods have
been developed for performing automatic registration, but they
suffer from being computationally expensive and/or demonstrat-
ing low accuracy rates.

In previous work, there has been a considerable amount of re-
search in registering optical images either with LIDAR or 3D
models obtained by stereo imaging. Liu et al. (2006) applied
structure-from-motion (SFM) to a collection of photographs to

infer a sparse set of 3D points, and then performed 2D to 3D reg-
istration by using camera parameters and photogrammetry tech-
niques. An another work Zhao et al. (2004) introduced stereo
vision techniques to infer 3D structure from video sequences, fol-
lowed by 3D-3D registration with the iterative closest point (ICP)
algorithm. The main challenge with these methods is that they re-
quire numerous overlapping images of the scene.

Classical work on object recognition includes more examples of
the registration of single 2D images onto 3D models. Some of
the significant studies in this field include the alignment work
Huttenlocher and Ullman (1990) and the viewpoint consistency
constraint Lowe (1987) matched the projections of a known 3D
model to 2D edge images. Those traditional methods assume a
clean, correct 3D model with known contours that produce edges
when projected. 2D shape to image matching is another well-
explored topic in the literature. The most popular methods in-
clude chamfer matching, Hausdorff matching Huttenlocher et al.
(1993) and shape context matching as Belongie et al. (2002) in-
troduced. Ding et al. (2008) aligned LIDAR scans with oblique
aerial imagery by detecting and matching corners, while Fruh
and Zakhor (2004), Fruh and Zakhor (2001) registered aerial and
ground-level scans. The dense 3D geometry used in these tech-
niques allow for much more robust detection of geometric prim-
itives such as edges and corners for matching. In the area of
single-view registration, Vasile et al. (2006) introduced LIDAR
data to derive a pseudo-intensity image with shadows for correla-
tion with aerial imagery. Their registration procedure starts with
GPS and camera line of sight information and then uses an ex-
haustive search over translation, scale, and lens distortion. Fruh
et al. (2004) developed a similar system based on detection and
alignment of line segments in the optical image and projections
of line segments from the 3D image. Using a prior camera ori-
entation with an accuracy comparable to that of a GPS and in-
ertial navigation system (INS), they used an exhaustive search
over camera position, orientation, and focal length. Their system
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Figure 1: The proposed work flow chart.

requires approximately 20 hours of computing time on a stan-
dard computer. Although those methods demonstrate accurate
registration results, they are computationally expensive. There
are a variety of algorithms that utilize specic image features to
perform registration. Troccoli and Allen (2004) used matching
of shadows to align images with a 3D model. This requires a
strong presence of shadows as well as knowledge of the rela-
tive sun position when the photographs were taken. Kurazume
et al. (2005) used detection of and matching of edges for registra-
tion. Unfortunately, this method requires dense 3D point clouds
to infer edges. Stamos and Allen (2002) used matching of rect-
angles from building facades for alignment. Yang et al. (2007)
used feature matching to align ground images. These methods
are not robust for all types of urban imagery, and are not optimal
for sparse point clouds. Some of the other approaches have em-
ployed vanishing points. Lee et al. (2002) extracted lines from
images and 3D models to nd vanishing points. Their system can-
not register all types of imagery, as it was designed for ground-
based images with clearly visible facades.Ding et al. (2008) used
vanishing points with aerial imagery to detect corners in a sim-
ilar manner, and used M-estimator sample consensus to identify
corner matches. Starting with a GPS/INS prior, their algorithm
runs in approximately 3 minutes, but only achieves a 61% accu-
racy rate for images of a downtown district, a college campus,
and a residential region. Liu and Stamos (2007) used vanish-
ing points and matching of features to align ground images with
3D range models. All of these approaches are dependent on the
strong presence of parallel lines to infer vanishing points which
limits their ability to handle different types of imagery. Since
at the last decade smart phone based applications started to be-
come more popular, some researchers focused on developing al-
gorithms which are based on processing the images taken from
smart phone sensors. Wang (2012) proposed a semi-automatic al-
gorithm to reconstruct 3D building models by using images taken
from smart phones with GPS and G-sensor information. Fritsch
et al. (2011) used a similar idea for 3D reconstruction of the his-
torical buildings. They used multi-view smart phone images with
3D position and G-sensor information to reconstruct building fa-

cades. Bach and Daniel (2011) used iPhone images to generate
3D models. To do so, they also used multi-view images. They ex-
tracted building corners and edges which are used for registration
and depth estimation purposes between images. After estimating
the 3D building model, they have chosen one of the images for
each facade with the best looking angle and they have registered
that image on the 3D model. They have provided an opportunity
to the user to select their accurate image acquisition positions on
the satellite map since iPhone GPS data does not always provide
very accurate position.

To the best of our knowledge, in the current literature, fully auto-
matic registration of 2D terrestrial data onto 3D models generated
by airborne sensors which have very low looking side overlap is
so far not considered. In this article, we propose a system for
this case and we represent a possible case story on a sample data
set including an iPhone image and LIDAR point cloud of an ur-
ban structure. In Fig. 1, we represent our work flow chart that
we have used in this study. The tasks numbers next to the flow
chart steps will be referred in the rest of the article to reduce the
complexity of the framework description.

2 DATA ACQUISITION AND PREPROCESSING

In our study, we use iPhone photographs for registering texture on
the 3D urban models which can be used for updating maps. An
iPhone photograph can be read with its metafile which is written
in exchangeable image file format (Exif). Exif is a standard that
specifies the formats for images, sound and other digital records
like videos or scanner data. The metafile contains a wide spec-
trum of tags like, date and time information, camera properties,
GPS position, looking angle, image resolution and properties, de-
vice properties, etc. Reading the iPhone image and its Exif data
is represented as Task-1 in the work flow represented in Fig. 1.

As airborne LIDAR point cloud source, we use data from the
Dutch airborne laser altimetry archive Actual Height model of the
Netherlands (AHN). The first AHN data was acquired between
1996 and 2003 under leaf-off conditions with a point density of at
least 1 point per 4×4m2 area. Starting from 2007, AHN2 is being
acquired over The Netherlands as it is introduced by AHN (2008),
Duong et al. (2009), Swart (2010) and van der Sande et al. (2010).
Fig. 2 represents AHN data of the Netherlands as completed in
2003. Since AHN2 has higher point density per square meter, in
this study we use old city center of Delft city Netherlands AHN2
LIDAR point cloud as data. Reading the AHN2 point cloud of
the interest area is represented as Task-2 in the work flow in Fig.
1.

Figure 2: AHN data of the Netherlands which was completed in
2003.

The iPhone metafile gives GPS geolocations and photographing
angle. This provides us opportunity to find our location in the
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point cloud. Accessing the geolocations and photographing an-
gle is represented as Task-3 in the work flow represented in Fig.
1. Since we know our study region more precisely, as Task-4 we
crop the LASER point cloud to reduce the data to process. Our
crop function creates a subset of the point cloud by collecting the
closest 10000 × 10000 points around the iPhone image acquisi-
tion position as described in iPhone metafile.

3 SHAPE FEATURES FOR DATA REGISTRATION

3.1 Extracting Shape Features from iPhone Data

For shape feature extraction, iPhone photographs include many
details of the objects and their textures which give challenges
to extract representative shape features. In order to decrease the
complexity of the problem, Sirmacek (2011) used the mean shift
segmentation algorithm to simplify the object appearances in the
photographs. We apply mean shift segmentation to the iPhone
image (I(x, y)) image as Comanicu and Meer (2002) proposed.
At mean shift segmentation, we chose the spatial bandwidth (hs)
and spectral bandwidth (hr) parameters as 7 and 6.5 respectively
after extensive tests. The segmentation result is a new image de-
noted S(x, y) which holds each segment labeled by a different
number. We provide the mean shift segmentation result of our
iPhone test image in Fig. 5. Unfortunately, the shapes of the seg-
mented objects still contain many high resolution details which
increases the complexity. To overcome this problem, we apply
nonlinear [7× 7] pixel size median filtering to smooth the details
of the S(x, y) segmentation result. The filter response is stored in
image Sf (x, y). As in previous studies of Sirmacek and Unsalan
(2011), here we also benefit from such nonlinear smoothing op-
erations to decrease complexity of feature extraction problems.
Obtaining Sf (x, y) corresponds to the Task-5 in work flow in
Fig. 1.

To extract these shape features, we use a steerable filter set on
the smoothed segmentation result Sf (x, y). Then, extracted fea-
tures help us to find the similarity between the AHN2 appear-
ance of the building for the registration purposes in the further
steps of our algorithm framework. Our shape feature extrac-
tion works similar to object detection study of Sirmacek and Un-
salan (2012) which focus on the detection of the buildings from
remotely sensed optical images. As proposed by Orrite et al.
(1999), edges and curvilinear shapes are crucial features to iden-
tify objects in remotely sensed images. In order to extract shape
features of the object segments, herein we apply steerable fil-
ters in different orientations. For a symmetric Gaussian function
G(x, y) = exp(−(x2 + y2)), it is possible to define basis filters
Gp0 and Gp π

2
as

Gp0 =
∂

∂x
G(x, y) = −2x exp(−(x2 + y2)) (1)

Gp π
2

=
∂

∂y
G(x, y) = −2y exp(−(x2 + y2)) (2)

We find a derivative in an arbitrary direction θ using the following
rotation

Gpθ = cos(θ)Gp0 + sin(θ)Gp π
2

(3)

After obtaining a steerable filter function in the θ direction, we
convolve Sf (x, y) with filter Gpθ (Jθ(x, y) = Sf (x, y) ∗Gpθ),

to detect structural features in the θ direction. In Jθ(x, y), we
expect to obtain high responses on structures which are perpen-
dicular to the filtering direction. Therefore, we obtain our shape
features by thresholding Jθ(x, y). We pick the threshold value
as 20% of the maximum magnitude in Jθ(x, y) after extensive
testing. After thresholding Jθ(x, y), we obtain a binary image
Bθ(x, y) with pixel locations having a value of one when rep-
resenting a shape feature. As it is introduced by Sonka et al.
(1999), we assume each connected pixel group as one shape fea-
ture. We expect this shape extraction method to help us for ro-
bust object identification as in studies of Sirmacek and Unsalan
(2012). We extract structural features in a set of θ directions.
In this study, we pick our steerable filtering directions as θ ∈
{0, π/4, π/2, 3 ∗ π/4}. The extracted shape features for our ex-
ample iPhone image is represented in Fig. 6. After this shape fea-
ture extraction operation, we may have either a straight line seg-
ments or L shaped curves in Bθ(x, y) θ ∈ {0, π/4, π/2, 3∗π/4}
binary images. The extracted iPhone photograph shape feature
results are shown in Fig. 6. Using extracted shape features, we
generate a graph network to understand the spatial relationships
of the shape features between each other. To do so, we consider
the mass centers of the shape features as nodes (VI), and the Eu-
clidean distances between them is considered as the edges of the
graph network (EI). A GI = (VI , EI) graph network is gener-
ated for the local features extracted from the iPhone image.

3.2 Extracting Shape Features from The Point Cloud Data

By using the (xp, yp, zp) geographical positions and the θp look-
ing angle of the iPhone camera which is read from the metafile,
we extract interest points from LIDAR to be used in further pro-
cessing (Task-6 of the flow chart in Fig. 1). To do so, we set
search looking angles as [θp − γx, θp + γx] and [−γz, γz] from
the (xp, yp, zp) position where the iPhone image is captured. A
previously defined constant distance away from the (xp, yp, zp)
position, we insert a virtual plane as in Fig. 3.(a). This plane
stands between (xp, yp, zp) and the LIDAR points of the build-
ing. The normal angle of the plane is in the opposite direction of
the θp looking angle. This normal vector of the plane is illustrated
in Fig. 3.(a). First, we start with a coordinate transformation to
reduce the complexity of the task. We transfer interest points of
LIDAR to the new coordinate system where plane normal vec-
tor represents one of the axes. After that, each point is projected
on the virtual plane with a value which is equal to the perpen-
dicular distance between point and the plane. If more than one
cloud point is projected on the same position in the plane, only
the point with the closest distance to the plane is kept. In this
way, we perform projection only for the facade and roof points
of the building which are the closest to the virtual plane. Due
to the perpendicular looking angle of the airborne LIDAR sensor,
unfortunately we have very sparse distribution of points sampling
the building facade. In Fig. 3.(b), we present the LIDAR points
which are projected on the virtual plane. Here, the red border
around the points show the extracted alpha shape which is in-
troduced by Edelsbrunner et al. (1983). In this study, we have
chosen α value as 50, considering the approximate building point
cloud scale. However robustness of the value needs to be ana-
lyzed further. The border points which appear on the alpha shape
are checked one by one in order to decide if they can represent
a discriminative feature. If the point is connected to alpha shape
edges having inner angle ϕ less than a previously defined thresh-
old ϕthresh, the point is selected as a feature. If ϕ is greater than
90 degrees, it is updated by using the equation; ϕ = ϕ − 90.
The detected features are shown in Fig. 3.(a) with blue circular
labels. As it can be seen in the figure, the features are extracted
from sharp corners of the alpha shape. In our study, we have
selected ϕthresh as 60 degrees.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-265-2013 267



Figure 3: (a) LIDAR points of interest, virtual projection plane
and its normal vector, (b) Projected LIDAR points and the ex-
tracted alpha shape, (c) Detected LIDAR features.

4 REGISTRATION OF THE I-PHONE IMAGES AND
BUILDING OBTAINED FROM THE POINT CLOUD

DATA

In our application, we benefit from graph theory to match fea-
tures and to apply registration between the iPhone image and
the projected point cloud. By using the structural feature graph
GI = (VI , EI) which is extracted from the iPhone image and the
GL = (VL, EL) graph which is generated using the features of
the projected LIDAR points, we apply graph matching using the
framework represented by the Algorithm 1.

Figure 4: (a) Iphone image is registered with projected LIDAR
points, (b) Generated 3D mesh model of the interest building.

In the given pseudo code, NI and NL represent the total struc-
tural feature number. The features are extracted from the iPhone
image and the projected LIDAR points respectively. EI(i) repre-
sents the edge length in the GI graph between the (i − 1)th and
the ith structural feature. Likewise, EL(j) represents the edge
length in GL graph between the (j − 1)th and the jth structural
feature. After finding the matching features, we use them to solve
the affine transformation function for applying registration. Reg-
istration of an image to a given surface (virtual plane surface in
our case), by using features to solve affine transformation param-
eters is explained by Moradi et al. (2006). Fig. 4.(a), shows the
registered iPhone image with the projected LIDAR points of the
facade. In Fig. 4.(b) represents the surface mesh which is gener-
ated by the LIDAR points of the interest object. The remaining
steps of the algorithm will be using the registered iPhone image
to add texture on the mesh data.

5 CONCLUSIONS AND FUTURE WORK

Herein we propose an algorithmic framework for automatic regis-
tration of iPhone images on 3D building models which are gener-
ated from airborne LASER scanner point clouds. We have shown

Algorithm 1 Matching the iPhone image features to the projected
point cloud features.

for i← 1, NI do
for j ← 1, NL do

Apply correlation between the ith and the jth structural
feature

if similarity < similarity threshold then
if (i > 1) ∧ (j > 1) then

Check if EI(i) is similar to EL(j), lendif =
|EI(i)− EL(j)|

if (lendif < length difference threshold ) ∧
([i−1]th feature is already matched with the [j−1]thfeature)
then

EI(i) graph edge matches with EL(j)
graph edge

end if
end if

end if
end for

end for

results from initial experiments to illustrate the proposed frame-
work by using an iPhone image and LIDAR data which belongs
to the old city hall of the Delft city in the Netherlands. We hope
that the proposed approach can be a novel step in the related lit-
erature, in order to add up-to-date information into existing 3D
models, which can either show a new state of the urban object
or makes updates on the structure if there is a significant change.
In this way, it might be possible to update information and allow
end-users to make contribution to the existing data sets. In order
to increase the possibilities, as next steps, we would like to ex-
tract more accurate reference data to test the accuracy of iPhone
GPS and orientation inputs. We will also focus on more accurate
registration of the iPhone images on 3D mesh models.
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(a) (b) (c) (d)

(e)

Figure 5: (a) AHN2 data acquisition area boundaries which is used in this study represented on Google Earth, (b) AHN2 point cloud
height map is represented with color code, (c) iPhone photograph of the test building which is used at our demo application, (d)
Geolocations of iPhone data acquisition position and the looking angle are represented on the AHN2 point cloud, (e) Sub-section of
the AHN2 point cloud after selecting the interest study region considering the iPhone geolocations.

Figure 6: (a) Original iPhone photo of the interested building, (b) Mean-shift segmentation result, (c) Borders of the object segments,
(d) Shape features obtained at θ = 0 filtering direction, (e) Shape features obtained at θ = π/4 filtering direction, (f) Shape features
obtained at θ = π/2 filtering direction, (g) Shape features obtained at θ = 3π/4 filtering direction.
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