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ABSTRACT: 

 

Accurate range determination and retrieval of the cross section are two important issues in the processing of full-waveform LiDAR 

data, especially between closely located targets. The dependency of the received waveform on the emitted pulse can be removed 

through deconvolution and consequently comparisons between waveforms recorded by different sensors become feasible and 

meaningful, since the cross-section is independent of system specifications. Common methods, such as the Wiener filter, are reported 

for producing oscillation of the results around main peaks, along with negative values of the amplitude. Regularization is necessary 

to approximate a stable solution of deconvolution resistant to noise or error. A sparse solution of these linear inverse problems can 

be attained by minimizing the one-norm of the solution. Satisfactory deconvolution results can then be achieved by utilizing sparsity 

constraints. The results of regularization methods with sparse solutions have been evaluated using two synthetic datasets and 

distinctions are highlighted for comparison with those from two widely used deconvolution methods, in terms of the level of surface 

response retrieval. The results presented indicate that the one-norm regularization approach can outperform the other methods 

considered.  

 

                                                                 

*  Corresponding author. 

1. INTRODUCTION 

The round-trip time of a laser pulse between the sensor and the 

target surface is the basis for direct range measurement in 

pulsed airborne laser scanning systems, which are commonly 

referred to as LiDAR (Light Detection and Ranging) systems 

(Baltsavias 1999; Wehr and Lohr 1999; Jutzi and Stilla 2003; 

Wagner et al. 2006). Single echoes are recorded in real-time in 

the case of discrete return systems, whereas they can also be 

detected in a post-processing step in full-waveform systems by 

end users. Therefore, potentially higher accuracies of range 

extraction and even detection of more echoes (weak and/or 

overlapping echoes) are possible from full-waveform data, 

depending upon the adopted processing methods (Höfle et al. 

2012). In addition, full-waveform data allow to derive the target 

cross-section, which is not possible in the case of discrete return 

LiDAR (Höfle and Pfeifer 2007) and which is an issue of great 

interest in active remote sensing (Wagner et al. 2006; Wang et 

al. 2009). 

 

Decomposition methods for extracting a parametric description 

of the pulse properties; e.g. the range, pulse width and 

amplitude, have been proposed by several authors for different 

sensors (Hofton et al. 2000; Persson et al. 2005; Wagner et al. 

2006). Generally, in the case of Gaussian-based decomposition 

methods, it is assumed that a set of Gaussian functions can 

characterize the probability density function of the target 

response. 

 

The Gaussian decomposition method has been used in many 

cases to interpret targets related to the backscattered waveform. 

Results depict the challenging nature of this method in the case 

of echoes of low strength level (low SNR). In addition, 

Gaussian decomposition is not capable of calculating the cross-

section in some situations (complex waveforms) due to the 

complexity of the land surface, deviation of intensity within the 

footprint of the laser beam and also the necessity of determining 

the number of targets beforehand (Wang et al. 2009; Lin et al. 

2010; Mallet et al. 2010; Zhu et al. 2010). In some cases, 

negative amplitude values might be obtained or a solution might 

not even be achieved in the fitting process (Lin et al. 2010; 

Roncat et al. 2011). Furthermore, The hypothesis of vertical 

Gaussian distribution of targets within the laser beam is not 

valid in the case of small-footprint LiDAR data and might result 

in inaccurate results (Chauve et al. 2007). These problems can 

influence not only the accuracy of the range, but also the point 

cloud coordinates and further processes. 

 

More complicated distribution functions (e.g. the Generalized 

Gaussian and Lognormal) have been utilized by Chauve et al. 

(2007) and Chauve et al. (2009) in order to improve the density 

and geometric accuracy of the extracted points. These functions 

also have the capability of extracting more attributes from the 

shape of the waveforms. The generalized Gaussian model has 

been shown to yield a better than expected quality of fitting 

globally, yet the Lognormal model yields a better result only in 

the case of asymmetric pulses. 

 

Weak and overlapping signals were studied by Lin et al. (2010) 

in order to detect targets using a rigorous Gaussian 

decomposition. Their proposed method had the capability to 
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both extract points in overlapping signals with higher accuracy 

than the methods in commercial software (e.g. the centre of 

gravity and Gaussian pulse fitting), and to detect more weak 

amplitude pulses. However, the high computational cost 

potentially restricts applicability of the method. 

 

Mallet et al. (2010) improved the curve fitting by considering a 

set of parametric pulse shapes. Results revealed shortcomings of 

the approach in the selection of an appropriate model in the case 

of small-footprint data. Utilization of derived shape features 

individually did not result in superior discrimination, but along 

with geometric features it tended to achieve better results.  
 

Similar received waveforms can be recorded after the 

convolution of different target cross-sections with the system 

waveform, and as a consequence, indiscernible results may be 

achieved (Neilsen 2011). Therefore, performing deconvolution 

to remove the sensor effects can help to retrieve the target 

characteristics. In addition, the target cross-section can be 

useful in differentiation between targets in different sensor 

operations since it is independent of the instrument and is 

related to roughness and geophysical properties of the surface 

(Roncat et al. 2011). 
 

Allocation of a constant and limited time for detection of the 

received signal causes a reduction in resolution and leads to a 

mixed and overlapped waveform for surface objects with a short 

distance between them (Wu et al. 2011), in addition to the fact 

that the received waveform is a convolution of the target cross-

section and the emitted waveform (Wagner et al. 2006; Zhu et 

al. 2010). Hence, deconvolution is essential to both removal of 

the dependency of the received signal from other parameters 

and to the reconstruction of the target characteristics (Jutzi and 

Stilla 2006; Shan and Toth 2009; Zhu et al. 2010). 

Deconvolution approach has the advantage that knowing the 

number of peaks (as in Gaussian decomposition) is not 

necessary (Zhu et al. 2010). Also, assumptions on pulse shape 

are not essential (Mallet and Bretar 2009). 

 

Derivation of the target cross-section from the received 

waveform is an ill-posed problem and cannot be solved 

uniquely without enforcing some constraints and restrictions 

(Wang et al. 2009). Different deconvolution methods exist. 

Among them, the Wiener filter has been extensively used to 

restore the target cross-section and enhance the range estimation 

from full-waveform LiDAR (Jutzi and Stilla 2006; Parrish 

2007; Wu et al. 2011). Jutzi and Stilla (2006) differentiated 

between compound pulses from different target parts by 

modelling essential components of the sensor and surface to 

improve estimation of the range. It was recommended not to use 

the maximum amplitude of the pulse directly in order to extract 

the range, since this value is altered after superimposing 

different target responses (Jutzi and Stilla 2006). The approach 

was utilized by Parrish (2007), with the aim of detecting vertical 

barriers in an airport area, and an increase in vertical target 

detection of over 15% was achieved.  

 

Although the Wiener filter is computationally efficient, the 

required degradation level of the signal cannot be achieved due 

to the problems of (1) properly characterizing the signals in the 

frequency domain, (2) emerging negative values, (3) producing 

ringing effects near edges (Parrish 2007; Wu et al. 2011) and 

(4) the possibility that noise might be converted to another form 

of noise in the case of low SNR (Hassanpour et al. 2012). 

 

A regularizing approach to restrain the noise propagation and 

also improve the computational cost in deconvolution of full-

waveform data was considered by Wang et al. (2009). Some 

small fluctuations were seen close to the main peaks and the 

authors believed that noise was the main cause. The 

approximation of the noise rate in their reported experiment was 

carried out based on the assumption that the data had was of 

good quality. However, new methods must be taken into 

account when the level of noise in unknown, which is always 

the case regarding real data. 

 

The estimated quantities from existing methods, only based on 

the received waveform, cannot correspond to the surface 

properties; hence they are not trustworthy from sensor to sensor. 

B-Splines, as a linear deconvolution approach, were 

implemented in Roncat et al. (2011) to compute the cross 

section, range and other target characteristics. In comparison 

with Gaussian decomposition, symmetric emitted and received 

waveforms were not considered as the only basis in 

deconvolution based on B-splines. However, Roncat et al. 

(2011) indicated small negative values in the calculation of the 

cross-section together with echoes with narrower width than the 

emitted waveform.  

 

Zhu et al. (2010) explored the efficacy of the Gold’s 

deconvolution method on retrieving surface characteristics. This 

method tends to achieve different results by setting a different 

number of iterations, while the solution is always non-negative. 

The optimal number of iterations must be found in this case. 

 

Wu et al. (2011) compared three deconvolution approaches, the 

Wiener filter, Richardson-Lucy (R-L) and nonnegative least 

squares (NNLS) to recover the spatial resolution of full-

waveform signals with regard to the target cross-section 

retrieval and biomass level classification accuracy. Results 

indicated that the R-L deconvolution was superior in both 

quantitative and qualitative terms, whereas previous studies 

(Harsdorf and Reuter 2000; Jutzi and Stilla 2006; Nordin 2006; 

Roncat et al. 2011) did not assess results quantitatively. 

However, some detected peaks were in between the true data 

peaks, which can cause significant errors in range detection and 

false target detection. Features extracted from waveforms via an 

approach based on PCA were shown to be related to the amount 

of biomass in the study area. 

 

In Wu et al. (2012), four steps were introduced as a pre-

processing sequence to calibrate Full-Waveform LiDAR data by 

using simulated and real data, mainly for biomass modelling. 

Among these steps, deconvolution emerged as the most useful 

step in nadir scan angle, whereas in the off-nadir situation, the 

geometric calibration of waveforms showed the most enhanced 

results. 

 

By using robust signal processing approaches, it is possible 

both to decrease the side effects of the parameters that affect the 

received waveforms, and to reconstruct calibrated signals for 

further processing (Shan and Toth 2009; Wu et al. 2012). 

Furthermore, attributes based on the shape of the waveform 

which are ignored by discrete returns could be useful in the 

modelling of objects characteristics, such as biomass (Muss et 

al. 2013). 

 

A comparison of the main methods for range detection from 

full-waveform LiDAR data (namely Gaussian decomposition, 

deconvolution and a hybrid method of deconvolution and 

decomposition) using laboratory collected data has been 
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reported by Parrish et al. (2011). The deconvolution and hybrid 

(the Wiener filter, followed by the Gaussian decomposition) 

approaches proved to be capable of separating close targets, 

while the computational cost is the smallest for Gaussian 

decomposition. It was thus recommended that waveform 

processing with a fusion of several approaches may yield the 

optimum possible results. 

 

Regularization methods with the advantage of sparse solutions 

have been emerged as better choices to work on usual images. 

In this paper, we represent comparisons between the Wiener 

and R-L deconvolution methods on the one hand, and the 

sparsity based regularization approaches on the other hand, in 

order to optimally reconstruct the surface response (cross 

section). The simplified form of full-waveform signal 

convolution is first presented, following by 2-norm and one-

norm Tikhonov-type (variational) regularizations. Experimental 

results of these methods applied to full-waveform LiDAR data 

are then presented and discussed, followed by concluding 

remarks. 

 

 

2. METHODOLOGY 

Generally, the received waveform, ( )g t , can be explained with 

some simplifications as a convolution of the emitted signal, 

( )h t , and the target response (cross section), ( )f t , in the form 

of 

 

 

 ( ) ( ) * ( ) ( ) ( ) ( ) ( )g t h t f t n t f t h t dt n t





        (1) 

 

 

where ( )n t is the additive noise element. The matrix form of (1) 

can be expressed as 

 

 

 g Hf n        (2) 

 

 

where H is a two-dimensional matrix of the emitted waveform. 

 

The ill-posed nature of the target cross section restoration from 

the degraded waveform is due to a breakdown occurring in the 

existence, singularity or immutability of the result (Gunturk and 

Li 2012). Regularization methods are a well recognized way to 

solve this problem so as to yield a solution (Wang et al. 2009; 

Gunturk and Li 2012). Regularization is necessary to solve the 

deconvolution since by applying typical approaches, substantial 

fluctuations can appear as a result of minor noise and error 

(Bandkh et al. 1997; Morhac 2006; Wang et al. 2009; Morháč 

and Matoušek 2011; Neilsen 2011). Direct and iterative 

deconvolution solutions have been defined. Tikhonov 

regularization (Tikhonov and Arsenin 1977; Tikhonov et al. 

1995) is the most well-known method of the direct type, where 

the following cost function is minimized 

 

 

 2 2|| || || ||g Hf Lf       (3) 

 

 

where 0   is a regularization parameter, and L is a 

regularization operator (an identity matrix or a high-pass filter). 

 

The results of applying Tikhonov regularization in cases where 

the assumption of a Gaussian noise distribution is not valid may 

not be acceptable (Pan 2010). This regularization technique 

may produce negative values together with oscillation near 

edges (Morháč and Matoušek 2011) and it does not result in 

preferred results in some situations (Pan 2010).  

 

In the case of usual images, it has been shown that using the 

one-norm instead of the two-norm in regularization functions is 

more appropriate, with the potential of achieving a sparse 

solution (Gunturk and Li 2012). In this case, the problem can be 

expressed as 

 

 

 2

1arg min{|| || || || }
f

g Hf f      (4) 

 

 

where 
2

|| . || indicates the Euclidean norm, and  

 
1

|| . || | . |
i

i

  is the 
1
 norm  

 

Elements of f  with small values are enforced to zero as a 

consequence of the one-norm (Figueiredo et al. 2007).  

 

Two equivalent convex constrained forms of the unconstrained 

convex problem in (4) are as following: 

 

 

 2

1min || || || ||
f

f subject to g Hf      (5) 

 

 

and 

 

 

 2

1min || || || ||
f

g Hf subject to f      (6) 

 

 

where , 0   are real parameters. 

 

Equations (5) and (6) yield basis pursuit denoising (BPDN) 

(Chen et al. 2001) and the least absolute shrinkage and selection 

operator (LASSO) (Tibshirani 1996), respectively. 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Sparse solutions of the target cross section retrieval for two 

synthetic datasets have been obtained based on BPDN and 

LASSO, and these are compared with solutions from two 

extensively used methods, namely the Wiener filter and R-L 

deconvolution. 

 

3.1 Datasets 

Two synthetic LiDAR pulses have been generated with different 

characteristics, for both the emitted pulse and the cross section. 

The emitted pulse and these two cross sections are depicted in 

Figures 1-3. As can be seen in Figure 2, the synthetic cross 
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section contains three separate segments (returns) with enough 

range difference between them. However, four segments of the 

synthetic cross section in Figure 3 are closer together, which 

makes the retrieval task more problematic since the convolution 

result of this signal with the emitted pulse contains overlapping 

pulses. The received waveforms, generated via (1), are obtained 

from convolution of the transmitted and cross section samples. 

Additive Gaussian noise has also been added to the synthetic 

received waveforms, in this case white Gaussian noise with a 

SNR of 2 dB. The received waveforms and the noisy versions 

are illustrated in Figures 4 and 5. The third pulse in Figure 5 is 

generated as a contribution of two last pulses from the cross 

section sample 2 in convolution with the transmitted pulse, 

while other two pulses can still be separated more easily 

because of the longer range between them. 

 

 
Figure 1. Synthetic emitted pulse 

 

 
Figure 2. Cross section sample 1 

 

 
Figure 3. Cross section sample 2 

 
Figure 4. Received waveform and its noisy version (sample 1) 

 

 
Figure 5. Received waveform and its noisy version (sample 2) 

 

3.2 Experimental results 

For two different datasets, the results of two sparse solutions, 

together with the Wiener filtering and R-L deconvolution 

outputs are represented in Figures 6-9. The BPDN and LASSO 

results with their proper parameters for dataset 1, which are 

depicted in Figure 6, are almost the same without any 

oscillations or under/ overestimation of the pulse amplitude. On 

the other hand, in comparison to R-L deconvolution, the Wiener 

filtering produces a result with more of the oscillations and fake 

peaks that can lead to misinterpretation in future steps. 

Specification of an appropriate number of iterations in R-L 

deconvolution can be an issue, and some false peaks might be 

created as a consequence of determining a wrong number of 

iterations. 

 

 
Figure 6. Reconstructed cross sections from BPDN and LASSO 

for data sample 1 
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Figure 7. Reconstructed cross sections from the Wiener and RL 

for data sample 1 

 

For the closer peaks of dataset 2, LASSO resulted in a slightly 

better result in term of the under/overestimation of the signal 

amplitude, while both LASSO and BPDN could successfully 

retrieve the cross section for a case in which the received 

waveform constrained overlapping peaks. The results of the 

Wiener and R-L methods, however, illustrate an imperfection in 

retrieval of the cross section, especially in the case of the 

Wiener filter, both in terms of oscillation and under/ 

overestimation of the signal amplitude. 

 

 
Figure 8. Reconstructed cross sections from BPDN and LASSO 

for data sample 2 

 

 
Figure 9. Reconstructed cross sections from the Wiener and RL 

for data sample 2 

4. CONCLUDING REMARKS 

Determination of the target cross section is of considerable 

importance in LiDAR operations. However, retrieving this 

quantity requires solving an inverse problem, which in turn is 

ill-posed, such that any small changes of right hand side 

of Ax b , or the presence of noise, can cause large 

perturbations in the results. Regularization, in which 

stabilization constraints are applied, is invariably needed in 

solving ill-posed inverse problems and achieving a stable result. 

 

In the case of natural images, sparse solutions can display 

enhanced functionality as compared to one-norm regularization. 

Robustness against different kinds of noise is an advantage of 

one-norm over two-norm solutions. The achieved results from 

implementation of the sparsity constrained solutions revealed 

that it can outperform other commonly used methods in the 

field of full-waveform LiDAR deconvolution and reconstruction 

of the target cross sections. Fake peaks, negative amplitudes and 

oscillations can be largely suppressed in this way, and the 

challenging amplitude values that can cause misinterpretation 

and wrong range values are substituted by zero. The presented 

results from the comparisons of these approaches with the 

Wiener filtering and R-L deconvolution, based on two different 

synthetic waveforms have shown the high potential of the one-

norm approach, even in the case of very close and overlapping 

pulses within the full-waveform LiDAR data. 
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