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ABSTRACT: 
 
Over last decades, different types of remotely sensed data including lidar, radar and optical data were investigated for forest studies. 
Undoubtedly, lidar data is one of the promising tools for these purposes; however, the accessibility and cost of this data are the main 
limitations. In order to overcome these limitations, optical data have been considered for modelling lidar metrics and their use for 
inferring lidar metrics over areas with no lidar coverage. WorldView-2 (WV-2) data as a high resolution optical data offer 8 bands 
including four traditional bands, blue, green, red, and infrared, and four new bands including coastal blue, yellow, red edge and a 
new infrared band whose relationships with lidar metrics were investigated in this study. For this purpose, band reflectance, band 
ratios, and principal components (PCs) of WV-2 multispectral data along with 23 vegetation indices were extracted. Moreover, the 
grey level co-occurrence matrix (GLCM) indices of bands, band ratios and PCs were also calculated for different window sizes and 
orientations. Spectral derivatives and textural attributes of WV-2 were provided for a stepwise multiple-linear regression to model 10 
lidar metrics including maximum, mean, variance, 10th, 30th, 60th and 90th height percentiles, standard error of mean, kurtosis and 
skewness for a Pinus radiata plantation, in NSW, Australia. The results indicated that the textural-based models are significantly 
more efficient than spectral-based models for predicting lidar metrics.  Moreover, the integration of spectral derivatives with textural 
attributes cannot improve the results derived from textural-based models. The study demonstrates that WV-2 data are efficient for 
predicting lidar metrics. 
 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

Conventional forestry methods such as field sampling and direct 
surveying which sometimes involve destructive techniques 
(Jinha and Crawford, 2012) are constrained by time and cost 
(Hyyppä et al., 2000). Also, the extrapolation of the results of 
these methods to a large forest is likely to be erroneous (Chen et 
al., 2011). Moreover, accessibility of some forest areas is a 
critical issue that would significantly increase costs of surveys 
(Shanmugam et al., 2006). Considering these difficulties, earth 
observation technologies have been exploited as an economic 
source of data for extracting more current and accurate 
structural parameters at global to local scales than can be 
achievable by in situ methods (Le Toan et al., 2004). Among 
different types of remotely sensed data, discrete lidar data has 
been used to estimate and calculate different structural 
parameters including tree height (Popescu et al., 2002; Dean et 
al., 2009), biomass and biomass-related variables such as stand 
volume, and basal area (Means et al., 1999; Smart et al., 2012; 
Shamsoddini et al., 2013b). Lidar data can provide a direct 
measure of tree or stand height (Hyde et al., 2006; Erdody and 
Moskal, 2010) and is arguably superior in this regard compared 
to other remote sensing options. Lidar-derived tree height is 
useful for predicting other forest parameters such as stand 
volume, but factors such as canopy closure and density must 
also be considered (Lim et al., 2003).   
 
However, significant constraints on applying lidar data are the 
high data acquisition cost (Lefsky et al., 2001), which varies as 

a function of factors such as pulse density, topography and 
project location, especially at regional scales, (Sexton et al., 
2009; Chen and Hay, 2011); limited existing coverage (Hyyppä 
et al., 2008); and the computations which are required to 
process these data (Donoghue and Watt, 2006). For these 
reasons, the prediction of lidar metrics using other remotely 
sensed data, especially optical data such as Landsat TM and 
ETM+, and QuickBird data, has been recently proposed and a 
limited number of studies have been conducted for this purpose 
(Wulder and Seemann, 2003; Hilker et al., 2008; Chen and Hay, 
2011). Different types of information, including spectral 
derivatives and textural information were extracted from optical 
data by various researchers to relate them to the lidar metrics 
(Chen and Hay, 2011). More investigations are require on 
which types of data are most useful for prediction of lidar 
metrics. Also, it should be determined whether the addition of 
spectral derivatives to the textural data can improve the results 
of lidar metric prediction. The launch of new optical satellites 
such as WorldView-2 (WV-2) offering simultaneously new 
spectral bands and high resolution data calls for the 
investigation of the capabilities of these new data and spectral 
bands for predicting lidar metrics. Among different types of 
lidar metrics, the prediction of lidar-derived mean and 
maximum canopy heights has been investigated more frequent 
than the others using multiple-linear regression as a common 
modelling method (Hilker et al., 2008; Pascual et al., 2010); 
However, the other lidar-derived height metrics, such as 
variance (Zimble et al., 2003), skewness, and percentiles of 
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lidar-derived heights (Shamsoddini et al., 2013b), are also 
useful for estimating forest structural parameters. 
  
According to the above considerations, this paper aims to: 

• Investigate the utility of WV-2 data for predicting 
different lidar metrics. 

• Compare the performances of the textural-based and 
spectral-based models derived from WV-2 for lidar 
metric prediction.  

• Investigate the effect of spectral information on the 
improvement of the accuracy of lidar metric 
prediction derived from textural indices alone.  
 

In the next sections, the study area and remotely sensed data 
used for this study are explained. Then, the methodology and 
results are given and finally the results are discussed and 
conclusions are presented. 

 
2. STUDY AREA AND DATA 

2.1 Study Area 

The study area shown in figure 1 includes a 5000 ha Pinus 
radiata plantation, from 35° 23/ 35// S to 35° 29/ 58// S latitude, 
and 147° 58/ 48// E to 148° 04/ 02// E longitude, within a larger 
20,400 ha commercial estate in the vicinity of Batlow in the 
Hume region of Forests, NSW, Australia. The pine plantation 
includes a variation of terrain conditions, tree ages and thinning 
conditions. While 62% of the plantation covers the areas with 
the slope of 0° to 10°, the slope classes of 10° to 20° and more 
than 20° dominate 35% and 3% of the plantation, respectively. 
Also, unthinned, first thinning and second thinning classes 
cover 52%, 25%, and 23% of the plantation, respectively. 
Moreover, while 47% of the area is dominated by the trees of 10 
to 20 years old, 53% of the trees are older than 20 years. 
   

 
                             (a)                                                  (b) 

Figure 1. (a)Study area and the field data (yellow circles) as 
well as sample plots, training data (red circles) and test data 

(blue circles) shown on WV-2 false colour image (7, 5 and 3 as 
red, green and blue); (b) the aerial photogrammetric 

interpretation (API) map 
 
2.2 Remotely Sensed data 

An airborne HARRIER 56/G3 fully-integrated sensor with 
LMS-Q560 laser scanner (Riegl, Austria) collected lidar data in 
July, 2008 over the study area. The acquisition parameters were 

set to achieve a pulse rate of 88,000 Hz, 60 cm footprint size 
and 2 pulses per m2 with a maximum scan angle of 15°. 
Following the collection of the lidar data, a 0.5 m resolution 
DTM was generated by applying a standard triangular irregular 
networks (TIN) modelling technique. A digital surface model 
(DSM) with matching pixel resolution was generated by 
selecting the highest lidar point elevation value per cell. Finally, 
the DTM was subtracted from the DSM to construct a canopy 
height model (CHM).  
 
The orthorectified WV-2 multispectral images with 2 m spatial 
resolution used in this study were acquired on 9 March 2010, 
which is not the same as the lidar acquisition and field data 
inventory, as the WV-2 sensor was not yet operational. This 
time lag could be a potential source of error in the analysis of 
this data. However, using an aerial photogrammetry 
interpretation (API) map of the plantation, containing 
information such as age and thinning conditions for different 
parts of the plantation and provided by Forests NSW, the 
collected plots were compared with the content of the WV-2 
multispectral image and it was determined that no harvesting or 
thinning had occurred during this 17 month time lag. Moreover, 
17 months plot growth would not considerably affect the plot-
level statistics in low rainfall years of 2008 and 2009 
(Shamsoddini et al., 2013a). The WV-2 sensor provides 8 
multispectral bands including 4 traditional remotely sensed 
bands of blue, green, red and near infrared (NIR1), and 4 new 
bands comprising of coastal blue, yellow, red edge and a new 
near infrared band (NIR2).  
 
2.3 Sampling Design 

Training and testing of the prediction models required the 
collection of some samples over the plantation. To achieve this 
aim, the irrelevant areas such as Eucalypts patches, bare and 
grass lands were masked out using the API map. Spatial 
autocorrelation amongst samples that could potentially violate 
the assumption of the sample independence should be taken into 
account prior to the collection of the sample (Congalton and 
Green, 2009). Semi-variograms are the most common method 
for determining the minimum distance at which spatial 
autocorrelation is expected to occur among pixels of remotely 
sensed data (Hyppänen, 1996; Popescu et al., 2004). 
  
The autocorrelation distance over pine plantation is a function 
of thinning condition and age of trees (Atkinson and Danson, 
1988; Cohen et al., 1990; Mason et al., 2007). Three sites 
including three age classes were considered along with two 
extreme thinning conditions, unthinned and second thinning by 
the random-systematic method. The semi-variograms should be 
calculated for the optical band which reveals more information 
of the structure of the plantation (Pascual et al., 2010). 
According to the findings of Shamsoddini et al. (2013a), green 
band of WV-2 is relatively highly correlated with the structural 
parameters of the pine plantation, especially mean height. After 
determining the required distance for sample collection over the 
green band and lidar-derived CHM to avoid spatial cross 
correlation between the samples, a systematic-random sampling 
was designed to collect the required samples for training and 
test over different strata. Three different strata including: slope 
(less than 10°, more than 10° and less than 20°, and more than 
30°); thinning condition (unthinned, first thinning and second 
thinning); and tree age (less than 20 years and more than 20 
years) were considered using the API map of the plantation to 
collect the required samples. The collection of training and test 
samples was conducted with the following considerations: 
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• At least 10 random samples for each stratum should 
be collected. 

• At least 50 m distance from irrelevant features such as 
roads and eucalyptus patches within each stratum. 

• A minimum distance of 70 m to 90 m was set between 
training and test samples to avoid the occurrence of 
spatial autocorrelation. 
 

The above process led to collection of 171 training samples, and 
100 test samples which were collected by the random-
systematic sampling process within different strata.  
 

3. METHODOLOGY 

Figure 2 shows the methodology which was used in this study. 
As this figure clearly shows, the methodology of this study 
comprises four steps including pre-processing, attribute 
calculation, modelling, and assessment.   
 

 

Figure 2. The flow chart of the methodology used in this study 
 
3.1 Pre-processing 

The lidar-derived CHM suffers from pit phenomenon which is 
defined as randomly-distributed pixels whose values are lower 
than their neighbouring pixels within a crown (Shamsoddini et 
al., 2013b). Prior to calculation of statistical metrics, it is 
required to reduce the effect of pits on the CHM (Shamsoddini 
et al., 2013b). Pit removal was conducted using adaptive mean 
filter (AMF) with 7×7 window size developed by Shamsoddini 
et al. (2013b). 
 
The WV-2 multispectral imagery was orthorectified by the data 
provider (DigitalGlobe) with a horizontal accuracy of 6.8 m 
which is more than 3 times the spatial resolution of the data. To 
improve the geo-referencing accuracy, they were referenced to 
the lidar-derived CHM based on 70 ground identifiable control 
points identified on the optical image and CHM using a first 
order polynomial function. The accuracy of the georeferencing 
was approximately 0.8 m or less than half of a pixel. Dark 
object subtract method (DOS3) was exploited to 
atmospherically correct WV-2 data and digital numbers were 
converted to reflectance values. Moreover, cos (i), which is the 

incident angle between the sun and a horizontal surface was 
calculated according to Riano et al. (2003). There was no need 
for topographic correction as the examination of the 
relationship between cos (i) and the radiance of each band did 
not show significant correlation after removal of path radiance. 
 
3.2 Attribute Calculation 

10 statistical attributes including mean (ME); maximum (MAX); 
variance (VAR); standard error of the mean - standard deviation 
divided by the square root of the number of pixels - (SEM); 
skewness (SK); kurtosis (KU), and 10th, 30th, 60th and 90th 
height percentiles were calculated for the collected samples 
within 30 m radius plots. The reasons for the selection of this 
plot size were discussed in Shamsoddini et al. (2013a).  
 
The reflectance of individual bands, ratios of band reflectance, 
and principal components (PCs) were calculated for WV-2 data. 
In addition, 11 vegetation indices comprising normalized 
difference vegetation index (NDVI), normalized yellow index 
(NYI), near infrared NDVI (NIRNDVI), optimized soil-
adjusted vegetation index (OSAVI), ratio vegetation index 
(RVI), yellow NDVI (YNDVI), global environment monitoring 
index (GEMI), modified simple ratio (MSR), modified 
chlorophyll absorption in reflectance index2 (MTVI2), 
transformed SAVI (TSAVI), and weighted difference vegetation 
index (WDVI) which proved to be useful for pine plantation 
structure mapping (Shamsoddini, 2012; Shamsoddini et al., 
2012; Shamsoddini et al., 2013a) were also calculated. Those 
indices involving the NIR band were calculated using both 
NIR1 and NIR2 bands for WV-2. 11 GLCM indices, mean 
(GME), variance (GVAR), standard deviation (ST), contrast 
(CON), angular second moment (ASM), entropy (ENT), 
homogeneity (HOM), energy (EN), correlation (COR), 
dissimilarity (DISS), and maximum probability (MP), were 
calculated for four window sizes, 3×3, 5×5, 7×7, and 9×9, and 
for four orientations, 0°, 45°, 90° and 135°.  
 
According to Gao et al. (2000) and Shamsoddini et al. (2013a), 
bands, band ratios and PCs provide different types of 
information. For this reason, the textural indices were calculated 
for bands, band ratios and PCs derived from WV-2 
multispectral image. To reduce the number of attributes and 
increase the efficiency of the feature selection process which is 
a stepwise method, the absolute value of the Pearson correlation 
coefficient was calculated for each possible pair of attributes. 
Then the summation of the absolute value of the correlation 
coefficient derived for the examination of the relationship 
between each attribute with the others was calculated. Each pair 
of attributes whose correlation coefficient was higher than 0.90 
was considered to be redundant and the one whose total 
correlation coefficient was higher than the other was removed. 
 
3.3 Modelling 

As mentioned, multiple-linear regression is the common method 
for modelling lidar metrics using optical data. A stepwise 
multiple-linear regression was used to model the lidar metrics 
using textural information and spectral derivatives of WV-2. 
The conditions, explained in Shamsoddini et al. (2013a), were 
taken into account to avoid multicollinearity and over-fitting of 
the models developed using multiple-linear regression. The 
coefficient of determination (R2), and standard error of 
estimation (SEE) were calculated to show the fitness of the 
regression models derived for predicting lidar metrics. The 
relative error which was calculated using SEE of each lidar 
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metric divided by its measured mean value was used to provide 
comparisons of the accuracy of different lidar metric 
predictions. 
 
3.4 Assessment and Comparison  

After modelling the lidar metrics using WV-2 data, they were 
assessed to reveal whether the predictions are statistically 
significant from those derived from the measured lidar data. 
This was based on a paired-samples t-test to indicate the 
significance of the difference between measured and predicted 
lidar metrics. Also this statistical test was applied for comparing 
the results achieved from spectral and textural attributes. 
 

4. RESULTS AND DISSCUSSION 

After deriving the final textural and spectral-based models of 
WV-2 data, based on lower SEE and higher R2, they were 
applied to predict the lidar metrics for the test samples. Figure 3 
reveals the results of the lidar metric prediction for 100 test 
plots. According to figure 3, textural-based models derived 
from WV-2 data performed better than the spectral-based 
models for explaining the variability of all lidar metrics. Among 
lidar metrics, the variation of VAR, and SEM were explained 
better than the other lidar metrics (more than 80%). The relative 
error shown in figure 3(b) indicates that the lidar metrics are 
predicted more accurately using textural-based models 
compared to the spectral-based models, except for 60th 
percentile.  
 

 
(a) 

 
(b) 

Figure 3. Lidar attributes derived using spectral and textural 
data of WV-2 multispectral images. (a) and (b) are for the 
correlation of determination and relative error respectively 

derived for the predicted lidar-derived attributes from the test 
sample plots. 

Moreover, the relative error of MAX, SEM, and 90th percentile is 
lower than the other metrics (less than 14%). The better 
prediction of lidar metrics related to the upper parts of the 
canopy (e.g. MAX) compared to those related to the lower parts 
(e.g. 10th percentile) may be due to the effect of understorey and 
the presence of pits on the calculation of those metrics for lower 
parts of canopy. 
 
Paired-samples t-test was applied to examine whether the lidar 
metrics, predicted by textural-based models, are significantly 
more accurate than those derived from spectral-based models. 
Table 1 reveals that the lidar metrics predicted by textural-based 
models from WV-2 data are significantly more accurate than the 
spectral-based models, except for 30th and 60th percentiles 
where there is no significant difference. 
 

Lidar metric t Sig. (2-tailed) 
MAX -3.152 0.002* 

ME 2.868 0.005* 

10th percentile 3.398 0.001* 

30th percentile 0.985 0.327 
60th percentile -1.563 0.121 
90th percentile 3.651 0.000* 

VAR -4.765 0.000* 

SEM 4.438 0.000* 

SK -2.813 0.006* 

KU 1.915 0.058 
Note: * indicates p-level values which are statistically significant at α 
of 0.05. Degree of freedom is 99for all cases 
Table 1. Paired-samples t-test results for comparison of textural-

based and spectral-based models 
 
According to the results, adding spectral attributes to the 
textural attributes could not significantly improve the accuracy 
of the lidar metric predictions derived from textural-based 
models. The paired-samples t-test applied for comparing the 
mean values of lidar metrics predicted by textural-based models 
and the measured lidar metrics indicated that there is no 
significant difference between the two sets of lidar metrics; 
however, it is necessary to examine the reliability of the 
predicted lidar metrics for different forest applications such as 
structural parameter estimation.   
 
The analysis of the spectral derivatives and textural attributes 
which were selected by stepwise method for the final prediction 
models provided some useful considerations. For spectral-based 
models, NIRNDVI, NYI, and TSAVI are more important than 
the other VIs for predicting lidar metrics. These vegetation 
indices were also useful for estimating structural parameter of 
the pine plantation in Shamsoddini et al. (2013a). As table 2 
shows the textural indices selected by the models, textural 
attributes derived from PC6 and PC5 of WV-2 were the most 
important predictors of the textural-based models. Also, The 
band ratio of vegetation-insensitive and vegetation sensitive 
bands especially coastal blue and other WV-2 vegetation-
sensitive bands such as green, yellow, and red edge are 
frequently selected as predictors of the textural-based models of 
WV-2. According to literature (Gao et al., 2000; Castro et al., 
2003, Shamsoddini et al., 2013a), the ratio of the vegetation-
insensitive and sensitive bands can perform as efficient 
indicators for vegetation studies since the effects of phenomena 
such as atmosphere, shadow and, background are reduced in the 
ratio output.  
 
Regarding the textural indices, correlation and contrast were 
selected as predictors significantly more than other GLCM 
indices extracted from WV-2. Finally, no window size was 
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selected as being superior for calculating GLCM attributes, 
since GLCM attributes are affected by the window size in 
different ways (Kayitakire et al., 2006). Also, according to table 
2, no window orientation was identified as the suitable for 
extracting GLCM attributes.  This can be mainly due to there 
being no dominant tree row in the pine plantation, especially in 
the unthinned and second thinning areas, according to the visual 
inspection of WV-2 data.   
 

Lidar metric Predictors (WV-2) 

MAX 
CON0w3b6; GVAR90w9P5; COR135w5b1; 
MP45w9b2; COR90w9b6-8 

ME 
 
COR45w3b1-4; COR90w3b2-3; COR90w7b3-6; 
GME45w3P3; COR90w3P5; CON45w3b4 

10th percentile 

 
COR45w7P1; COR90w9P3; COR90w9b3-4; 
COR135w7b7-8; MP45w9b2; CON90w3P1; 
COR90w3P5 

30th percentile 
 
COR45w3b2; DISS90w5P6; DISS90w3b1-5; 
COR0w7b3-4; COR0w7b7; CON90w9b6-7 

60th percentile 

 
COR45w3b1-4; CON0w3b6; COR90w3b6-8; 
GVAR90w9b2-4; COR90w3b5; DISS135w9P6; 
COR0w3b1-2; GME0w9P4; CON90w9b6-7 

90th percentile 
 
CON0w3b6; GME45w3P6; GVAR0w9b4-5; 
COR0w3b6-8; GVAR90w9P5 

VAR 

 
COR90w9P4; GME45w3P6; CON0w3b6; 
COR0w5P4; DISS90w3P7; GVAR90w9b7-8; 
CON0w3b3-5; COR90w9b6-8 

SEM 

 
CON0w3b6; GME45w3P6; GVAR90w9P5; 
MP45w9b2; COR135w5P5; COR0w3b2-5; 
CON0w3b3-4 

SK 

 
COR45w3b1-3; DISS90w5P6; GME45w3b1-8; 
COR0w9b6-7; COR90w3b5; GVAR90w9b1-4; 
DISS90w3b6-8 

 
KU 

 
GME45w3P6; ST0w9b3-4; COR45w3P5; 
CON0w3b3-4 

Note: in this table the code to the GLCM attribute is shown by xx dx 
wx yx, where xx presents the abbreviation name of attributes. dx and 
wx show the orientation and window size, respectively and  yx 
represents PC number if y is P; otherwise it shows the number of band 
or band ratio.   
Table 2. Textural indices selected by the models developed for 

predicting each lidar metrics 
 

5. CONCLUSION 

The utility of WV-2 multispectral image for predicting lidar 
metrics over a Pinus radiata plantation at plot level was 
investigated. It was indicated that the WV-2 data including 
spectral and textural data are useful for lidar metric prediction. 
The textural-based models result in significantly more accurate 
predictions of lidar metrics compared to those derived from 
spectral-based models. Adding spectral derivatives to the 
textural attributes of WV-2 did not improve the accuracy of the 
lidar metric predictions derived from textural-based models. It 
was demonstrated that PCs can perform much better than the 
other spectral information of WV-2 for predicting lidar metrics. 
Among different textural indices, correlation, mean, and 
contrast are more useful than the others. It is suggested that the 
prediction accuracy of higher percentile lidar metrics, e.g. 90th 
and MAX, are better than those pertaining to the lower 
percentiles, e.g. 10th, 30th, and ME. Although, the statistical 

examination of the results showed no difference between 
measured and predicted lidar metrics, investigation of the 
reliability of the predicted lidar metrics, especially for 
estimating different structural parameters should be investigated 
further. 
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