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ABSTRACT:

The Blake-Zisserman functional is a second-order variational model for data segmentation. The model is build up of several terms,
the nature and the interaction of them allow to obtain a smooth approximation of the data that preserves the constant-gradient areas
morphology, which are explicitly detected by partitioning the data with the graph of two special functions: the edge-detector function,
which detects discontinuities of the datum, and the edge/crease-detector function, which also detects discontinuities of the gradient.
First, the main features of the model are presented to justify the sense of the application of the model to DSMs. It is stressed the fact
that the model can yield an almost piecewise-linear approximation of the data. This result is certainly of some interest for the specific
application of the model to urban DSMs. Then, an example of its application is presented and the results are discussed to highlight
how the features of the model affect the model outputs. The smooth approximation of the data produced by the model is thought
to be a better candidate for further processing. In this sense, the application of the Blake-Zisserman model can be seen as a useful
preprocessing step in the chain of DSMs processing. Eventually, some perspectives are presented to show some promising applications
and developments of the Blake-Zisserman model.

1 INTRODUCTION

Variational models for data segmentation presented in (Mum-
ford and Shah, 1989; Blake and Zisserman, 1987) allowed for
a mathematical formulation of several significant problems such
as signal and image segmentation (Vitti, 2012a,b), and material
fractures analysis (Del Piero et al., 2007). We have to mention
here that other classical variational models widely used to face
the problem of segmentation are Total Variation Flow (e.g. Dogan
et al. (2007)) and Anisotropic diffusion (e.g. Perona and Malik
(1990)), which are essentially first order models. By segmenta-
tion we intend here the result of minimization of a specific energy,
the choise of the energy components is properly made in order to
obtain desired properties ot the minimizer (i.e. of the segmenta-
tion). In this work the Blake-Zisserman energy is used. An ellip-
tic approximation of the energy gives rise to two auxiliary func-
tions which represent, each one, an explicit partition of the image.
By labelling those regions contoured by closed curves one can
perform a segmentation in the classical way, this fact justify the
terminology segmentation for a minimizer. In this work the re-
sults of the minimization procedure is presented and applied to a
Digital Surface Model (DSM) of a mixed urban-agricultural area.
By following the work by Zanetti (2013), the Blake-Zisserman
variational model appears to be a proper model for the processing
of an urban DSM. The features of the model we want to highlight
are essentially two: first, the presence of both first and second
order terms in the functional allow some kind of control in the
smoothing of the data and in the edge/crease detection. Last but
not least, an explicit detection of edges and creases of the data
is possible due to the presence of the two special auxiliary func-
tions. By describing the features of the functional and of its out-
puts, we try to show why the model can be considered a valuable
tool for directly tackle the segmentation of urban DSMs but also
as a preprocessing step useful to improve the results of further
DSM processing.
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2 SEGMENTATION ALGORITHM

2.1 Theoretical Background

An introduction to variational methods and a 1st order model.
In the first order variational formulation for data segmentation
proposed by Mumford and Shah, a function g : Ω→ [0, 1], with
Ω ⊂ R2, is the representation of the data, and the results of the
segmentation process are a function u and a set K ⊂ Ω. The
former is a regularized version of g and the latter represents the
edges of the distinguishable objects in g.
The basic idea is to identify the smooth approximation u and the
edges of the objects of g by minimizing the functional:

MS(u,K) := µ

∫
Ω
|u− g|2 dx+

∫
Ω\K

|∇u|2 dx+ αH1
(K ∩ Ω)

(1)

among any closed set K ⊂ Ω and any function u ∈ C1(Ω \K).
Parameters α, µ > 0 are introduced in order to properly adjust
the characteristics of the minimizers, i.e., u,K. H1 is the 1-
dimensional Hausdorff measure.
In the minimization process, the term

∫
Ω
|u − g|2 forces u to be

close to g. On the other hand, the term containing |∇u|2 induces
the smoothness of the solution u on set Ω \ K, by neglecting
small discontinuities (considered as noise) of g and allowing dis-
continuities only on K, which represents the edges of objects in
g. The size of the setK is controlled by the termH1(K∩Ω) and
the parameter α.
In optimization problems of this kind, both bulk and surface en-
ergies are minimized simultaneously and their supports are also
undefined, being unknowns of the problem themselves. Con-
sequently, the discontinuity set K is not known a priori, thus
leading to the expression free discontinuity problems (De Giorgi,
1991; Ambrosio et al., 2000).
In practice, classical results of Calculus of Variations cannot be
applied in this framework, since the formulation (1) turns out to
be too strong. In order to prove the existence of minima a re-
laxation of the functional is necessary, so the problem is moved
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to the space of special functions of bounded variation, SBV (Ω);
(see Ambrosio et al., 2000, for a deep treatment of this topic),
leading to the functional:

F (u) := µ

∫
Ω
|u− g|2 dx+

∫
Ω
|∇u|2 dx+ αH1

(Su ∩ Ω) (2)

where now u ∈ SBV (Ω) and Su is the discontinuity set of u.
Because of the term H1(Su ∩ Ω), the functional is not differ-
entiable, hence classical gradient descent methods cannot be di-
rectly applied for computing the minima.
In order to numerically compute a minimum, a Γ-convergence
approximation (Braides, 2002b) of the functional with elliptical
functionals defined on proper Sobolev spaces (Ambrosio and
Tortorelli, 1992) is given. The properties of the Γ-convergence
ensure that the obtained minima converge to a minimum of the
functional F itself.

A 2nd order model: the Blake-Zisserman functional.
The Mumford-Shah functional, being a first-order model, presents
some drawbacks (Blake and Zisserman, 1987; Vitti, 2012b). Firstly,
some features of the data, such as creases (gradient discontinu-
ities) are not sensed. Secondly, the gradient term leads to the
so-called steep gradient over-segmentation, that is regions with
very steep gradient are approximated by step functions, thus de-
creasing the definition of the solution u. In addition, the model
leads to discontinuity sets composed of unions of C1 arcs with at
most 3-points junctions (in this case arcs are 2/3π wide).
In order to overcome these limitations, Blake and Zisserman (1987)
proposed a second-order variational model:

BZ(u,K0, K1) := µ

∫
Ω
|u− g|2 dx+

∫
Ω\(K0∪K1)

|∇2
u|2 dx

+ αH1
(K0 ∩ Ω) + βH1

((K1 \K0) ∩ Ω) (3)

where u ∈ C2(Ω \ (K0 ∪K1)) ∩C1(Ω \K0), and K0 ∪K1 is
a closed set K ⊂ Ω.
As for the Mumford-Shah model, a weak formulation of (3) is
necessary to prove the minima existence. The weak formulation
of the Blake-Zisserman functional, given in the space of the gen-
eralized special functions of bounded variation, GSBV (Ω), is:

F (u) =

∫
Ω
µ|u− g|2 + |∇2

u|2 dx+ αH1
(Su) + βH1

(S∇u \ Su).

(4)

A correspondence with minima for the strong formulation has
been proved by operating a suitable identification (Carriero et al.,
1997). Again, in order to compute the minima, a Γ-convergence
approximation is necessary. By properly adapting the techniques
developed for the Mumford-Shah case, Ambrosio et al. (2001)
proposed the following functionals:

Fε(u, s, z) = δ

∫
Ω
z

2|∇2
u|2 dx+ ξε

∫
Ω

(s
2

+ oε)|∇u|2 dx

+ (α− β)

∫
Ω
ε|∇s|2 +

1

4ε
(s− 1)

2
dx

+ β

∫
Ω
ε|∇z|2 +

1

4ε
(z − 1)

2
dx

+ µ

∫
Ω
|u− g|2 dx (5)

defined on proper Sobolev spaces. The quantities α, β, µ are
positive parameters, ξε, oε are infinitesimals faster than ε, the Γ-
convergence parameter, and s, z : Ω→ [0, 1].
We see that in the formulation (5) every term of the functionals is
an integral over the domain Ω, and that the lengths of the sets Su
and S∇u \ Su are now approximated by the integrals involving
two new auxiliary functions: s and z. In practice, the function u
results to be a smooth approximation of the data, with the effect

of the smoothing concentrated only on homogeneous portions of
the data. On the other hand, the graph of each auxiliary function
s and z forms a partition of the data.
Let (uε, sε, zε) be a minimizer of (5). By letting ε→ 0, Γ - con-
vergence properties ensure uε to be sufficiently close to a min-
imizer of (4). Moreover, thanks to the minimization (Ambrosio
and Tortorelli, 1992) the term 1/4ε(sε − 1)2 induces sε to be 1
almost everywhere over Ω, except where big values of |∇uε|2
are achieved (i.e., in presence of a discontinuity), in this case s2

ε

(hence sε) is forced to be 0. The term ε|∇sε| avoids big oscilla-
tions of the function sε. A similar argument stands for zε, which
goes to 0 in correspondence of big values of |∇2uε|2 (i.e., in
presence of a discontinuity of the gradient).

Let us take a qualitative look to the choice of the functional pa-
rameters. Increasing values of µwill correspond to different min-
imizers where the closeness to the original datum g is forced, in-
deed high values of µ penalize the term squared distance from g.
This is not a desiderable effect in noise-removal applications for
which low values of that parameter should be used. On the other
hand, in processing synthetic or low-noised images, high values
of µ allow to an high-fidelity description of data features.
An high penalization, with parameter δ, of the second order term
- the integral of the squared norm of the Hessian - locally force z
to detect an information even when that norm is small compared
to the other terms in the functional. As a consequence we have
an high detection of second order informations of the image, such
as creases and shadows. A similar approach on the parameters α
and β will produce a control on the length of the countours of
the constant gradient homogeneous areas (parameter α− β) and
of the second order objects detected (parameter β). We can see
that the segmentation features are strictly related to the choise of
these parameters, which have to be chosen keeping into account
that any parameter can’t be stressed so much, in order to have a
right and predictable behaviour of the result.

2.2 Proposed Algorithm

By the properties of Γ-convergence and by the regularity results
described in the previous section, we know that, for ε small enough,
a minimizer of the functional (5) is sufficiently close to a mini-
mizer of F . The elliptic functional Fε is differentiable, further-
more we easily observe that it is quadratic with respect to the
single variables u, s, z:

Fε(·, s, z) Fε(u, ·, z) Fε(u, s, ·). (6)

So we expect, after a discretization of the energy, to obtain three
symmetric linear systems associated to the partial gradients in the
variables u, s, z.

Discretization of the model.
In order to minimize the functional we define the discrete repre-
sentation of the rectangle Ω ⊂ R2 with a lattice of coordinates.
The differential operators of the first and second orders in dimen-
sion two can be approximated using classic difference-schemes
discretization.
Because of the cross terms z2|∇2u|2 and (s2 + oε)|∇u|2 a clas-
sical difference-schemes method cannot be used. Anyway, the
functional Fε is strictly convex in the directions (·, s, z), (u, ·, z)
and (u, s, ·), so we propose the following subsequent minimiza-
tion procedure: given an initial triplet (u0, s0, z0) we compute s1 = mins Fε(u

0, s, z0)
z1 = minz Fε(u

0, s1, z)
u1 = mins Fε(u, s

1, z1)

(7)

subsequently, until small variations of the functional, according
to a given threshold, are achieved.
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The gradient of the discrete approximation of (5) can be splitted
in three components and written in a matrix form:

∇uFε(u, s, z) =: Au(s, z)u− Bu (8)

∇sFε(u, s, z) =: As(u)s− Bs (9)

∇zFε(u, s, z) =: Az(u)u− Bz. (10)

The square matricesAu, As, Az are symmetric and positive-definite,
hence, stationary points of the three functionals given above can
be computed by solving the following linear systems

Au(s, z)u = Bu, As(u)s = Bs, Az(u)z = Bz, (11)

with a preconditioned conjugate gradient method.
The first initial values for the minimization procedure are set to
u0 = g, s0 = 1, z0 = 1.

Investigations that motivate this procedure can be found in a forth-
coming work by Zanetti and Ruggiero.

We just mention here that other strategies can been adopted to
face the variational approximation of the so called free discon-
tinuity problems (see Braides, 1998) and the numerical imple-
mentation of the Mumford-Shah and Blake-Zisserman function-
als (Carriero et al., 2002; March and Dozio, 1997; Chambolle,
1999; Bellettini and Coscia, 1994; Ambrosio et al., 2001; Braides,
2002a).

3 RESULTS AND DISCUSSION

In the following, we present an exploratory application of the
Blake-Zisserman model to a DSM (spatial resolution of 1m), of
a portion (650m x 1250m) of a small town and of its surrounding
landscape nearby the city of Trento, Italy.

An aerial orthophoto of the study area is given in Figure 1. In
Figure 2 the differences between the data g and its smooth ap-
proximation u produced by the Blake-Zisserman model are plot-
ted. Statistics of the differences: n. of pixels: 812500; minimum:
-0.734; maximum: 0.963; range: 1.697; mean: 0.00610718; stan-
dard deviation: 0.0831212; mean of absolute values: 0.0569721.

In Figure 3 and 4 the graphs of the auxiliary functions s and z are
given. We recall here that the function smaps the discontinuity of
u and the function z map the discontinuities and the discontinu-
ities of the gradient of u, the smooth approximation of the given
data. The values of the functions s and z are 1 (white) on ho-
mogeneous areas where the function u is smoothing the data, the
values are 0 (black) in correspondence of the edges and creases of
the objects in the scene. Grey areas on the graph of the function
s correspond to those areas where the smoothing effect is less,
the amplitude of the un-smoothed variations depends on the ratio
between the values of the functional parameters.

In Figures 6, 7, 8, and 9 the same information (i.e. aerial or-
thophoto, map of the differences between g and u, and graphs of
the auxiliary functions s and z) refers to a small portion of the
study area. Observing Figures 2 and 7, it is possible to see how
the data has been smoothed in correspondence of the raws of the
trees cultivated on the surrounding of the small town. Somehow,
a similar result can be obtained by applying the Mumford-Shah
model directly to the orthophoto, (see Vitti, 2012b).

In Figure 5 a cross section of the data g and of its smooth ap-
proximation u is plotted along with the auxiliary functions s and
z. The white line in the upper left corner of Figure 6 represents
the trace of the cross section. It is possible to observe how the
method smooths the data while respecting the discontinuities of

Figure 1: Aerial orthophoto of the study area (spatial resolution
of 0.5m)

Figure 2: Differences between the data g and its smooth approx-
imation u produced by the Blake-Zisserman model
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Figure 3: The graph of the auxiliary function s mapping the dis-
continuities of the smooth approximation u of the data [white=1,
black=0]

Figure 4: The graph of the auxiliary function z mapping the dis-
continuities of the smooth approximation u and of its gradient
also [white=1, black=0]

Figure 5: Cross section graphs from the particular in the Figure 6

the smooth approximation u and of its gradient. The loci of such
discontinuities are clearly detected by the functions s and z.

In Figures 10 and 11 a 3D view of a portion of the data g and
of its smooth approximation u is given. It is possible to see how
the noise has been filtered out and how the action of the smooth-
ing has not affected the edges of the objects corresponding to the
buildings facades and even the creases of the data corresponding
to the roof ridges.
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Figure 6: Aerial orthophoto of a portion of the the study area, the
white curve is the trace of the cross section

Figure 7: Differences between the data g and its smooth approx-
imation u in a portion of the the study area

Figure 8: The graph of the auxiliary function s in a portion of the
the study area [white=1, black=0]

Figure 9: The graph of the auxiliary function z in a portion of the
the study area [white=1, black=0]

Figure 10: 3D view of the data g in a portion of the study area

Figure 11: 3D view of the data u in a portion of the study area
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We remark that the output of the Blake-Zissermamn model is
somehow twofold. On one hand, the model produces an approxi-
mation u of the data g that is smooth just within regions present-
ing a certain level of homogeneity, given by the nature and in-
teraction of the terms in the functional. The discontinuities, and
hence the region boundaries, are therefore preserved from being
smoothed out. On the other hand the method, by means of the two
auxiliary functions s and z, directly detects discontinuities such
as region boundaries, edges, and creases. From this point of view,
the Blake-Zisserman model produces outputs of the same type of
those given in general by either region or edge based methods.

4 CONCLUSIONS AND PERSPECTIVES

The multiple outputs of the Blake-Zisserman relaxed model, namely
the functions u, s, z, represent a particular segmentation of a given
DSM. In u the noise is filtered by preserving constant-gradient ar-
eas morphology, while a map of the edges and creases in the data
are explicitly detected by the functions s, z. The second order
variational model by Blake-Zisserman overcomes the Mumford-
Shah model in many ways that are of particular relevance when
such functionals are applied to DSM rather than to images. In this
context it must be noted that while the Mumford-Shah functional,
being a first-order model, can lead to a piece-wise constant ap-
proximation of the data, wereas the Blake-Zisserman functional
can lead to a piece-wise linear approximation of the data. More-
over, the Blake-Zisserman model, by means of the function z,
explicitly detects the discontinuities of the gradient of the data.
These two facts motivate the authors to develop a currently on-
going work on the use of the Blake-Zisserman model to face the
problem of roof-detection by exploiting not only the features of
the solution u but also those of the function s and z, to detect and
distinguish each single roof pitch.
Certainly, a systematic assessment of the performance of the Blake-
Zisseman model needs to be carried out. The advantages related
to the second order nature of the functional could be also evalu-
ated in a quantitative way by comparing the results that can be ob-
tained by further processing the outputs of the Blake-Zisserman
model with higher level methods such as those used in building
reconstruction models or in DTM generation from DSM models.
Following a work on the implementation of the Mumford-Shah
model by using a finite-element approximation over an unstruc-
tured mesh(Bourdin and Chambolle, 2000), it could be interest-
ing to implement the Blake-Zisserman model in a similar way
for the direct processing of ALS data. Eventually, we mention
that recently (Carriero et al., 2012) have presented a second-order
variational model in the framework of image inpainting for the
recovery of locally damaged images. This application suggest
to investigate the feasibility of the application of such a model
for the processing of LiDAR data, for example for the recovery
of surfaces degraded by object-removal operations (e.g., ground
surface and trees removal).
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