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ABSTRACT:

Over last decades, different types of remotely egrkata including lidar, radar and optical dataewevestigated for forest studies.
Undoubtedly, lidar data is one of the promisingsdor these purposes; however, the accessibilitya@st of this data are the main
limitations. In order to overcome these limitatipoptical data have been considered for modeliitig Imetrics and their use for
inferring lidar metrics over areas with no lidavecage. WorldView-2 (WV-2) data as a high resolutaptical data offer 8 bands
including four traditional bands, blue, green, radd infrared, and four new bands including codsia, yellow, red edge and a
new infrared band whose relationships with lidatrios were investigated in this study. For thispmse, band reflectance, band
ratios, and principal components (PCs) of WV-2 rspitictral data along with 23 vegetation indices vesteacted. Moreover, the
grey level co-occurrence matrix (GLCM) indices ohtlg, band ratios and PCs were also calculated fieratit window sizes and
orientations. Spectral derivatives and texturaltaites of WV-2 were provided for a stepwise mudtipnear regression to model 10
lidar metrics including maximum, mean, variance™, 183", 60" and 98" height percentiles, standard error of mean, kistasd
skewness for ®inus radiata plantation, in NSW, Australia. The results indezhthat the textural-based models are significantly
more efficient than spectral-based models for ptedj lidar metrics. Moreover, the integrationspectral derivatives with textural
attributes cannot improve the results derived ftewtural-based models. The study demonstratesWha® data are efficient for

predicting lidar metrics.

1. INTRODUCTION

Conventional forestry methods such as field samimg) direct
surveying which sometimes involve destructive téghes

(Jinha and Crawford, 2012) are constrained by time @ost

(Hyyppa et al., 2000). Also, the extrapolation loé¢ results of
these methods to a large forest is likely to bererous (Chen et
al., 2011). Moreover, accessibility of some forastas is a
critical issue that would significantly increasestof surveys
(Shanmugam et al., 2006). Considering these diffeesyl earth
observation technologies have been exploited ascanomic

source of data for extracting more current and i@ateu
structural parameters at global to local scales than be

a function of factors such as pulse density, togplgy and
project location, especially at regional scalegx{6n et al.,
2009; Chen and Hay, 2011); limited existing cover@dgyppa
et al.,, 2008); and the computations which are reguito
process these data (Donoghue and Watt, 2006). keset
reasons, the prediction of lidar metrics using ottemotely
sensed data, especially optical data such as Lafddaand
ETM+, and QuickBird data, has been recently propassd a
limited number of studies have been conductedhisrpurpose
(Wulder and Seemann, 2003; Hilker et al., 2008; GirehHay,
2011). Different types of information, including esypral
derivatives and textural information were extradredn optical
data by various researchers to relate them toittae metrics

achievable byin situ methods (Le Toan et al., 2004). Among (Chen and Hay, 2011). More investigations are requin

different types of remotely sensed data, discrieli@r Idata has
been used to estimate and calculate different tsiraic
parameters including tree height (Popescu et @022Dean et
al., 2009), biomass and biomass-related variahlek as stand
volume, and basal area (Means et al., 1999; Srhait,e2012;
Shamsoddini et al.,, 2013b). Lidar data can prowaddirect
measure of tree or stand height (Hyde et al., 2@6ody and
Moskal, 2010) and is arguably superior in this rdgeompared
to other remote sensing options. Lidar-derived theght is
useful for predicting other forest parameters suash stand
volume, but factors such as canopy closure anditgemsist
also be considered (Lim et al., 2003).

However, significant constraints on applying lidkata are the
high data acquisition cost (Lefsky et al., 2001hjch varies as
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which types of data are most useful for predictminlidar
metrics. Also, it should be determined whether dahldition of
spectral derivatives to the textural data can im@rthe results
of lidar metric prediction. The launch of new opticatellites
such as WorldView-2 (WV-2) offering simultaneoushew
spectral bands and high resolution data calls fbe t
investigation of the capabilities of these new datd spectral
bands for predicting lidar metrics. Among differegpes of
lidar metrics, the prediction of lidar-derived meeand
maximum canopy heights has been investigated rnmecpiént
than the others using multiple-linear regressioraasmmon
modelling method (Hilker et al., 2008; Pascual et 2010);
However, the other lidar-derived height metricschsuas
variance (Zimble et al., 2003), skewness, and péites of
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lidar-derived heights (Shamsoddini et al., 2013&je also
useful for estimating forest structural parameters.

According to the above considerations, this papes #o:

* Investigate the utility of WV-2 data for predicting
different lidar metrics.

* Compare the performances of the textural-based ang,

set to achieve a pulse rate of 88,000 Hz, 60 crtpfot size
and 2 pulses per fnwith a maximum scan angle of 15°.
Following the collection of the lidar data, a 0.5resolution
DTM was generated by applying a standard triangualagular
networks (TIN) modelling technique. A digital suréamodel
(DSM) with matching pixel resolution was generatbg
selecting the highest lidar point elevation valee qell. Finally,
e DTM was subtracted from the DSM to construcaaopy

spectral-based models derived from WV-2 for lidareight model (CHM).

metric prediction.
* Investigate the effect of spectral information dre t

The orthorectified WV-2 multispectral images witm2spatial

improvement of the accuracy of lidar metric respjution used in this study were acquired on 9ck&010,

prediction derived from textural indices alone.

In the next sections, the study area and remothges] data
used for this study are explained. Then, the metlogy and
results are given and finally the results are dised and
conclusions are presented.

2. STUDY AREA AND DATA
2.1 Study Area

The study area shown in figure 1 includes a 500CPimas
radiata plantation, from 35° 285’ S to 35° 2858' S latitude,
and 147° 5848’ E to 148° 0402’ E longitude, within a larger
20,400 ha commercial estate in the vicinity of Batlm the
Hume region of Forests, NSW, Australia. The pinenption
includes a variation of terrain conditions, treesgnd thinning
conditions. While 62% of the plantation covers #reas with
the slope of 0° to 10°, the slope classes of 1@0tband more
than 20° dominate 35% and 3% of the plantatiomeetively.
Also, unthinned, first thinning and second thinniokasses
cover 52%, 25%, and 23% of the plantation, respelgti
Moreover, while 47% of the area is dominated bytthes of 10
to 20 years old, 53% of the trees are older thaype2ds.
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Figure 1. &)Study area and the field data (yellow circles) as
well as sample plots, training data (red circles) test data
(blue circles) shown on WV-2 false colour image§and 3 as
red, green and blue)d) the aerial photogrammetric
interpretation (API) map

2.2 Remotely Sensed data

An airborne HARRIER 56/G3 fully-integrated sensor with

LMS-Q560 laser scanner (Riegl, Austria) collectetatidata in
July, 2008 over the study area. The acquisitiorupaters were

which is not the same as the lidar acquisition &elll data
inventory, as the WV-2 sensor was not yet operatiomhis
time lag could be a potential source of error ie émalysis of
this data. However, using an aerial
interpretation (API) map of the plantation, contain
information such as age and thinning conditions different
parts of the plantation and provided by Forests NSkeé
collected plots were compared with the contenthef YWV-2
multispectral image and it was determined that awdsting or
thinning had occurred during this 17 month time ldgreover,
17 months plot growth would not considerably afféet plot-
level statistics in low rainfall years of 2008 arzD09
(Shamsoddini et al., 2013a). The WV-2 sensor pes/i@®
multispectral bands including 4 traditional remgtedensed
bands of blue, green, red and near infrared (NIBAg, 4 new
bands comprising of coastal blue, yellow, red edgd a new
near infrared band (NIR2).

2.3 Sampling Design

Training and testing of the prediction models reegithe
collection of some samples over the plantationagbieve this
aim, the irrelevant areas such as Eucalypts patdiee and
grass lands were masked out using the APl map.igbpat
autocorrelation amongst samples that could potgnti@late
the assumption of the sample independence shoulkbe into
account prior to the collection of the sample (Cdiogaand
Green, 2009). Semi-variograms are the most commethaod
for determining the minimum distance at which sgati
autocorrelation is expected to occur among pixéleemotely
sensed data (Hyppen, 1996; Popescu et al., 2004).

The autocorrelation distance over pine plantat®a ifunction
of thinning condition and age of trees (Atkinsord ddanson,
1988; Cohen et al.,, 1990; Mason et al., 2007). Thuites
including three age classes were considered aloitly two

extreme thinning conditions, unthinned and secdithing by
the random-systematic method. The semi-variogrdrosld be
calculated for the optical band which reveals maofermation

of the structure of the plantation (Pascual et aD10).

According to the findings of Shamsoddini et al. {38), green
band of WV-2 is relatively highly correlated withet structural
parameters of the pine plantation, especially nfezght. After
determining the required distance for sample ctilacover the
green band and lidar-derived CHM to avoid spatiadssr
correlation between the samples, a systematic-rarssmpling
was designed to collect the required samples fonitrg and
test over different strata. Three different stiatduding: slope
(less than 10°, more than 10° and less than 2@F naore than
30°); thinning condition (unthinned, first thinnirand second
thinning); and tree age (less than 20 years anck tfan 20
years) were considered using the APl map of thatal@n to
collect the required samples. The collection ofhtrey and test
samples was conducted with the following considenat
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be collected.
At least 50 m distance from irrelevant featureshsas
roads and eucalyptus patches within each stratum.

training and test samples to avoid the occurrerice
spatial autocorrelation.

The above process led to collection of 171 trairsamples, and

100 test samples which were collected by the rando
systematic sampling process within different strata

3. METHODOLOGY
Figure 2 shows the methodology which was usedigdtudy.
As this figure clearly shows, the methodology oiststudy

comprises four steps including pre-processing, ibaitie
calculation, modelling, and assessment.
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Figure 2. The flow chart of the methodology usethis study

3.1 Preprocessing

The lidar-derived CHM suffers from pit phenomenonickhis
defined as randomly-distributed pixels whose valaes lower
than their neighbouring pixels within a crown (Sisaeidini et
al., 2013b). Prior to calculation of statistical tnes, it is
required to reduce the effect of pits on the CHMa(8hkoddini
et al., 2013b). Pit removal was conducted usingta mean
filter (AMF) with 7x7 window size developed by Shsoddini
et al. (2013b).

The WV-2 multispectral imagery was orthorectifiegithe data
provider (DigitalGlobe) with a horizontal accurac§ 6.8 m
which is more than 3 times the spatial resolutibthe data. To
improve the geo-referencing accuracy, they werereetced to
the lidar-derived CHM based on 70 ground identiabbntrol
points identified on the optical image and CHM usidirst
order polynomial function. The accuracy of the géarencing
was approximately 0.8 m or less than half of a Ipikark
object subtract method (DOS3) was exploited

atmospherically correct WV-2 data and digital nursbeere
converted to reflectance values. Moreover, cosailich is the

At least 10 random samples for each stratum shouléhcident angle between the sun and a horizontdhsarwas

calculated according to Riano et al. (2003). Theas no need
for topographic correction as the examination ofe th
relationship between cos (i) and the radiance oh dsand did

A minimum distance of 70 m to 90 m was set betweer10t show significant correlation after removal aftpradiance.

o
3.2 Attribute Calculation

10 statistical attributes including meavif); maximum MAX);

mvariance VAR); standard error of the mean - standard deviation
divided by the square root of the number of pixelSEM);
skewness ¥K); kurtosis KU), and 10", 30", 60" and 90™
height percentiles were calculated for the col@csamples
within 30 m radius plots. The reasons for the dmlacof this
plot size were discussed in Shamsoddini et al.32p1

The reflectance of individual bands, ratios of baefiiectance,
and principal components (PCs) were calculated fgr2\data.
In addition, 11 vegetation indices comprising ndinesl
difference vegetation index (NDVI), normalized yell index
(NYI1), near infrared NDVI (NIRNDVI), optimized soil-
adjusted vegetation index (OSAVI), ratio vegetatiomex
(RVI), yellow NDVI (YNDVI), global environment monitring
index (GEMI), modified simple ratio (MSR), modified
chlorophyll absorption in reflectance index2 (MTYI2
transformed SAVI (TSAVI), and weighted differencegetation
index (WDVI) which proved to be useful for pine plation
structure mapping (Shamsoddini, 2012; Shamsoddinale
2012; Shamsoddini et al., 2013a) were also caledlathose
indices involving the NIR band were calculated ushmth
NIR1 and NIR2 bands for WV-2. 11 GLCM indicesean
(GME), variance (GVAR), standard deviation (ST), contrast
(CON), angular second moment (ASM), entropy (ENT),
homogeneity (HOM), energy (EN), correlation (COR),
dissimilarity (DISS), and maximum probability (MP), were
calculated for four window sizes, 3x3, 5x5, 7x7d &x9, and
for four orientations, 045, 90 and 135

According to Gao et al. (2000) and Shamsoddini.g2813a),
bands, band ratios and PCs provide different typés
information. For this reason, the textural indieese calculated
for bands, band ratios and PCs derived from WV-2
multispectral image. To reduce the number of aiteb and
increase the efficiency of the feature selectiaocpss which is

a stepwise method, the absolute value of the Peamwelation
coefficient was calculated for each possible péiattributes.
Then the summation of the absolute value of theetation
coefficient derived for the examination of the tmlaship
between each attribute with the others was caledldach pair

of attributes whose correlation coefficient washeigthan 0.90
was considered to be redundant and the one whds¢ to
correlation coefficient was higher than the othaswemoved.

(0]

3.3 Modelling

As mentioned, multiple-linear regression is the pwn method
for modelling lidar metrics using optical data. Aepwise
multiple-linear regression was used to model tdarlimetrics
using textural information and spectral derivativdsWV-2.
The conditions, explained in Shamsoddini et al.1@H), were
taken into account to avoid multicollinearity angeofitting of
the models developed using multiple-linear regmessiThe
coefficient of determination Rf), and standard error of

toestimation (SEE) were calculated to show the fignef the

regression models derived for predicting lidar mstr The
relative error which was calculated using SEE atheldar
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metric divided by its measured mean value was tsgulovide
comparisons of the accuracy of different lidar ngetr
predictions.

3.4 Assessment and Comparison

After modelling the lidar metrics using WV-2 dathgy were
assessed to reveal whether the predictions aréstistty
significant from those derived from the measurethrlidata.
This was based on a paired-samples t-test to iteditae
significance of the difference between measured @edicted
lidar metrics. Also this statistical test was apglfor comparing
the results achieved from spectral and texturabates.

4. RESULTSAND DISSCUSSION

After deriving the final textural and spectral-bdsmodels of
WV-2 data, based on lower SEE and higiRér they were
applied to predict the lidar metrics for the temnples. Figure 3
reveals the results of the lidar metric predictfon 100 test
plots. According to figure 3, textural-based moddksrived
from WV-2 data performed better than the spectesiell
models for explaining the variability of all lidaretrics. Among
lidar metrics, the variation o¥AR, and SEM were explained
better than the other lidar metrics (more than 80Pl relative

error shown in figure 8} indicates that the lidar metrics are _ i =098
textural-based tgode Note: * indicates p-level values which are statsity significant ato

6 of 0.05. Degree of freedom is 99for all cases

predicted more accurately using
compared to the spectral-based models, except fi?
percentile.
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Figure 3. Lidar attributes derived using spectral textural
data of WV-2 multispectral images)(@nd p) are for the
correlation of determination and relative erropesively

derived for the predicted lidar-derived attribufiesn the test

sample plots.

Moreover, the relative error MAX, SEM, and90™ percentile is
lower than the other metrics (less than 14%). Tledtteb
prediction of lidar metrics related to the uppertpaof the

canopy (e.gMAX) compared to those related to the lower parts

(e.g.10" percentile) may be due to the effect of undergtare
the presence of pits on the calculation of thoseiasefor lower
parts of canopy.

Paired-samples t-test was applied to examine whéitieelidar

metrics, predicted by textural-based models, agaifitantly

more accurate than those derived from spectraldbasadels.
Table 1 reveals that the lidar metrics predictedebyural-based
models from WV-2 data are significantly more acteithan the
spectral-based models, except for"3and 68 percentiles
where there is no significant difference.

Lidar metric t Sig. (2-tailed)
MAX -3.152 0.002
ME 2.868 0.005
10" percentile 3.398 0.001
30" percentile 0.985 0.327
60" percentile -1.563 0.121
90" percentile 3.651 0.000
VAR -4.765 0.000
SEM 4.438 0.000
SK -2.813 0.006
KU 1.915 0.058

Table 1. Paired-samples t-test results for compari$ textural-
based and spectral-based models

According to the results, adding spectral attribute the
textural attributes could not significantly improtlee accuracy
of the lidar metric predictions derived from texlibased
models. The paired-samples t-test applied for coimgathe

mean values of lidar metrics predicted by textinaded models
and the measured lidar metrics indicated that thisreno

significant difference between the two sets of flidaetrics;

however, it is necessary to examine the reliabilify the

predicted lidar metrics for different forest applions such as
structural parameter estimation.

The analysis of the spectral derivatives and tektattributes
which were selected by stepwise method for thd finediction

models provided some useful considerations. Fartegdebased
models, NIRNDVI, NYI, and TSAVI are more importartitan

the other Vis for predicting lidar metrics. Thesegetation
indices were also useful for estimating structyratameter of
the pine plantation in Shamsoddini et al. (2013e).table 2

shows the textural indices selected by the modelstural

attributes derived from PC6 and PC5 of WV-2 were rtfost

important predictors of the textural-based moddélso, The

band ratio of vegetation-insensitive and vegetatsamsitive
bands especially coastal blue and other WV-2 végeta
sensitive bands such as green, yellow, and red edge
frequently selected as predictors of the textueadal models of
WV-2. According to literature (Gao et al., 2000; Cat al.,

2003, Shamsoddini et al., 2013a), the ratio of wbgetation-
insensitive and sensitive bands can perform ascieffi

indicators for vegetation studies since the effe€¢ggshenomena
such as atmosphere, shadow and, background argeck@tuthe
ratio output.

Regarding the textural indicesorrelation and contrast were
selected as predictors significantly more than otG&CM
indices extracted from WV-2. Finally, no window eiavas
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selected as being superior for calculating GLCMilaites,
since GLCM attributes are affected by the windowe sia
different ways (Kayitakire et al., 2006). Also, aoting to table
2, no window orientation was identified as the ahii¢ for
extracting GLCM attributes. This can be mainly doethere
being no dominant tree row in the pine plantatespecially in
the unthinned and second thinning areas, accotdittge visual
inspection of WV-2 data.

Lidar metric Predictors (WV-2)

MAX CONOw3b6; GVAR90WIP5; COR135w5b1;
MP45w9b2; COR90wW9b6-8

ME COR45w3b1-4; COR90w3b2-3; COR90W7b3-6;

GME45w3P3; COR90wW3P5; CON45w3b4

COR45w7P1; COR90W9P3; COR90wW9bh3-4;
COR135w7b7-8; MP45w9b2; CON90wW3P1;
COR90w3P5

10" percentile

COR45w3b2; DISS90w5P6; DISS90w3b1-5;
COROwW7b3-4; COROW7b7; CON90W9b6-7

30" percentile

COR45w3b1-4; CONOw3b6; COR90wW3b6-8;
GVAR90W9b2-4; COR90w3b5; DISS135w9P6
COROw3b1-2; GMEOwW9P4; CON90wW9b6-7

60" percentile

CONOw3b6; GME45w3P6; GVAROW9b4-5;
COROw3b6-8; GVAR90WIP5

90" percentile

COR90w9P4; GME45w3P6; CONOwW3b6;
COROwW5P4; DISS90wW3P7; GVAR90W9b7-8;
CONOw3b3-5; COR90wW9b6-8

VAR

CONOw3b6; GME45w3P6; GVAR90WIPS5;
MP45w9b2; COR135w5P5; COR0Ow3b2-5;
CONOw3b3-4

SEM

COR45w3b1-3; DISS90w5P6; GME45w3b1-8;
COROwW9b6-7; COR90wW3b5; GVAR90wW9b1-4;
DISS90w3b6-8

SK

KU GME45w3P6; STOW9b3-4; COR45w3P5;
CONOw3b3-4

Note: in this table the code to the GLCM attribigeshown by xx dx

wx yx, where xx presents the abbreviation nametwibates. dx and

wx show the orientation and window size, respebtivend yx

represents PC number if y is P; otherwise it shitvesnumber of band

or band ratio.

Table 2. Textural indices selected by the modeleld@ed for

predicting each lidar metrics

5. CONCLUSION

The utility of WV-2 multispectral image for predicg lidar
metrics over aPinus radiata plantation at plot level was
investigated. It was indicated that the WV-2 dataluding
spectral and textural data are useful for lidarrimgirediction.
The textural-based models result in significantigrenaccurate
predictions of lidar metrics compared to those \a@ti from
spectral-based models. Adding spectral derivatites the
textural attributes of WV-2 did not improve the acy of the
lidar metric predictions derived from textural-bdseodels. It
was demonstrated that PCs can perform much beter ttie
other spectral information of WV-2 for predictingdr metrics.
Among different textural indicescorrelation, mean, and
contrast are more useful than the others. It is suggestatiiie
prediction accuracy of higher percentile lidar restre.g.90"

examination of the results showed no differencewbeh
measured and predicted lidar metrics, investigatidnthe
reliability of the predicted lidar metrics, espéigia for
estimating different structural parameters sho@ddnvestigated
further.
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