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ABSTRACT: 

Recently, by Mobile Mapping System (MMS) with laser scanners, a GPS and IMU (Inertial Measurement Unit), 3D point clouds of 

urban areas (MMS point clouds) are easily acquired. When the same areas are scanned several times by the MMS, the point clouds 

often have differences in the range of several hundreds of millimetres. Such differences are caused by inertial drifts of IMU and 

losses of GPS signals in urban areas. In this paper, we propose an automatic accurate registration method of MMS point clouds using 

a new variant of ICP (Iterative Closest Point) algorithm for MMS point clouds and trajectory modification. Our method consists of 

four steps. Firstly, some trajectory points are automatically extracted by analyzing the trajectory. Secondly, the differences of point 

clouds are derived at the extracted trajectory points in the overlapping scan region by our new ICP algorithm which minimizes point-

to-plane and point-to-point distances simultaneously and filters incorrect correspondences based on a point classification by PCA 

(Principle Component Analysis). Thirdly, the modified positions and rotation parameters at all extracted trajectory points are derived 

by a least squares method for positioning and registration constraints. Finally, each point in the point clouds is modified by 

coordinate transformations which are derived from linear interpolation of the modified positions and rotation parameters of the 

extracted trajectory points. Our method was applied to MMS point clouds and trajectory and the performances were evaluated. 

 

1. INTRODUCTION 

Mobile Mapping System (MMS) with laser scanners, GPS and 

IMU (Inertial Measurement Unit) contributes easy acquisitions 

of 3D point clouds of urban areas (MMS point clouds). When 

the same areas are scanned by MMS several times, MMS point 

clouds often have differences in the range of several hundreds 

of millimetres. Such differences are caused by inertial drifts in 

IMU and losses of GPS signals in urban areas. Therefore, an 

automatic registration method which accurately and effectively 

modifies these differences is strongly required. 

 

Many point cloud registration algorithms have been proposed, 

for example 4PCS (Aiger et al., 2008) and ICP (Iterative Closest 

Point) algorithm (Besl and McKay, 1992, Chen and Medioni., 

1992). The ICP is especially effective for correcting the 

differences in MMS point clouds, because magnitude of the 

differences is relatively small compared with the size of point 

clouds and the point clouds have similar poses. ICP algorithm 

provides an accurate registration between two point clouds by 

iteratively minimizing registration errors which are squared 

distances between corresponding points in each point clouds. 

Many variants of ICP about the selection of corresponding 

points and error metrics have been proposed (Al-Durgham et al., 

2011). Rusinkiewicz et al. (Rusinkiewicz and Levoy, 2001) 

evaluated some variants of ICP algorithms, and concluded that 

ICP using point-to-plane distances for error metric (point-to-

plane ICP) is more accurate than the standard ICP which 

minimizes point-to-point distances. Ridene et al. (Ridene and 

Goulette, 2009) propose a registration method for MMS point 

clouds. In their method, MMS point clouds are divided into 

blocks and point-to-plane ICP is applied to each block pair. 

However in this method, gaps between neighboring blocks may 

occur. In addition, when their method is applied to multipath 

point clouds, accumulated errors sometimes occur. Gressin et al. 

(Gressin et al., 2012) propose a MMS point cloud registration 

method based on trajectory. In their method, firstly, the 

differences are derived by an ICP algorithm at several trajectory 

points. Next, MMS trajectory is modified by the least squares 

method based on position and registration constraints. Finally, 

point clouds are registered according to the modified trajectory. 

Therefore, this registration method provides a better result 

because it performs continuous registration of point clouds 

along the trajectory. However in this method, point-to-point ICP 

algorithm is used, and the rotation is not considered in the 

registration process. Moreover, the accuracy of their method has 

not been evaluated. 

 

In this paper, we propose an automatic accurate registration 

method for MMS point clouds using a new variant of ICP 

algorithm for MMS point clouds and trajectory modification 

and we evaluate the registration accuracy of our method. Our 

method follows three extensions from the method proposed by 

Gressin et al. (Gressin et al., 2012). : 

 

 Adaptive extraction of trajectory points for calculating 

differences based on trajectory analysis. 

 Development of a new variant of ICP algorithm for MMS 

point clouds to perform an accurate registration. 

 Introducing rotations to the trajectory modification and 

point cloud registration process for accurate registration 

 

 

2. OUR REGISTRATION METHOD 

2.1 Data Set 

In this paper, MMS point clouds and MMS trajectory are 

denoted by 𝑃and 𝑄respectively. The point cloud is a set of laser 

scanned points 𝑃 = {(𝐩𝑖 , 𝑡𝑖)|𝐩𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑖 = 1, … , 𝑛}  and 

each point 𝑖  has a position (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)  in a world coordinate 

system. Also, each point 𝑖  is acquired at the GPS time 𝑡𝑖 . 
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Similarly, the trajectory 𝑄 = {(𝐪𝑗 , 𝐜𝑗 , 𝑡𝑗)|𝐪𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗), 𝐜𝑗 =

(𝜃𝑗 , 𝜙𝑗 , 𝜓𝑗), 𝑗 = 1, … , 𝑚(𝑚 < 𝑛), 𝑡𝑗 < 𝑡𝑗+1} is a set of points 

and each point 𝑗  has a position (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) and roll pitch yaw 

angles (𝜃𝑗 , 𝜙𝑗 , 𝜓𝑗)  of MMS. Additionally, each point 𝑗  is 

acquired at the GPS time 𝑡𝑗 . In our test data, the maximum 

differences between the overlapping point clouds are 400mm in 

a vertical direction and 200mm in a horizontal direction. 

 

2.2 Overview of the proposed registration method  

Figure 1 shows the overview of our method. Our method 

consists of the following four steps. 

 

Step 1 : Difference Modification Points extraction 

Difference Modification Points (DMPs) for trajectory 

modification are automatically extracted from all the given 

trajectory points 𝑄  by analyzing accelerations and angular 

velocity of MMS and trajectory intersections. This step reduces 

the number of redundant difference calculations in the step2. 

 

Step 2 : Difference calculation by CCICP algorithm 

The differences at each DMP in the overlapping regions are 

derived by the CCICP (Classification and Combined ICP) 

algorithm. The CCICP algorithm is a new variant of ICP 

algorithm for MMS point clouds which minimizes point-to-

plane and point-to-point distances, simultaneously, and also 

filters incorrect correspondences based on point classification 

by PCA (Principle Component Analysis).  

 

Step 3 : Derivation of transformation parameters 

Translation and rotation parameters for all DMPs are derived as 

least squares solutions for absolute positioning constraint, 

relative positioning constraint, and registration constraint.  

 

Step 4 : Registration of point clouds 

Each point position 𝐩𝑖  in the point cloud is modified by 

coordinate transformations which are derived from linear 

interpolation of the modified positions of DMPs and the derived 

rotation parameters. 

 

2.3 Difference Modification Points extraction 

The differences often occur at areas where MMS velocity and 

orientation change drastically. Therefore, in these areas, the 

differences are non-linear and point clouds may be distorted. In 

addition, point clouds at intersecting trajectory regions should 

be registered accurately. From these points of view, in our 

method, DMPs are automatically extracted from all given 

trajectory points 𝑄  by analyzing accelerations and turning 

speeds of MMS and trajectory intersections. DMP extraction 

consists of following two steps. 

 

Step A : Selecting Candidates of DMP 

Velocity changing points 𝑄𝑎 are recognized by thresholding for 

acceleration as follows: 𝑄𝑎 = {𝐪𝑗| |𝑣𝑗 − 𝑣𝑗−1 |/(𝑡𝑗 − 𝑡𝑗−1) ≥

𝑎𝑡ℎ }. Where 𝑎𝑡ℎ is a threshold for acceleration, 𝑣𝑗  is a velocity 

of MMS at a trajectory point j : 𝑣𝑗 = ‖𝐪𝑗 − 𝐪𝑗−1‖/(𝑡𝑗 − 𝑡𝑗−1). 

Orientation changing points 𝑄𝑜 are recognized by thresholding 

for angular velocity as follows: 𝑄𝑜 = {𝐪𝑗 | (𝜓𝑗 − 𝜓𝑗−1)/(𝑡𝑗 −

𝑡𝑗−1) ≥ 𝜔𝑡ℎ }. Where 𝜔𝑡ℎ is a threshold for angular velocity, 𝜓𝑗 

is a yaw angle of MMS at trajectory point 𝑗. Candidates of DMP 

for each velocity changing point sequence in 𝑄𝑎 are determined 

by following criterion as shown in Figure 2(a). Let 

𝐪𝑎𝑠𝑡𝑎𝑟𝑡
, 𝐪𝑎𝑒𝑛𝑑

be the starting and ending points position of a 

sequence of consecutive velocity changing points. Candidates 

𝐪𝑐𝑠𝑡𝑎𝑟𝑡
, 𝐪𝑐𝑒𝑛𝑑

are selected as the farthest back and forth points 

position from 𝐪𝑎𝑠𝑡𝑎𝑟𝑡
, 𝐪𝑎𝑒𝑛𝑑

within 𝑑𝑡ℎ  along trajectory points 

position. Similarly, candidates of DMP for each orientation 

changing point sequence in 𝑄𝑜  are determined as shown in 

Figure 2(b). Moreover, trajectory intersections are recognized 

by detecting intersection for line segments 𝑙𝑗  and 𝑙𝑘  which 

consist of consecutive trajectory points 𝑗, 𝑗 + 1 and 𝑘, 𝑘 + 1. If 

𝑙𝑗  intersects 𝑙𝑘 , points  𝑗, 𝑗 + 1 and 𝑘, 𝑘 + 1  are selected as the 

candidate for the DMP shown in Figure 2(c). Finally, if the 

distance of consecutive candidates m and 𝑛 along the trajectory 

𝑑𝑖𝑠𝑡(𝑚, 𝑛) exceeds the distance threshold 𝑑𝑒𝑞 , new trajectory 

points are selected at regular intervals, as shown in Figure 2(d). 

 

Step B : Determination of DMP and correspondences  

Firstly, trajectory points are segmented at corner points as 

shown in Figure 3(a). Secondly, the corresponding point 𝑗’ of a 

candidate 𝑗 in segment 𝐽 are detected as a nearest point within 

the distance 𝑑𝑐  in the segments except for 𝐽 and 𝐽’s neighbors as 

shown in Figure 3(b). Thirdly, trajectory is subdivided into 

blocks at regular intervals 𝑑𝑖 (𝑑𝑖 < 𝑑𝑒𝑞) (Figure 3(c)). Finally, 

 
Figure 1. The overview of our method 
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Figure 2. Selecting Candidates of DMP (StepA) 
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the set of DMPs 𝑅 and the set of DMP correspondences 𝛺, are 

extracted as shown in Figure 3(d). If one or more candidates or 

pairs of candidates exist in a block, one candidate or pair of 

candidates is extracted. 

 

2.4 Difference calculation by CCICP algorithm  

2.4.1 Extracting local point clouds for ICP 

Our new ICP algorithm is applied to local point clouds which 

are extracted by DMPs and their GPS times. Firstly, two 

trajectory points position, 𝐪𝑝𝑠
,𝐪𝑝𝑒

 are selected as the farthest 

back and forth points position from each DMP within 𝑑𝑝 along 

the trajectory points. Next, the point 𝑖  within the time range 

(𝑡𝑝𝑠
≤ 𝑡𝑖 ≤ 𝑡𝑝𝑒

) is extracted from the point clouds. 

 

2.4.2 CCICP algorithm 

The features of the CCICP algorithm are minimizing point-to-

plane and point-to-point squared distances simultaneously and 

filtering incorrect correspondences based on point classification 

by PCA. These features are shown as follows. 

 

A) Filtering incorrect correspondences 

The points in the local point clouds are classified into linear 

points, planar points and scatter points depending on the results 

of the PCA. In the ICP, linear-planar and scatter-planar 

correspondences are rejected as incorrect correspondences for 

accurate registration by the CCICP algorithm. For example, 

corresponding points on electric cables and building facades or 

ones on utility poles and walls are not used in the ICP.  

 

B) Minimizing point-to-plane and point-to-point distances 

Point-to-plane and point-to-point distances are minimized 

simultaneously. Point-to-plane distance minimization is applied 

to planar-planar correspondences, because reliable normal 

estimations can be performed at planar points. Point-to-point 

distance minimization is applied to the other correspondences. 

Therefore points on roads, building facades and walls are 

registered accurately, and points on utility poles and electric 

cables are also registered. In this paper, point-to-plane distance 

minimization problem is linearized and solved using the method 

of Low (Low, 2004). 

 

The CCICP algorithm follows five steps. In the following 

algorithm, 𝑆 and T indicate a source point cloud and a target 

point cloud. 𝐩𝑖
𝑆 and 𝐩𝑖

𝑇 indicate a position of point 𝑖 ∈ 𝑆 and a 

position of point 𝑖 ∈ 𝑇. 

 

Step 1 : Selection 

Subset of 𝑆 for distance calculation and rigid transformation 

derivation is selected. The selection is done by random 

sampling (𝑎𝑠𝑎𝑚𝑝𝑙𝑒[%] of 𝑆 are selected). The sampled point 

set is represented by 𝑆’. 
 

Step 2 : Point classification 

Each point 𝑖 in 𝑆′is classified into linear points, planar points 

and scatter points by PCA (Demantke et al., 2011). In this 

method, local point distributions of each point 𝑖 are evaluated 

by eigenvalues 𝜆1
𝑖 , 𝜆2

𝑖  and  𝜆3
𝑖  ( 𝜆1

𝑖 ≥ 𝜆2
𝑖 ≥  𝜆3

𝑖 ) and unit 

eigenvectors 𝐞1
𝑖 , 𝐞2

𝑖  and  𝐞3
𝑖 , of the variance-covariance matrix 

𝐌𝑖  which is calculated from the position of point 𝑖  and its 

neighbors (points within distance 𝑟𝑃𝐶𝐴  from 𝑖 ). In order to 

evaluate the local point distributions, the magnitude relations 

of the eigenvalues are investigated using the following three 

values: 𝑎1𝐷
𝑖 = 𝜆1

𝑖 − 𝜆2
𝑖  , 𝑎2𝐷

𝑖 = 𝜆2
𝑖 − 𝜆3

𝑖  , 𝑎3𝐷
𝑖 = 𝜆3

𝑖 . If 𝑎1𝐷
𝑖  is 

larger than the others, the local point distribution of point 𝑖 is 

recognized as linear. If 𝑎2𝐷
𝑖  is larger than the others, it is 

recognized as planar. In this case, eigenvector  𝐞3
𝑖  is kept as 

the normal vector of 𝑖. In addition, if  𝑎3𝐷
𝑖  is larger than the 

others, it recognized as scatter.  

 

Step 3 : Matching 

The point 𝑖′ in T which is closest to point 𝑖 ∈ 𝑆′ is extracted 

as a corresponding point of point 𝑖 . If 𝑖′  is found, it is 

classified by PCA. 

 

Step 4 : Rejecting 

Correspondences consisting of a linear point and a planar 

point or a planar point and a scatter point are rejected. A set 

of resulting correspondences is denoted by 𝑈, and a set of 

planar-planar correspondences is denoted by 𝑉. 

 

Step 5 : Minimizing 

The average of point-to-plane squared distance 𝐸𝑃𝑇_𝑃𝐿  is 

derived from equation (1). 

 

 

𝐸𝑃𝑇_𝑃𝐿＝
1

|𝑉|
∑ |(𝐓𝐩𝑖

𝑆∗
− 𝐩𝑖′

𝑇 ∗
) ∙ 𝐧𝑖′|

(𝑖,𝑖′)∈𝑉

2

 (1) 

 

 

Where 𝐧𝑖′  = an normal vector of point 𝑖′ in a 

homogeneous coordinate system 

𝐓 = a transformation matrix in a homogeneous 

coordinate system 

𝐩𝑖
𝑆∗

, 𝐩𝑖′
𝑇 ∗

 = positions of 𝐩𝑖
𝑆, 𝐩𝑖′

𝑇  in a 

homogeneous coordinate system 

 

The averages of point-to-point squared distances 𝐸𝑃𝑇_𝑃𝑇  are 

derived from equation (2). 

 

 

𝐸𝑃𝑇_𝑃𝑇 =
1

|𝑈 ∖ 𝑉|
∑ ‖𝐓𝐩𝑖

𝑆∗
− 𝐩𝑖′

𝑇 ∗
‖

2

(𝑖,𝑖′)∈𝑈∖𝑉

 (2) 

 

 

In the equation (1), when rotation angles of 𝐓  (𝛼, 𝛽, 𝛾) about 

𝑥, 𝑦, 𝑧 axis are nearly zero (𝛼, 𝛽, 𝛾 ≈ 0), (𝐓𝐩𝑖
𝑆∗

− 𝐩𝑖′
𝑇 ∗

) ∙ 𝐧𝑖′ 

in equation (1) is reformulated as equation (3). 

 

 

Figure 3. Determination of DMP and correspondences 
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(𝐓𝐩𝑖
𝑆 ∗

− 𝐩𝑖′
𝑇 ∗

) ∙ 𝐧𝑖′ = ([

1
𝛾

−𝛽
0

 – 𝛾
 1
𝛼
0

  𝛽
 – 𝛼
  1
  0

  𝑡𝑥

  𝑡𝑦

  𝑡𝑧

  1

] [

𝑝𝑖𝑥

𝑝𝑖𝑦

𝑝𝑖𝑧

1

] − [

𝑝𝑖′𝑥

𝑝𝑖′𝑦

𝑝𝑖′𝑧

1

]) ∙ [

𝑛𝑖′𝑥

𝑛𝑖′𝑦

𝑛𝑖′𝑧

0

] 

= 𝑎𝑖1𝛼 + 𝑎𝑖2𝛽 + 𝑎𝑖3𝛾 + 𝑛𝑖′𝑥𝑡𝑥 + 𝑛𝑖′𝑦𝑡𝑦 + 𝑛𝑖′𝑧𝑡𝑧 

+(𝐩𝑖
𝑆∗

− 𝐩𝑖′
𝑇 ∗

) ∙ 𝐧𝑖′ 

(3) 

 

 

Where 𝑎𝑖1 = 𝑛𝑖′𝑧𝑝𝑖𝑦 − 𝑛𝑖′𝑦𝑝𝑖𝑧 

𝑎𝑖2 = 𝑛𝑖′𝑥𝑝𝑖𝑧 − 𝑛𝑖′𝑧𝑝𝑖𝑥 

𝑎𝑖3 = 𝑛𝑖′𝑦𝑝𝑖𝑥 − 𝑛𝑖′𝑥𝑝𝑖𝑦 

𝑡𝑥, 𝑡𝑦 , 𝑡𝑧 = translation parameters of 𝐓 

 

For all correspondences, equation (3) is denoted by equation 

(4) using a matrix representation. 

 

 

𝐀𝐱 − 𝐛 (4) 

 

 

Where 𝐀 = [

𝑎11 𝑎12 𝑎13 𝑛1′𝑥 𝑛1′𝑦 𝑛1′𝑧

𝑎21 𝑎22 𝑎23 𝑛2′𝑥 𝑛2′𝑦 𝑛2′𝑧

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎|𝑉|1 𝑎|𝑉|2 𝑎|𝑉|3 𝑛|𝑉|′𝑥 𝑛|𝑉|′𝑦 𝑛|𝑉|′𝑧

] 

𝐛 = [

(𝐩1 − 𝐩1′) ∙ 𝐧1′

(𝐩2 − 𝐩2′) ∙ 𝐧2′

⋮
(𝐩|𝑉| − 𝐩|𝑉|′) ∙ 𝐧|𝑉|′

] 

𝐱 = [𝛼 𝛽 𝛾 𝑡𝑥 𝑡𝑦 𝑡𝑧]T 
 

Similarly, 𝐓𝐩𝑖
𝑆∗

− 𝐩𝑖′
𝑇 ∗

in equation (2) is reformulated as 

equation (5). 

 

 

𝐓𝐩𝑖
𝑆∗

− 𝐩𝑖′
𝑇 ∗

= [

1
𝛾

−𝛽
0

 – 𝛾
 1
𝛼
0

  𝛽
 – 𝛼
  1
  0

  𝑡𝑥

  𝑡𝑦

  𝑡𝑧

  1

] [

𝑝𝑖𝑥

𝑝𝑖𝑦

𝑝𝑖𝑧

1

] − [

𝑝𝑖′𝑥

𝑝𝑖′𝑦

𝑝𝑖′𝑧

1

] 

= 𝐀̂𝑖𝐱 − 𝐛̂𝑖 

(5) 

 

 

Where 𝐀̂𝑖 = [

0
−𝑝𝑖𝑧

𝑝𝑖𝑦

𝑝𝑖𝑧

0
−𝑝𝑖𝑥

−𝑝𝑖𝑦

𝑝𝑖𝑥

0

1
0
0

0
1
0

0
0
1

] 

𝐛̂𝑖 = [

𝑝𝑖′𝑥−𝑝𝑖𝑥

𝑝𝑖′𝑦−𝑝𝑖𝑦

𝑝𝑖′𝑧 − 𝑝𝑖𝑧

] 

 

From equations (4) and (5), the parameters of the coordinate 

transformation 𝐱𝑜𝑝𝑡 = (𝛂, 𝐭𝐼𝐶𝑃), which minimizes 𝐸𝑃𝑇_𝑃𝐿 and 

𝐸𝑃𝑇_𝑃𝑇  simultaneously, are derived from equation (6). Where, 

𝛂  is a rotation parameter about the 𝑥, 𝑦, 𝑧  axis and 𝐭𝐼𝐶𝑃  is 

translation parameter. 

 

 

𝐱𝑜𝑝𝑡 = arg min
𝐱

‖[
𝐀

𝐀̂′
] 𝐱 − [

𝐛

𝐛̂′
]‖

2

 

= arg min
𝐱

‖𝐀′𝐱 − 𝐛′‖2 

 

 

Where 𝐀̂′ = [𝐀̂1 ⋯ 𝐀̂|𝑈∖𝑉|]
T

 

(6) 

 

 

 

𝐛̂′ = [𝐛̂1 ⋯ 𝐛̂|𝑈∖𝑉|]
T

 

𝐀′ = [
𝐀

𝐀̂′
] 

𝐛’ = [
𝐛

𝐛̂′
] 

 

The solution 𝐱𝑜𝑝𝑡  is obtained by solving 𝐀′𝐱 = 𝐛′  using 

pseudo inverse matrix of 𝐀′. At each iteration, source point 

cloud 𝑆 is transformed by the 𝐱𝑜𝑝𝑡 . Here if the number of 

iterations from step3 to step5 reaches threshold 𝑛𝐼𝑇𝑇𝑅 or the 

sum of 𝐸𝑃𝑇_𝑃𝑇  and 𝐸𝑃𝐿_𝑃𝑇  is less than threshold 𝛿𝐸  or the 

difference between current and previous sums in the 

iterations is less than 𝛿𝛥𝐸, algorithm is terminated, otherwise 

return to step3. Therefore the amount of difference is 

determined by a concatenated transformation of 𝐱𝑜𝑝𝑡 at each 

iteration. 

 

2.5 Derivation of transformation parameters  

In order to calculate the transformation parameters for all DMPs, 

the modified position and rotation parameters are derived by 

solving the overconstrained equations defined by absolute 

positioning constraint, relative positioning constraint, and 

registration constraint. The constraints are defined by equations 

(7)-(9). 

 

 

 Absolute positioning constraint: 

 (𝑗 ∈ 𝑅), [
𝐪𝑗

∗

𝛂𝑗
∗] = [

𝐪𝑗

𝟎
] 

(7) 

 Relative positioning constraint: 

 (𝑗 ∈ 𝑅), [
𝐪𝑗

∗

𝛂𝑗
∗] − [

𝐪𝑗−1
∗

𝛂𝑗−1
∗ ] = [

𝐪𝑗

𝟎
] − [

𝐪𝑗−1

𝟎
] 

(8) 

 Registration constraint: 

 (𝑗 ∈ 𝛺𝑆), [
𝐪𝑗

∗

𝛂𝑗
∗] = [

𝐪𝑗

𝛂𝑗
] + [

𝐭𝑗
𝐼𝐶𝑃

𝟎
] 

(9) 

 

 

Where 𝐪𝑗
∗ = a modified position of 𝐪𝑗  which is derived by a 

least square method 

𝛺𝑆 = a set of source DMPs 

𝛂𝑗
∗  = rotation angles around 𝑥, 𝑦, 𝑧  axis which are 

derived by a least square method 

 

2.6 Registration of point clouds 

Rotation and translation parameters (𝐫𝑖 , 𝚫𝑖) for point 𝑖 in point 

clouds are derived by linear interpolation of modified position 

and rotation parameters of neighboring DMPs 𝑗 − 1  and 𝑗 

(𝑡𝑗−1 ≤ 𝑡𝑖 ≤ 𝑡𝑗). The linear interpolation is denoted by equation 

(10) and equation (11). 

 

 

𝐫𝑖 = 𝛂𝑗
∗ +

𝑡𝑖 − 𝑡𝑗

𝑡𝑗 − 𝑡𝑗−1
(𝛂𝑗

∗ − 𝛂𝑗−1
∗ ) (10) 

𝚫𝑖 = 𝛥𝐪𝑗 +
𝑡𝑖 − 𝑡𝑗

𝑡𝑗 − 𝑡𝑗−1
(𝛥𝐪𝑗 − 𝛥𝐪𝑗−1) (11) 

 

 

Where 𝛥𝐪𝑗= 𝐪𝑗
∗ − 𝐪𝑗   

 

Finally, position of each 𝐩𝑖  in the point clouds is modified by 

the coordinate transformation using 𝐫𝑖 and 𝚫𝑖. 
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Figure 4. MMS point clouds and trajectory  

 

Table 5. Used parameters 

Step1 

 

 

Acceleration threshold 𝑎𝑡ℎ 1.5 m/s2 

Turning speed threshold 𝜔𝑡ℎ 8.5 deg/s 

Distance threshold 𝑑𝑡ℎ 10 m 

Equal interval threshold 𝑑𝑒𝑞 250 m 

DMP correspondence search distance 𝑑𝑐 20 m 

Block division interval 𝑑𝑖 10 m 

Step2 

 
 

 

Point clouds extraction distance 𝑑𝑝 10 m 

Selecting rate 𝑎𝑠𝑎𝑚𝑝𝑙𝑒 0.50 % 

PCA search radius 𝑟𝑃𝐶𝐴 0.30 m 

Limitation of iteration 𝑛𝐼𝑇𝑇𝑅 30 

ICP error threshold 𝛿𝐸 1.0×10－7m2 

ICP error difference threshold 𝛿𝐸 1.0×10－14 m2 

Search radius of closest point 𝑟𝑑 0.70 m 

 

Red:outward

Blue:backward

Green:trajectory

 

3. RESULTS 

3.1 Input data sets and parameters  

Our method was applied to urban area point clouds and 

trajectory was acquired by MMS (GeoMasterNeo). The 

trajectory is shown in Figure 4 and consist of 2,192 points. 

Similarly, the point clouds are shown in Figure 4 and consist of 

139,390,404 points. The travel distance of MMS is about 3.0 

km. Used parameters in our experiments are shown in Table 5. 

Some parameters, for example 𝑎𝑡ℎ and 𝜔𝑡ℎ, were determined by 

common knowledge about running condition of MMS, on the 

other hand, other parameters were determined by 

experimentally . 

 

3.2 Registration results and error evaluation 

The results of our method are shown in Figures 6-8. Figure 6 

shows DMPs which are extracted from trajectory points. The 

number of DMPs was 40, and that of DMP pairs was 19. The 

left figures in Figure 7 show point clouds before registration at 

the positions A-C which are shown in Figure 6, and right 

figures show point clouds after registration. In the left figures of 

Figure 7(a) and (c), horizontal differences are visible before 

registration, on the other hand, the differences are modified 

after registration as shown in the right figures. Similarly, in the 

left figure of Figure 7(b), significant elevation differences are 

visible. On the other hand, differences are modified as shown in 

the right figures. From these results, our method can perform 

visually accurate registration of point clouds. 

 

Our algorithm was implemented on a standard PC with Intel 

Core i7 3.30GHz CPU, 32GB RAM, GeForce GTX570 GPU. 

The computation time of registration was about 161sec. The 

most of computation time was the difference calculation by 

CCICP, and it was about 133sec. Figure 8 shows the amount of 

difference with color. In the figures, the amounts of difference 

are derived by calculations of distances between each point in 

the outward point cloud and its closest point in the backward 

point cloud. The color bar is shown in the top of Figure 8. If the 

closest point does not exist inside of 400 mm area from each 

point, points are colored in black. In left figures in Figure 8, 

original point clouds have about 200-400mm differences. On 

the other hand, in the right figures, the differences are reduced 

to about less than 100mm at roads and building facades. Figure 

9 shows the differences at position C using another color range. 

In this figure, as a result, differences are less than 50mm at 

roads and building facades after registration. These results show 

that an accurate registration of point clouds which reduce the 

differences among point clouds to less than 50mm was realized 

by our method. Moreover, the accuracy of the CCICP algorithm 

was compared with a standard ICP algorithm (random sample,  

 
Figure 6. DMPs and evaluated positions 

 

 
(a) Top view of building façade at position A in Figure 6 

 
(b) Side view of utility pole at position B in Figure 6 

 
(c) Top view of building façade at position C in Figure 6 

Figure 7. Point clouds before and after registration 

A

B

C

DMP

Before registration After registration

Before registration After registration

Before registration After registration
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no rejection, point-to-point, and a quaternion based solution 

method). To evaluate CCICP algorithm, a point cloud that 

consisted of about 5.3M points and another point cloud that 

consisted of about 5.9M points were used. The registration 

parameters are the same as the ones shown in Table 5. Figure 10 

shows changes of two RMS values of corresponding point 

distances at each iteration of the ICP. In this figure, the RMS of 

CCICP is 40% smaller than one of the standard ICP, and this 

means that our ICP realizes more accurate registration than the 

standard ICP. The processing times were 78.3sec for CCICP 

and 83.3sec for a standard ICP. It was estimated that the main 

difference of the processing times was caused by a difference of 

the solution methods for minimization problem. Coordinate 

transformation parameters of our ICP was derived by solving 

simultaneous equation using pseudo-inverse matrices. On the 

other hand the parameter of the Standard ICP was derived by a 

quaternion based method.  

 

Finally, the effectiveness of the rotation was evaluated as shown 

in Figure 11 using the same point clouds and settings for 

accuracy evaluation. Figure 11 shows RMS values which were 

derived from the sum of 𝐸𝑃𝑇_𝑃𝑇   and 𝐸𝑃𝐿_𝑃𝑇. In this figure, the 

RMS of CCICP with rotation is smaller than that of its CCICP 

without rotation. Therefore, introducing the rotation to CCICP 

is effective for accurate registration of MMS point clouds. 

 

 

4. CONCLUSION 

In this paper, an automatic accurate registration method of 

MMS point clouds using CCICP algorithm for MMS point 

clouds and modifying trajectory is proposed. The performance 

of the method is evaluated by applying it to MMS point clouds 

and a trajectory. Our method can reduce the differences among 

point clouds to less than 50mm at roads or building facades on 

average. Also, its computation time was about 161sec for our 

test data including 140M points and 2.2K trajectory points. 

Moreover, the accuracy of CCICP algorithm was also evaluated. 

It is concluded that our ICP algorithm was more accurate than 

the standard ICP algorithm. Future work includes automatic 

parameter determination. 
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(a) Position A in Figure 6 

 
(b) Position B in Figure 6 

 
(c) Position C in Figure 6 

Figure 8. Colored differences before and after registration 

 

 
Figure 9. Detailed differences at position C 

 

 
Figure 10. Comparing RMS values at each 

 

 
Figure 11. Effectiveness of rotation 
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