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ABSTRACT

The mapping of road environments is an important task, providing important input data for a broad range of scientific disciplines.
Pole-like objects, their visibility and their influence onto local light and traffic noise conditions are of particular interest for traffic
safety, public health and ecological issues. Detailed knowledge can support the improvement of traffic management, noise reducing
infrastructure or the planning of photovoltaic panels. Mobile Mapping Systems coupled with computer aided mapping work-flows
allow an effective data acquisition and provision. We present a classification work flow focussing on pole-like objects. It uses
rotation and scale invariant point and object features for classification, avoiding planar segmentation and height slicing steps. Single
objects are separated by connected component and Dijkstra-path analysis. Trees and artificial objects are separated using a graph
based approach considering the branching levels of the given geometries. For the focussed semantic groups, classification accuracies
higher than 0.9 are achieved. This includes both the qualityof object aggregation and separation, where the combination of Dijkstra-
path aggregation and graph-based classification shows good results. For planar objects the classification accuracies are lowered,
recommending the usage of planar segmentation for classification and subdivision issues as presented by other authors. The
presented work-flow provides sufficient input data for further 3D reconstructions and tree modelling.   

1.1.1.1. INTRODUCTION

1.1 Background

The automatic classification of urban road environments and the
detection of single objects such as traffic signs and trees is an
important task for a variety of topics. Point cloud classification
provides a fundamental input to the reconstructions of 3D
scenes, which are used in road safety, public health, ecological
and micro climatic applications (e.g. Zhou and Vosselman
2012, Pu et. al 2011, Brunner 1998, Endelaw et al. 2009). For
road safety issues the mapping of traffic signs, curbstonesand
trees is of importance. For the management and assessment of
urban vegetation, i.e. for above ground biomass and leaf area
measures, the extraction and classification of single trees is
required. Trees, and their complex transparency properties, are
of particular interest for the assessment of light and traffic noise
conditions and visibility studies in urban planning.
In order to provide appropriate input data for such applications,
surveys with mobile mapping systems mounted on cars or other
vehicles are combined with automated computer-aided
extraction work-flows allowing efficient data processingand
mapping of  larger areas e.g. along road corridors.

1.2 Related work

For the automatic detection of objects from mobile laser
scanning (MLS) data a variety of methods is available. For
example Zhou and Vosselman (2012) are detecting curbstones
by analysing local height jumps.

Trees can be detected by the echo ratio measures (Rutzinger et
al. 2011) and pole-like structures can be identified by height
percentile techniques (Zhong et al. 2013, Pu et al 2011).
Many work-flows apply a planar segmentation to the point
cloud which is an indirection for the detection of non-planar
objects. As poles and trees show rather linear or cylindrical
patterns, an alternative approach might be better suited. 
Gross and Thoennessen (2006) and Jutzi and Gross (2009)
provide discriminating features to select points belonging to
linear, planar and other structures in point clouds.
Object reconstruction approaches relying on graph-analysis
such as tree skeletonization (Dai et al. 2009, Dai et al. 2010,
Livny et al. 2010, Bremer et al. 2013) or building modeling
(Oude-Elberink and Vosselman 2009) allow the separation of
complex semantic groups. 
Especially for trees, the separation of interlinked tree crowns
and nearby objects is an important task. While Zhou and
Vosselman (2012) and Zhong et al. (2013) use Voronoi-regions
and related approaches for the separation of tree crowns, Livny
et al. (2010) investigate the suitability of a Dijkstra cost
algorithm (Dijkstra 1959) to associate crown points to the tree
trunk. 

2.2.2.2. METHODS

2.1 Overview

Our approach focuses on rotation and scale invariant point and
object features for point cloud classification (Gross and
Thoennessen 2006) avoiding planar segmentation and height
slicing steps.  
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For this work-flow, we are focusing on the detection and
subdivision of artificial pole based objects (AP) such as lamps
and traffic signs, and natural pole supported objects such as
trees (T). As additional classes, we separate ground (G), ground
inventory (GI) such as curbstones and lower objects, walls (W),
wall inventory (WI) such as window-frames, doors and building
columns, roofs (R), and undefined objects (UD) such as moving
cars or people. Points associated with mirror effects of
windows, are treated as undefined objects.
In order to extract different object classes from the MLS data
we use a step by step procedure generating primitive
geometrical object classes from simple point information
derived by a multi-scale approach. Using connectivity and
graph-based analysis on primitive objects, more complex
objects are derived and separated. The method consists of four
main steps

(1) For each raw point the local point neighbourhood in
both a 0.1 m radius and a 0.5 m radius is encoded into
a 3x3 covariance matrix from which eigenvalues and
eigenvectors are derived.

(2) Characterizing each point by its eigenvalues derived
from both 0.1 m radius and 0.5 m radius
neighbourhoods, two 3-dimensional feature spaces are
defined. For three given feature patterns (linear,
planar, volumetric), a proximity analysis is performed
for each point in the feature spaces. On both scale
levels the points are grouped into the three given
primitive classes. Using the orientation of the longest
eigenvector for linear objects and that of the smallest
eigenvector for planar structures, vertical and
horizontal sub classes are derived.

(3) By applying conditions to both scale level
classifications and by a connected component
analysis, walls, wall-inventory (e.g. window frames),
ground and ground-inventory (e.g. poles) are
separated.  

(4) Pole objects including trees are separated using a
Dijkstra region growing approach. Artificial pole
objects such as lamps, traffic signs and traffic lights
are further separated from trees using branching levels
derived from skeletonization (see Bremer et al. 2013)
and graph-analysis. 

2.2 Multi scale feature computation 

For each point, local point neighbourhood features are
computed. All barycentric coordinates of points lying in a
spherical radius around a search point are encoded into a
covariance matrix ATA (Eqn. 1). The encoding is done for both
a 0.1 m radius (r01) and a 0.5 m radius (r05). The radii were
chosen after visual analyses considering the optimized
extraction of smaller poles (e.g. thin branches (r01)) and larger
posts (r05). 
From the covariance matrices, three specific eigenvalues,three
eigenvectors, and the vertical angles of the longest and the
smallest eigenvectors are computed for each radius (r01, r05)
respectively. 
According to the usually high point density of the original MLS
data, a search radius of 0.5 m is increasing the computation time
significantly. Thus we use a hierarchical approach, analysing
the neighbourhood of a 0.1 m block-thinned point cloud for
each point of the original point cloud. This is reducing the time
required for computing and leads to a generalization of the
input data, increasing the coarse scale effect of the 0.5 m radius
search.

(1)

2.3 Primitive classification

The specific relationship of the normalized largest eigenvalue
(eL), intermediate eigenvalue (eI) and the smallest eigenvalue
(eS) is a characteristic feature for the shape of individualpoint
sets.
In order to classify the raw points into the primitive classes
'linear', 'planar', and 'volumetric', we define three specific
eigenvalue patterns for each class (values between 0 and 1): 

linear: eL = 0.75, eI = 0.16, eS = 0.04
planar: eL = 0.45, eI = 0.45, eS = 0.01
volumetric: eL = 0.45, eI = 0.45, eS = 0.30

The eigenvalues of the patterns are averaged values derived
from small training areas of the selected classes.
In the 3-dimensional feature spaces spanned by the eigenvalues
r01 and the eigenvalues r05, each data point is assigned to the
primitive pattern to which the shortest Mahalanobis Distance
(D) is observed. The Mahalanobis Distance (Eqn. 2) is the
statistical distance measure (D) where, in addition to the
euclidean distance, the covariance matrix (S) of the dataset is
considered. Here,S is computed as shown in equation 1 using
the feature space vectors eL, eI, eS instead of the x,y,z
coordinates.

( ) ( ) ( )yxSyx=y,xD T rrrrrr −− −1                                   (2)

This leads to the primitive classifications (linear01, planar01,
volume01, linear05, planar05 and volume05). 
The linear and planar classes are further split into vertical,
horizontal and other orientations (vert_planar01, hor_planar01,
vert_linear01, etc.). For linear structures the orientation of the
longest eigenvector is used. A horizontal structure shows a
vertical angle of the longest eigenvector < 10°, a vertical
structure > 80°. For planar structures the orientation of the
smallest eigenvector (corresponding to the normal vector)is
used. A horizontal structure shows a vertical angle of the
smallest eigenvector > 80°, a vertical structure < 10°. For
volumetric structures, the orientation is not defined.

2.4 Object classification

In the next step, the multi scale primitive classification is used
to aggregate and separate semantic groups. Based on the
primitive classification, a region growing in object spaceis
performed in order to separate smaller and larger homogeneous
point clumps.  
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The following criteria are used for classifications:
Poles: vert_linear05OR (vert_linear01AND NOT planar05)
AND clump size > 100

Ground: (hor_planar01OR hor_planar05)AND clump size >
30000)

Walls: (vert_planar01AND NOT vert_line05)AND clump size
> 3000

Applying the 0.1 m radius leads to small blurring effects.
Smaller branches and thin poles are detected as linear
structures. Larger objects appear as vertical planes and not as
poles. Showing a more intense blurring, the 0.5 m radius
classification is applied in order to also classify larger trunks as
linear structures. Combining both classifications exploits the
advantages of both scales and leads to a reliable extractionof
pole-like structures.
Due to inhomogeneous point densities and scan patterns in
MLS point clouds, single scan lines on the road and other flat
surfaces may be classified as linear or volumetric structures
using a 0.1 m radius. Therefore, both 0.1 m and 0.5 m radius are
used for ground classification. Additionally, ground segments
are usually large and include a lot of points.
Since building walls are mostly vertical, the use of the
vert_planar01 feature leads to a sufficient separation of building
walls.
In order to avoid noise in the object classification results,
minimum cluster sizes are introduced. Connected ground
clusters need to show a minimum point count of 30.000 pts.
wall clusters need to show a minimum point count of 3.000 pts.
and pole clusters of 100 pts.
For the separation of wall-associated elements (e.g. columns
and window frames) and ground-associated poles (e.g. traffic
signs and tree trunks) we additionally apply distance thresholds.
A ground inventory feature needs to show a distance to a
ground cluster smaller than 1 m and a minimum distance to a
wall cluster of 3 m. A wall feature needs to show a distance to a
wall cluster smaller than 1 m 

2.5 Graph-based classification for pole supported objects

As a lot of applications need reconstructed 3D models as data
input, automatic mobile mapping work-flows often include
linear and polygonal geometry reconstruction. Thus, we
integrate a skeleton graph reconstruction step into our
classification work-flow. In order to extract trees and tree trunks
from the data set, we analyse the point neighbourhood in the
upper half-space of a pole feature. Object clumps are grouped
using a Dijkstra region growing procedure.
Using the pole as a seed-object for a skeletonization, a graph is
build for each pole component and its associated
neighbourhood.  

3.3.3.3. DATA SET

The test site is located in Rheine, Germany. The MLS data was
aquired by TopScan GmbH in March 2013 using the Optech
Lynx Mobile Mapper system with two rotating laser scanners
mounted in a 45° angle with the driving direction of the vehicle
(Optech 2013). For this study an exemplary road segment, 300
m in length, is processed. It was scanned in one driving
direction. The point cloud merged from both sensors contains
5,838,701 pts. and shows an averaged point distance of 2 cm.
Simultaneously with the scan, panoramic images were shot
using a Ladybug panoramic camera system (Point Grey, 2013).

The threshold values given in section 2 were obtained from a
small training area in the centre of the data set. These values
were validated against the whole MLS data set. Therefore, the
whole point cloud, was manually classified into the target
classes (reference) comparable to the automatic classes.

4.4.4.4. RESULTS

4.1 Qualitative results

Using a 0.1 m radius (Fig. 1), small tree branches and poles of
traffic signs are classified as linear structures. Volumetric
patterns are restricted to sharp edges on building walls and
curbstones. However, linear and volumetric patterns are also
found on planar features such as roof and ground surfaces.
A 0.5 m radius search (Fig. 2) allows the detection of larger
poles. Roofs are detected as planar features. Curved free-form
features such as cars and other moving objects show volumetric
patterns. Volumetric patterns are also found in tree crowns. 
The Dijkstra region growing for artificial poles and trees shows
correct results, even in dense and closely connected
neighbourhoods. The threshold-based classification leads to
some less reliable classifications (see Fig. 3, 4 and 5 as
reference). As can be seen in Fig. 6, the maximum hierarchical
branching level of an artificial pole-like object (lamp or traffic
sign) is between 0 and 4, while trees show much higher
branching levels. This leads to a visually sufficient separation of
both classes (Fig. 3 and 4).

Figure 1. Raw classification into volumetric (red), linear(dark
blue) and planar (light blue) patterns using a 10 cm radius
search.

Figure 2. Raw classification into volumetric (red), linear(dark
blue) and planar (light blue) patterns using a 50 cm radius
search.
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Figure 3. Final classification. Classification into ground (blue),
ground inventory (dark blue), wall (light grey), wall inventory
(dark grey), roof (red), artificial poles (yellow), trees (orange)
and undefined objects (transparent).

Figure 4. Final classification. Panoramic rendering of the
classified point cloud.

Figure 5. Panoramic image of the scene.

Figure 6. Skeleton reconstructions of pole supported objects.
The branching levels are colour coded from low (blue) to high
level (red). The estimated thickness of the point cloud around
each skeleton segment is modelled as a connected pipe model. 

4.2 Accuracy measures

The accuracy measures (table 7 and 8) show the highest values
for the base classes 'ground', 'wall' and 'pole', coming from the
the raw classification. Besides that, the pole supported classes
separated by the graph-based classification also show high
accuracy values. For these classes (G,W,AP,T) only small point
counts are missing compared to the target point counts givenby
the reference data (user accuracies > 0.98). The producer
accuracies are also high for these classes. The producer
accuracy of the AP class is slightly lowered due to the wrong
classification of columns of buildings and gutters as single
poles.
The associated classes WI, GI and R also show lowered
accuracies, because of the lowered robustness of the distance
criteria compared to the the Dijkstra classification approach. 

Table 7. Error matrix of the classification accuracies

User Accuracy:
UD 380763 / 428038 = 0.89
G   2104378 / 2140335 = 0.98
GI 103708 / 110839 = 0.94
W 1503263 / 1534323 = 0.98 
WI 659186 / 817352 = 0.80
R 73275 / 127452 = 0.58
AP 61853 / 62823 = 0.99
T 609171 / 617539 = 0.99

Producer Accuracy:
UD 380763 / 538990 = 0.71
G 2104378 / 2119511 = 0.99
GI 103708 / 150456 = 0.69
W 1503263 / 709980 = 0.98
WI 659186 / 709980 = 0.93
R 73275 / 71239 = 0.74
AP 61853 / 613382 = 0.87
T 609171 / 613382 = 0.99

Overall Accuracy:
5495597 / 5838701 = 0.94

Table 8. Error matrix of the classification accuracies

5.5.5.5. DISCUSSION

The eigenvalue based classifications show advantages and
disadvantages due to the scale of the analysed neighbourhoods
(0.1 and 0.5 m radius search). An Advantage of the 0.1 m
search classification is the appropriate description of small
geometrical patterns and discontinuities. On the other hand, a
disadvantage is the strong sensitivity to scanning patterns, data
gaps and differences in point densities. This partly results in
linear and volumetric patterns on planar features such as roof
and ground surfaces. Additionally, the detection of largerpole
objects such as thicker tree trunks is not possible (see section
4).
In contrast to this, the 0.5 m radius eigenvalue classification
offers a straightforward detection of larger poles. Additionally,
surface elements suffering from lower point densities in the
scan coverage such as roofs are clearly detected as planar
features.

Reference Data
UD G GI W WI R AP T

UD   380763     6120        5    18291    94708    37027        1     2075   538990

G     6836  2104378     6959        2      927        0      392       17  2119511

GI    10971    26205   103708     1715     6268        0      439     1150   150456

W      312        4        0  1503263    32641       42       11       11  1536284

WI    18893     3182      165     6862   659186    17108      116     4468   709980

R      918        0        0     4190    20476    73275        0        0    98859

AP     5564      156        0        0     3019        0    61853      647    71239

T     3781      290        2        0      127        0       11   609171   613382

column total   428038  2140335   110839  1534323   817352   127452    62823   617539  5838701
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The raw classification of cars allows the separation of these
objects as undefined points. A disadvantage of the 0.5 m radius
approach is a blurring effect at edges and discontinuities in the
point cloud. This also leads to volumetric patterns in tree
crowns, well known from lower resolution data such as airborne
LiDAR (Fig. 2). 
In order to make use of both advantages, we combined both raw
classifications by applying reasonable constraints as described
in section 2. This results in a reliable classification of walls,
ground and poles.
The connectivity analysis for ground inventory, wall inventory
and roof shows less reliable results as for artificial polesand
trees. In the latter case, the shortest path competition of the
Dijkstra algorithm results in distinct clusters. The threshold-
based classification leads to some less reliable classifications in
areas where two classes are spatially connected (see Fig. 3 and
4).
As shown in Figure 6 the maximum branching level of a pole
supported object is a suitable object feature for the separation of
artificial objects and trees. Overestimations of the hierarchical
levels on artificial objects do only occur if traffic lightsand
signs are inhomogeneously covered by data points.
With respect to the applied work-flow typical systematic errors
occur. One main problem is the discrimination between wall
inventory such as pipes, gutters and columns in front of
building entrances, and poles of the road inventory. The
application of a connected component analysis results in
systematic errors in case of traffic signs that are directly
adjacent to building walls (see Fig. 9). An other source of error
is associated with low point densities and data gaps due to
occluding effects of other objects. In many cases occlusions are
caused by moving objects. One example is the car on the left
traffic lane in Fig. 5, which is moving in the same direction as
the mobile mapping device, causing a large data gap in the
point cloud (Fig. 4).
In areas where the point density is too low and clumps of points
with similar raw classification become too small, planar target
objects are falsely classified as UD. This is visible for ground
segments (Fig. 10) and roof segments. In particular roof
surfaces are under-represented in the MLS data and thus are
difficult to classify. 
In general, the presented work-flow shows a reduced
performance regarding the distinct subdivision of planar
surfaces (see Fig. 9 and 10.). Here, a classification based on
planar segmentation is expected to show better results.
Additionally, the thresholding approach used for the clump
sizes and adjacencies lowers the accuracy of the results. Here,
threshold-less decisions, such as the presented Dijkstra-
approach, are desirable.

Figure 9. Example of an undetected pole of a traffic sign, near
to a building wall (falsely classified as wall inventory).

Figure 10. Example of a low point density ground segment,
falsely classified as undefined (UD =  magenta).

However, focussing on the detection of poles and other non-
planar objects as well as the separation of pole supported
objects, the presented approach is robust and straight forward.
Fig. 11 shows the separation of a traffic sign and a tree standing
next to each other. The clumps of both objects are separated by
Dijkstra region growing. This leads to an improved separation
compared to e.g. Voronoi-approaches and related methods
presented by e.g. Rutzinger et al. (2011) or Zhong et al.
(2013).

Figure 11. Example of a correctly separated traffic sign anda
tree. 

6.6.6.6. CONCLUSION AND OUTLOOK

Object classification of mobile laser scanning point clouds is
providing an essential input for many applications. We
presented an automated classification approach separating the
eight classes ground, ground inventory, walls, wall inventory,
roofs, artificial poles, trees and undefined objects. The work-
flow is independent from planar segmentation and height slicing
steps, focusing on pole-like objects. 
For this semantic group, we can provide a robust and
straightforward approach for its detection, separation and
classification. This can provide adequate input data for future
light, noise and visibility modelling and leaf area estimations.
For leaf-off trees, as presented in this paper, the leafage could
be modelled making the consideration of complex crown
densities possible (Cote et al. 2009, Rutzinger 2011). 
For the other semantic groups, thresholding has a more
important role, reducing the comparability of the results.Planar
object groups for example can be handled less accurate. In order
to improve the results, more intelligent and threshold-less
solutions are necessary.
For future work on planar objects the presented approach might
be useful for the detection of planar candidate classes, followed
by planar segmentation for robust and refined subdivisions.
Further enhancements could focus on the incorporation of
corrected or normalized intensity values improving point cloud
classification and differentiating even more classes. In order to
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strengthen the evaluation of point cloud classification
approaches, further research on appropriate error assessment
strategies are required. This would allow a decision on the
suitability of point cloud classification results for specific
applications.
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