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ABSTRACT

While traditionally used for surveying and photogrammetric fields, laser scanning is increasingly being used for a wider
range of more general applications. In addition to the issues typically associated with processing point data, such appli-
cations raise a number of new complications, such as the complexity of the scenes scanned, along with the sheer volume
of data. Consequently, automated procedures are required for processing, and analysing such data. This paper introduces
a method for modelling multi-modal, geometrically complex objects in terrestrial laser scanning point data; specifically,
the modelling of trees. The model method comprises a number of geometric features in conjunction with a multi-modal
machine learning technique. The model can then be used for contextually dependent region growing through separating
the tree into its component part at the point level. Subsequently object analysis can be performed, for example, perform-
ing volumetric analysis of a tree by removing points associated with leaves. The workflow for this process is as follows:
isolate individual trees within the scanned scene, train a Gaussian mixture model (GMM), separate clusters within the
mixture model according to exemplar points determined by the GMM, grow the structure of the tree, and then perform

volumetric analysis on the structure.
1 INTRODUCTION

Laser scanning has been adopted for many traditional sur-
veying and photogrammetric applications. Examples of
these applications include: modelling for industrial and en-
gineering applications, deformation monitoring, volumet-
ric analysis, topographic surveys. However, the use of laser
scanning is moving beyond such traditional applications to
be adopted for an increasing number, and variety of ap-
plications, including cultural and heritage recording, ar-
chaeology, asset management, and modelling vegetation.
Subsequently, in addition to the pre-processing issues typi-
cally related to laser scanning, such as registration and cal-
ibration, the complexity of the scenes being scanned, the
volume of data, and the potentially complex and heteroge-
neous nature of the objects in the scene all need to be ac-
counted for. This has lead to the need for semi-automated,
and automated tools to aid in analysis undertaken in these
new applications. To achieve a greater level of automa-
tion, a number of techniques used in fields such as signal
processing, machine learning and computer vision can be
adopted to point cloud data.

This paper details an example of one such technique, com-
bining feature extraction and machine learning for the mod-
elling of trees from point clouds captured in a forestry
landscape. To determine the model for a tree, a number of
feature sets based on Principal Component Analysis (PCA)
performed on local neighbourhoods are considered, com-
bined, and used to train a multi-modal modelling tech-
nique, a Gaussian Mixture Model (GMM). The use of a
mixture model is appropriate for two reasons: first, a multi-
modal approach is required due to the differing properties
of the components of a tree (leaf, branches, and trunk),

and second, the model can be used to cluster the tree into
its component parts. This second property can be lever-
aged to cluster the tree data at a point level, which can then
be applied to context based region growing, thus enabling
the structural analysis of the tree by removing points cor-
responding to leaves. From this clustering, the points be-
longing to the main tree structure can be identified. These
points can then be further processed to model the structure
of a tree. Such a case is presented based on examining hor-
izontal cross sections of the tree and extracting a graphical
representation in the form of a tree graph. This can then be
used as context for further analysis. An example provided
is the examination of the volume of the main tree struc-
ture, where the graphical representation is used to segment
the tree into parts to allow for simple fitting of cylinders
through RANSAC to approximate the carbon content of a
tree.

2 BACKGROUND

2.1 Tree modelling

There is much interest in modelling the properties of trees
and forest through the use of laser scanning (van Leeuwen
et al., 2011). A large portion of previous work has con-
centrated on airborne laser scanning (ALS). This is be-
cause large areas of forest and vegetation can be captured
quickly. Information extracted includes the canopy lay-
ers, type and number of trees, and heights (Hyypp4 et al.,
2006). As resolution has increased and waveform mod-
elling became more common, methods were developed for
extracting individual trees. However, this still lacks in point
density compared to terrestrial systems. While it could
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identify and separate out different trees, it was difficult to
adequately model various attributes such as structure, sur-
face area and volume.

Terrestrial laser scanning, and mobile laser scanning of-
fered an increase resolution in point density. It has been
use in conjunction with ALS to model the properties of the
trees and match them with those observed from the ALS
point data to infer more precise attributes of an entire for-
rest (Lindberg et al., 2012). The modelling of trees from
TLS data can be categorized as either extracting the skele-
ton of the tree, or partitioning the tree into simple shapes.
These shapes normally consist of cylinders and conic sec-
tions (Pfeifer et al., 2004; Chaperon and Goulette, 2001).
Skeletonisation methods have been predominately based
on extracting the tree graph representation from oct-trees
(Bucksch et al., 2009), from regularly gridded voxels and
rasters (Gorte, 2006), and from extracting the medial axis
representation (Su et al., 2011). Meshing techniques can
also be applied to to represent the tree and for calculation
of the volume and surface area, but benefit from the use of
context such as the skeleton of the tree (Xu et al., 2007).

A majority of existing techniques are designed to work on
single trees. In forestry applications the data is comprised
of multiple trees. Often each tree has to be isolated before
applying the various modelling techniques. In airborne ap-
plications trees can be isolated through examination distri-
bution of the points in terms of density and height. This de-
lineates the crowns of the trees, and allows individual trees
to be isolated (Hyyppa et al., 2006). While the density of
the TLS is not consistent, a similar technique can be ap-
plied. This is performed by extracting the points with the
highest distance from the extracted digital terrain model,
and performing the crown segmentation on these points if
there is sufficient density (Brolly et al., 2009). Alterna-
tively, a slice can be taken through the data for a given
interval above the ground and below the canopy. This is
taken high enough above the ground so as not to include
shrubs and low level vegetation, and low enough so as to
not include the upper level of the canopy. The majority of
the remaining points are sampled from the tree trunks. A
circle or cylinder detection algorithm can the be applied
to find the tree trunks, and isolated the component trees
(Brolly et al., 2009).

2.2 Feature selection

In most cases, automated processing methods used features
that can be categorised as being based on either geometric
or spectral information. Geometric information is classed
as information derive from the point position and measure-
ment in the 3D coordinate space. Spectral information is
primarily derived from the the intensity return of the laser,
or from co-registered imagery for either an external or in-
tegrated camera. In the case of this paper, the features used
for classification will be derived from the geometric infor-
mation.

With the intensity return, it is based on factors such as sig-
nal strength, wavelength, surface reflectance and the range

and incident angle. It has been shown that it can be com-
bined with RGB channels to perform spectral classifica-
tion, similarly to vegetation index used in remote sensing
(Lichti, 2005), especially for near-infrared lasers. How-
ever, because the return value is dependent on the range
and surface incident angle, it is not consistent for surfaces
over a scene or when data is collected from multiple setups
unless it can be corrected (Kukko et al., 2008).

For colour information, there is often a temporal difference
between the capture of the points and the imagery. If the
structure being sampled is static, then this often has lit-
tle effect. For trees however, factors such as wind often
changes the position of the upper canopy, making it much
more dynamic in nature. As such, there is often discrep-
ancies in the matching of the pixels to the points for the
upper layers of the trees, especially for leaves. In addition,
for forest scenes, the high presence of shadows (and their
movement) can also effect the colour information, making
it inconsistent between multiple setups. Finally, the small
size of the leaves and details in the upper canopy, and the
difference in resolution of the laser beam and the camera
pixels can lead to over saturation of the colour information
for such points. Consequently, this paper focuses on ex-
amining classification using simple derived geometric in-
formation on the point neighbourhood.

Geometric information is usually extracted from a local
neighbourhood of points to approximate the true geomet-
ric properties for a point. This can then be used to derive
higher levels of information. This is usually done in three
ways; local surface fitting, geometric primitive or proto-
type fitting, or principal component analysis (PCA). Each
method produces similar or complimentary results.

Local surface fitting involves fitting a surface to the point
neighbourhood, normally a polynomial and generally based
on the local surface orientation at the neighbourhood. The
surface is restricted to 2" order surface on the assumption
that the neighbourhood is small enough to be modelled by
a simple surface, thus preventing over fitting due to errors
and noise. The surface parameters are then examined to
extract measures of curvature, directions of change, and
surface types such as inflections, and local maxima and
minima (Crosilla et al., 2008).

Fitting local geometric primitives, using methods such as
Random Sample Consensus (RANSAC), is most applica-
ble to the analysis of structured information, for instance
industrial scenes. The process involves fitting geometric
primitive surface types, including planes, cylinders, cones,
tori and spheres, to seed neighbourhoods to determine the
best descriptor class for the surface. This works best for
man-made, regular scenes compared to naturally occurring
free-form surfaces.

The third method for extracting geometric information is
to use PCA on the local neighbourhood of points. This
involves examining the eigenvalue decomposition of the
the covariance matrix. The eigenvalues and eigenvectors
define the linear combinations of elements that describe
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the maximum variation of the points distributed through-
out a neighbourhood. The underlying surface and struc-
ture highly effects the sampling and distribution of points,
and this information is represented through the eigenval-
ues and eigenvectors. Consequently, PCA is suitable for
describing and classifying points based on the surround-
ing local neighbourhood. Information that can be approx-
imated comprises: the surface normal, curvature, texture,
and shape, if the point is close to a boundary, edge or cor-
ner point, and the local surface orientation and coordinate
system. PCA has also been applied to the surface normals
to examine underling shape in the form of tensor voting,
and the determination of the principal curvature directions.

3 CLASSIFICATION

The scanner used to capture the information was a Leica
C10 scan station. This is a time of flight instrument, with a
quoted point precision of 6mm and a range of 135m (Leica
Geosystems HDS, 2008). The region of capture was in a
national park close to Walpole in Western Australia dur-
ing spring, containing old growth forests, primarily con-
sisting in this case of giant Red Tingle trees. These trees
can range in height to approximately 40m, as is the case in
the example presented. Multiple setups were used around
the area to capture the point coordinate data. This was to
ensure adequate coverage and density. The data was down-
sampled to a maximum point spacing of 0.02m to reduce
the amount of redundant data to process. The goal of clas-
sification in this paper is to class the points as either leaves,
trunk and branches, or unknown. The type of trees in this
region maintain their leaves all year round. As such, to get
an accurate representation of the main tree structure, data
captured from leaves need to be classified and removed.
The next section outlines the geometric features examined,
and how they were applied to the classification process. A
Gaussian mixture model (GMM) was used to cluster the
points into different models based on features. Tree model
were then examined and combined to generate the different
classes.

3.1 Features from Principal Component Analysis

A variety of different geometric features and their com-
binations were explored. These geometric features were
derived from performing PCA over a local neighbourhood
of points within a set radius. The first step is to calculate
the covariance matrix of the local neighbourhood of coor-
dinate points, described as:

k
C= Z(pi —p)(pi —p)" (1)

E

p; is the i*" point in the neighbourhood of k points, with
D denoting the centroid of the neighbourhood, or the mean
coordinate value. The eigenvalues are found by decompo-
sition into the form given by:

2
C=> e )
1=0

The simplest information that will be used are the eigen-
values themselves. As mentioned, they represent the dis-
tribution of the points in the local neighbourhood, and the
variance in the direction of the associated eigenvectors.
The smallest eigenvalue, Ao, represents the variance of the
points to a planar surface, with the surface normal direc-
tion represented by eq. For branches, trunks, ground points
and other smooth surfaces, it will be small. For regions of
high variations, such as neighbourhoods containing leaves,
shrubs, it will be high. For non-planar surfaces, this value
is affected by the neighbourhood size. As the neighbour-
hood size increases, so will the variation in the normal di-
rection, and hence the value for \y will also increase. This
can be compensated for by dividing the value by the total
population variation, to get the curvature approximation &
(Pauly et al., 2002) as denoted by:

Ao

KN)\0+)\1+/\2

3)
The other eigenvalues A\; and A2 denote the variance in the
tangential direction of the best fit planar surface. If both are
large, then the points are distributed across the neighbour-
hood in both directions. This is common for surfaces such
as the ground and trunk, where the surface is large enough.
When the structure is narrower, it causes the distribution
to be elongated, resulting in a smaller \; value. Such oc-
cupancies include branches and narrow trunks where the
neighbourhood radius is less than the radius of the trunk or
branch. Twigs and sticks will have small A\ and \; values,
and most of the neighbourhood will be distributed in the
direction of ey, denoted by a large Ao value.

In addition, ratios and differences between the eigenvalues
can also be used (Gumhold et al., 2001). These describe
the neighbourhood distribution in terms of the relation be-
tween the eigenvalues. Locally planar smooth surfaces
such as the tree trunk will have a low difference Ay — \;
and a high difference in A\; — Ag. A highly linearly dis-
tributed surface/structure such as a branch will have a high
difference Ao — A1 and a low difference in \;y — \g. A
highly curved or randomly distributed surface such as a
neighbourhood containing leaves will have a low differ-
ence Ao — A1 and a low difference between A1 — Ag.

PCA can also be performed on the normal directions 7 of

the points in a local neighbourhood (Jiang et al., 2005).
The covariance matrix is formed as:

o —

T =

k
> (@ —a) @ —n)" (4)
=1

with the eigenvalue decomposition performed as in equa-
tion 2. The eigenvalues are examined in a similar fashion,
except instead of encapsulating the distribution of points,
it denotes the change in surface. A high )\gn) and )\;n)
denotes change in curvature in two directions (such as a
branch intersection or regions containing leaves), a high
)\én) and a low )\(1") denotes a change in only one direction
(such as a branch or trunk), and a low Aﬁ") and )\én) de-
notes no change in surface curvature locally (such as for a
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Feature Neighbourhood Tree Mixed Leaf Tree Leaf
Set Radius Clusters | Clusters | Clusters | points | points
eigenvalues 0.1m 1 2 3 8% 92%
0.2m 2 0 4 15% 85%

0.3m 2 0 4 13% 87%

0.4m 2 0 4 11% 89%

all 2 1 3 11% 89%

all (PCA) 3 0 3 16% 84%

all features 0.1m 1 2 3 16% 84%
0.2m 1 1 4 6% 94%

0.3m 2 1 3 19% 81%

0.4m 2 1 3 12% 88%

all 2 0 4 15% 85%

all (PCA) 3 0 3 14% 86%

Table 1: Different combinations of features and neighbour-
hood sizes tested for with GMM.

flat surface or wide trunk).
3.2 Neighbourhood size

The size of the neighbourhood will determine the resolu-
tion of the features extracted. Smaller neighbourhoods en-
able smaller structures to be detected, but will suffer from
more noise due to the lack of redundancy. For larger neigh-
bourhood sizes, the increase redundancy reduces the ef-
fects of noise, but at the cost of losing finer resolution de-
tail. Because of this, the feature values at different radii
are used. This allows clustering to take into account dif-
ferent resolutions of the underlying structure. In this case,
the neighbourhood size were used for radii of 0.1m, 0.2m,
0.3m, 0.4m and 0.5m. Large surfaces such as trunks ex-
hibit more consistent feature values. Smaller structures
such as branches exhibit changes in the feature values, and
become somewhat more consistent for higher radius values
(assuming a single structure within the neighbourhood).
Where the structure undergoes change or is not consistent,
there is little consistency.

3.3 Classification and clustering using Gaussian Mix-
ture Modelling

Based on the features described in the previous section,
the points were clustered using a Gaussian mixture model
(GMM) (Reynolds, 2008), an unsupervised parametric clus-
tering method. A GMM provides a representation of the
distribution of points in a given feature space. This is done
by assuming that the overall distribution is formed by a
mixture of n Gaussian distributions in the feature space.
The attributes of these n Gaussian distributions are then de-
termined such that their convolution of the n Gaussian dis-
tributions best models the overall distribution of the points
in the feature space. Each of these Gaussian models can
then represent a local cluster of points in the feature space.

Different feature values were used as an input for the GMM.
This included utilising only the eigenvalues at fixed neigh-
bourhood sizes, utilising all the features described in sec-
tion 3.1 at fixed neighbourhood sizes, and finally combin-
ing the features over varying neighbourhood sizes. This
is briefly outlined in table 1. Six clusters were chosen to
best model the combined distribution of the points and to
encapsulate the different properties between the tree trunk,
branches, small twigs and sticks, leaves and random noise.
The number of clusters that contain points from the main

tree structure, points sampled from leaves, and a mixture is
provided in table 1. Example of these clusters using all the
features and multiple neighbourhood radii are presented in
figure 1

From examination of the resulting clusters, performing GMM
on the features over multiple neighbourhood radii appeared
to differentiated the different attributes of the tree better
than a fixed radius. This is because the fixed radius value
heavily influences the feature values, as outlined in sec-
tion 3.2. However, when examining multiple radius values
the feature space comprises of fifteen dimensions, which
is a high dimensionality feature space. To reduce this,
PCA was applied to the feature space to reduce its dimen-
sionality. Only those combinations that were deemed to
contribute significantly were kept, which in this case com-
prised of six linear combinations of the original feature di-
mensions. The results from the GMM on the reduced fea-
ture space is presented in figure 1.

The clusters were then examined to see which class they
contained based on classes for leaves, tree trunk and branches,
and unknown. This was done through manual examination,
and the examination of the mean value of each cluster in
the feature domain and whether they were close together
and described the aspects of each class. Where multiple
clusters contained the same class, the Gaussian model for
each cluster were combined to create a single model for the
class. The resulting classes are shown in figure 2.

40,
35.
30

25

20

Figure 2: merged classes representing (a) leaves and (b)
the trunk and branches from the Gaussian mixture model

4 TREE STRUCTURE MODELLING

From the classification of the points into leaves and tree
structure, the process of modelling the tree and the vari-
ous attributes such as volume, surface area, and the struc-
ture and shape of the tree is simplified. Techniques such
as skeletonisation and surface meshing generally perform
better on a tree structure when leaves are removed. In this
section, the extraction of two attributes from the classified
data is examined; the tree structure and the approximate
volume of wood.

4.1 Tree Structure generation

The method used to generate the skeleton in this case was
based on examining horizontal slices of the tree from ground
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Figure 1: Merged clusters from GMM representing (a) main trunk, (b) branches, (c) leaves and (d) mixed points from

trunk and branches

level up through the canopy iteratively. At each stage, the
points in each horizontal slice were clustered and an ellipse
was found for each cluster. The ellipse was based on either
best fit ellipse if the cluster was significant, or on the min-
imally bounding ellipse if the fitting routine failed or the
cluster was too small.

A similar approach of fitting ellipses has been applied for
identify pipes and their paths in industrial settings (Ma-
purisa and Sithole, 2012). The ellipse method works well
for the main trunk and the initial branching sections. This
is because there is few occlusions and the points in the
cluster represent a good sampling of the elliptical cross
section. For higher up in the canopy, the ellipse fitting ex-
hibits poor performance. This is due to the organic nature
of the structure, high incidents of occlusion, limited sur-
face sampling and the radii of the branch approaching the
noise level in point sampling. The last makes it difficult to
differentiate between the local neighbourhood variance be-
ing the result of sampling noise or the radius of the branch.
Since the path of the structure is of importance, the small-
est ellipse that encapsules the points is fitted, and its centre
used to predict the path of the tree structure.

The centre of the ellipse/cluster was used as a node in the
graph. An edge joining the nodes between consecutive
layers was created if the ellipses for the two nodes over-
lapped. From this graph representation, a cyclic detection
algorithm was applied to identify cycles in the graph, and
remove them by merging common nodes in the cycle that
were on the same layer. The results are presented in figure
3, with figure 3(a) showing the found ellipses, and figure
3(b) the final tree skeleton representation. This skeleton
representation provides context for the volume analysis.
The slicing horizontally through the data will not produce
the must optimal cross section of the branches. This could
be modified that the cross section at a give point is nom-
inally parallel to the surface of the canopy, or it could be
defined locally for a cluster based on the direction of the
axes of the tree branch for lower levels in the graph.

4.2 Volume measurement for carbon capture

The volume of the tree is an important attribute. It is often
used for studies on carbon capture and to predict the effect

(a) (b)

Figure 3: (a) tree represented by ellipses at vertical inter-
vals, and (b) the tree represented by the extracted skeleton

of ecosystems on climate change. A simple allometric for
calculating the volume of trees is described in Dean and
Wardell-Johnson (2010) and approximates the volume of
the tree based on the diameter of the tree at breast height
and the height.

(35 +m

TotalVolume = 3

h )
Using this method resulted in an approximate volume of
34.3m?®. This value can be seen as conservative when com-
pares to the volume calculated for the modelling of the
tree using more complex representations such as meshes
or cylindrically objects. This can be demonstrated as in
figure 4(a), where the tree is represented by manually fit-
ting cylinders and pipe elements to the data, and results in a
volume of 67.174m3. The previous allometric method only
encapsulated approximately 49.1 percent of this volume.
However, this manual procedure is quite labour intensive.

Consequently, a more automated approach was applied us-
ing the extracted skeleton. The points were segmented into
individual components based on the paths from the tree
graph between branching nodes. For each component a
cylinder fitting routine was applied to model that section
of the tree by cylinders. The results of this approach is il-
lustrated in figure 4(b). The volume of the combined auto-
matically fitted cylinders was determined to be 74.457m3.
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Care must be taken when taken into account the cylinders
fitted to segments in the upper layers. In these cases the
radii of these smaller cylinders are close to the point spac-
ing and the error in their sampling. Because of this, any
instance where the cylinder radius was under S5cm were not
included.

(a)

Figure 4: (a) manual cylinder fitting and (b) cylinder fitting
by region growing on the segments

5 CONCLUSION AND FUTURE WORK

This paper contains a methodology for classifying and pro-
cessing point cloud data from trees. The techniques were
applied to data captured from a forest of Red Tingle trees
in the Southwestern part of Australia using multiple setups
of a Leica CI10 scan station. The classification was per-
formed using Gaussian mixture model as an unsupervised
clustering method to separate the leaves from the rest of the
tree structure. Several features were examined, with the
eigenvalues calculated from multi-resolution local neigh-
bourhoods producing the best results. A skeletonisation
method based on examining the data at different vertical
intervals was applied to the points classified as belonging
to the tree structure. This was to provide context for fitting
cylinder sections to the point cloud to calculate the vol-
ume. It was demonstrated that a significant amount of the
volume was not being capture using traditional allometric
approaches. Future work will concentrate on extending the
modelling of multiple trees in a forest scene consisting of
varying types. This will also include the examination of
changes in volume and structure over time.
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