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ABSTRACT

The mapping of road environments is an important task, pingiimportant input data for a broad range of scientificcines.
Pole-like objects, their visibility and their influencetonlocal light and traffic noise conditions are of partiquiaterest for traffic
safety, public health and ecological issues. Detailed kadge can support the improvement of traffic managemenseneducing
infrastructure or the planning of photovoltaic panels. M®apping Systems coupled with computer aided mappingkvlomws
allow an effective data acquisition and provision. We pnése classification work flow focussing on pole-like objctt uses
rotation and scale invariant point and object features fassification, avoiding planar segmentation and heighing) steps. Single
objects are separated by connected component and Dijathaanalysis. Trees and artificial objects are separated)a graph
based approach considering the branching levels of thegjgemetries. For the focussed semantic groups, clasgificaccuracies
higher than 0.9 are achieved. This includes both the quaflibbject aggregation and separation, where the combmafi®ijkstra-
path aggregation and graph-based classification showd gegults. For planar objects the classification accusaaie lowered,
recommending the usage of planar segmentation for cleasdn and subdivision issues as presented by other autfibes
presented work-flow provides sufficient input ddafurther 3D reconstructions and tree modelling.

1. INTRODUCTION Trees can be detected by the echo ratio measures (Rutzinger e
al. 2011) and pole-like structures can be identified by hiig

1.1 Background percentile techniques (Zhong et al. 2013, Pu 204l).

) o ) Many work-flows apply a planar segmentation to the point
The automatic classification of urban road environmentsthe ¢ |oud which is an indirection for the detection of non-plana
detection of single objects such as traffic signs and tree@®i  gpjects. As poles and trees show rather linear or cylintirica
important task for a variety of topics. Point cloud clagsifion patterns, an alternative approach might be betitzds
provides a_fundamental_ input to the reco_nstructions_ of 3Dgross and Thoennessen (2006) and Jutzi and Gross (2009)
scenes, which are used in road safety, public health, eicalog provide discriminating features to select points beloggio
and micro climatic applications (e.g. Zhou and Vosselmar]inear, planar and other structures in point clouds
2012, Pu et._ al 2011, Brunne_r 1998, Er_1de!aw et al. 2009). FOObject reconstruction approaches relying on graph-aisalys
road safety issues the mapping of traffic signs, curbstames  gch as tree skeletonization (Dai et al. 2009, Dai et al. 2010
trees is of |mportance. For the managemgnt and assessmentLq(,ny et al. 2010, Bremer et al. 2013) or building modeling
urban vegetation, i.e. for above ground biomass and leaf argoyde-Elberink and Vosselman 2009) allow the separation of
measures, the extraction and classification of singlestise complex semantic groups.
required. Trees, and their complex transparency propemdi®  Especially for trees, the separation of interlinked treeners
of particular interest for the assessment of light anditafbise g nearby objects is an important task. While Zhou and
conditions and visibility studies in urban planning Vosselman (2012) and Zhong et al. (2013) use Voronoi-region
In order to provide appropriate input data for such applice,  an related approaches for the separation of tree crowmsy Li
surveys with mobile mapping systems mounted on cars or othes; a). (2010) investigate the suitability of a Dijkstra cost

vehicles are combined with automated computer-aidedyigorithm (Dijkstra 1959) to associate crown points to teet
extraction work-flows allowing efficient data processiagd  {rynk.

mapping of larger areas e.g. along road corridors.
2. METHODS
1.2 Related work

. . . . 2.1 Overview
For the automatic detection of objects from mobile laser

scanning (MLS) data a variety of methods is available. Forour approach focuses on rotation and scale invariant poitt a

example Zhou and Vosselman (2012) are detecting curbstonefbject features for point cloud classification (Gross and

by analysing local height jumps. Thoennessen 2006) avoiding planar segmentation and height
slicing steps.
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For this work-flow, we are focusing on the detection and C—F v— =
subdivision of artificial pole based objects (AP) such aspa )
and traffic signs, and natural pole supported objects swch ¢ A =
trees (T). As additional classes, we separate ground (Gyngr . . .
inventory (GI) such as curbstones and lower objects, wiig ( X, Ve z,
wall inventory (WI) such as window-frames, doors and bui¢gi
columns, roofs (R), and undefined objects (UD) such as ngpvin
cars or people. Points associated with mirror effects ol R
windows, are treated as undefined objects. I
In order to extract different object classes from the MLSadat _ ~ ~ . _ ~
we use a step by step procedure generating primitiveA A= ,Z“‘”"")‘-"'/’»"') 2 (v (= yHz=z)
geometrical object classes from simple point information U B
derived by a multi-scale approach. Using connectivity and 2 (x=x)(z,=2) ,z”’"_)")(“l
graph-based analysis on primitive objects, more comple. 1)
objects are derived and separated. The method consistsiof fo
main steps
(1) For each raw point the local point neighbourhood in2.3 Primitive classification

both a 0.1 m radius and a 0.5 m radius is encoded into

a 3x3 covariance matrix from which eigenvalues and The specific relationship of the normalized largest eigeune

eigenvectors are derived. (eL), intermediate eigenvalue (el) and the smallest eiglerev

(2) Characterizing each point by its eigenvalues derived®S) is a characteristic feature for the shape of indivighaant

from both 0.1 m radius and 0.5 m radius Sets. . o o

neighbourhoods, two 3-dimensional feature spaces arl) order to classify the raw points into the primitive classe

defined. For three given feature patterns (linear,linear, ‘planar, and ‘volumetric’, we define three smec

planar, volumetric), a proximity analysis is performed €igenvalue patterns for each class (values bet@een 1):

for each point in the feature spaces. On both scale

levels the points are grouped into the three givenlinear: eL =0.75, el = 0.16, eS = 0.04

primitive classes. Using the orientation of the longestPlanar: eL = 0.45, el = 0.45, eS = 0.01

eigenvector for linear objects and that of the smallestvolumetric: eL = 0.45, el = 0.45, eS = 0.30

eigenvector for planar structures, vertical and ) ]
horizontal sub classes are derived. The eigenvalues of the patterns are averaged values derived

(3) By applying conditons to both scale level from smalltraining areas of the selected classes.

classifications and by a connected componentn the 3-dimensional feature spaces spanned by the eigeswal
analysis, walls, wall-inventory (e.g. window frames), f01 and the eigenvalues r05, each data point is assigneeto th

ground and ground-inventory (e.g. poles) arePrimitive pattern to which the shortest Mahalanobis Distan
separated. (D) is observed. The Mahalanobis Distance (Eqn. 2) is the
(4) Pole objects including trees are separated using &tatistical distance measurd)( where, in addition to the
Dijkstra region growing approach. Artificial pole euclidean distance, the covariance mat& ¢f the dataset is
objects such as lamps, traffic signs and traffic lights considered. Here5 is computed as shown _in equation 1 using
are further separated from trees using branching level§he feature space vectors eL, el, eS instead of the xy,z
derived from skeletonization (see Bremer et al. 2013)coordinates.
and graph-analysis.

D(%,9)= y(x-y)' s*(x~) 2

<i

2.2 Multi scale feature computation

For each point, local point neighbourhood features arel his leads to the primitive classifications (linear01, rze01,

computed. All barycentric coordinates of points lying in a Yolume01, linear0S, planar05 and volume0s). _
spherical radius around a search point are encoded into &€ linéar and planar classes are further split into veytica
covariance matrix M (Egn. 1). The encoding is done for both Norizontal and other orientations (vert_planar01, hanafo1,

a 0.1 m radius (r01) and a 0.5 m radius (r05). The radii Werevert_hnea_rOl, etc.). F_or linear structt_Jres the orientaif the
chosen after visual analyses considering the optimizedonQGSt eigenvector is used. A.horlzontal struct:Jre shovys a
extraction of smaller poles (e.g. thin branches (r01)) amdelr vertical angle oof the longest eigenvector < .10 ,a vertical
posts (r05). structure >_ 80°. For planar struc_tures the orientation @f th
From the covariance matrices, three specific eigenvaliese smallest elggnvector (corresponding to the .normal vedsor)
eigenvectors, and the vertical angles of the longest and th#S€d- A horizontal structure shows a vertical angle ?f the
smallest eigenvectors are computed for each radius (r@), ro Smallest eigenvector > 80°, a vertical structure < 10°. For
respectively. volumetric structures, the orientation is not dedin

According to the usually high point density of the original Bl . L

data, a search radius of 0.5 m is increasing the computatien t 24 Object classification

significantly. Thus we use a hierarchical approach, airadys
the neighbourhood of a 0.1 m block-thinned point cloud for
each point of the original point cloud. This is reducing timeet
required for computing and leads to a generalization of th
input data, increasing the coarse scale effect of the 0.5dimsa
search.

In the next step, the multi scale primitive classificatienuised

to aggregate and separate semantic groups. Based on the
éarimitive classification, a region growing in object spaise
performed in order to separate smaller and larger homogsneo
point clumps.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-55-2013 56



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 — 13 November 2013, Antalya, Turkey

The following criteria are used for classifications The threshold values given in section 2 were obtained from a
Poles: vert_linearO®OR (vert_linear0O1AND NOT planar05) small training area in the centre of the data set. These salue
AND clump size > 100 were validated against the whole MLS data set. Therefoee, th

whole point cloud, was manually classified into the target
Ground: (hor_planarODR hor_planar0O5)AND clump size >  classes (reference) comparable to the automatiseda
30000)
4, RESULTS

Walls: (vert_planarOAND NOT vert_line05)AND clump size
> 3000 4.1 Qualitativeresults

Applying the 0.1 m radius leads to small blurring effects. Using a 0.1 m radius (Fig. 1), small tree branches and poles of

Smaller branches and thin poles are detected as linedfafiC Signs are classified as linear structures. Voluioet
structures. Larger objects appear as vertical planes andsio patterns are restricted t_o sharp edges on building walls and
poles. Showing a more intense blurring, the 0.5 m radiuurbstones.  However, linear and volumetric patterns e al
classification is applied in order to also classify largenks as ~ ound on planar features such as roof and grourfelcas.

linear structures. Combining both classifications exgldhe A 0-5 M radius search (Fig. 2) allows the detection of larger
advantages of both scales and leads to a reliable extragtion PO€s- Roofs are detected as planar features. Curveddree-f
pole-like structures. features such as cars and other moving objects show voliemetr

Due to inhomogeneous point densities and scan patterns R2tterns. Volumetric patterns are also found ie @wns.
MLS point clouds, single scan lines on the road and other flat! '€ Dilkstra region growing for artificial poles and tredmw/s
surfaces may be classified as linear or volumetric strestur COTect results, even in dense and closely connected
using a 0.1 m radius. Therefore, both 0.1 m and 0.5 m radius ar1(3e|ghbourhoods. The threshold-based classification sletad

used for ground classification. Additionally, ground segs ~ SOMe less reliable classifications (see Fig. 3, 4 and 5 as
are usually large and include a lot of points. reference). As can be seen in Fig. 6, the maximum hierarchica

Since building walls are mostly vertical, the use of theb.ranching level of an artificial po[e-like object (lamp aaﬂﬁq
vert_planar01 feature leads to a sufficient separationuding ~ S/9") iS between 0 and 4, while trees show much higher
walls. branching levels. This leads to a visually sufficient saetian of

In order to avoid noise in the object classification results POth classes (Fig. 3 and 4).

minimum cluster sizes are introduced. Connected ground
clusters need to show a minimum point count of 30.000 pts
wall clusters need to show a minimum point count of 3.000 pts.
and pole clusters of 100 pts.

For the separation of wall-associated elements (e.g. cdum
and window frames) and ground-associated poles (e.gictraff
signs and tree trunks) we additionally apply dis&thresholds.

A ground inventory feature needs to show a distance to ¢
ground cluster smaller than 1 m and a minimum distance to ¢
wall cluster of 3 m. A wall feature needs to show a distance to ¢
wall cluster smaller than 1 m :

2.5 Graph-based classification for pole supported objects

As a lot of applications need reconstructed 3D models as dat ﬁ%g;
T A ¥

. . . . ~ . | . . = ’3-": i e
|_nput, automatic mobile mapping work ﬂOWS. often_include Figure 1. Raw classification into volumetric (red), linddark
linear and polygonal geometry reconstruction. Thus, wey

integrate a skeleton graph reconstruction step into our lue) and planar (light blue) patterns using a 10 cm radius
NN search.
classification work-flow. In order to extract trees ancetteunks

from the data set, we analyse the point neighbourhood in th

upper half-space of a pole feature. Object clumps are gobupe

using a Dijkstra region growing procedure.

Using the pole as a seed-object for a skeletonization, ehgeap

build for each pole component and its associated
neighbourhood.

el

3. DATA SET

The test site is located in Rheine, Germany. The MLS data wa A S
aquired by TopScan GmbH in March 2013 using the Optect. :. " . T
Lynx Mobile Mapper system with two rotating laser scanners *,
mounted in a 45° angle with the driving direction of the véhic ‘ .
(Optech 2013). For this study an exemplary road segment, 30 “‘ga A T N/ /-

m in length, is processed. It was scanned in one drivingrigure 2. Raw classification into volumetric (red), lingaark

direction. The point cloud merged from both sensors coetainb|ue) and planar (light blue) patterns using a 50 cm radius
5,838,701 pts. and shows an averaged point distsrizem. search.

Simultaneously with the scan, panoramic images were shot
using a Ladybug panoramic camera systeoir{t Grey, 2013)
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4.2 Accuracy measures

The accuracy measures (table 7 and 8) show the highest values
for the base classes 'ground’, ‘wall' and 'pole’, coming filoe
the raw classification. Besides that, the pole supportedsels
separated by the graph-based classification also show high
accuracy values. For these classes (G,W,AP,T) only smait po
counts are missing compared to the target point counts diyen
the reference data (user accuracies > 0.98). The producer
accuracies are also high for these classes. The producer
accuracy of the AP class is slightly lowered due to the wrong
classification of columns of buildings and gutters as ngl
poles.
iy The associated classes WI, Gl and R also show lowered
: 5 ] 3 : i,ﬂ_f accuracies, because of the lowered robustness of the clistan
Figure 3. Final classification. Classification into gralfblue), criteria compared to the the Dijkstra classificatapproach.
ground inventory (dark blue), wall (light grey), wall inviemy

%5 :

(dark grey), roof (red), artificial poles (yellow), treesrénge) Reference Data
and undefined objects (transparent). up G Gl w W R AP T
ub 38076: 6120 5 18291 94708 37027 1 2075 538990
G 6836 2104378 6959 2 927 0 397 17 2119511
= U3 b, Gl 10971 26205 103708 1715 6268 0 43 115p 150456
i w 317 4 0 1503263 32641 42 11 1 1536284
wi 18893 3182 165 6862 6591186 17108 116 4468 709930
R 91 D 0 4190 20476 73275 98859
AP 5564 15 0 0 3019 06185: 647 71239
T 3781 29D 2 0 27 0 11 609171 613382
column total 428038 2140335 110839 1534323 82|7352745 62823 617589 5838701

Table 7. Error matrix of the classification accueac

User Accuracy:

i i Ay ; uD 380763 / 428038 =089
Figure 4. Final classification. Panoramic rendering of thec 2104378 2140335 =0.98
e : Gl 103708 / 110839 =0.94
classified point cloud. W 1503263 / 1534323 098
Wi 659186 / 817352 =0.80
R 73275/ 127452 =0.58
AP 61853 / 62823 =0.99
T 609171 /617539 =0.99
Producer Accuracy:
ub 380763 / 538990 =071
G 2104378 /2119511 =0.99
Gl 103708 / 150456 =0.69
W 1503263 / 709980 =0.98
Wi 659186 / 709980 =0.93
R 73275171239 =0.74
AP 61853 / 613382 =0.87
T 609171 /613382 =0.99

Overall Accuracy:
5495597 / 5838701 =0.94

Table 8. Error matrix of the classification accueac

5. DISCUSSION

The eigenvalue based classifications show advantages and
disadvantages due to the scale of the analysed neighbalghoo
(0.1 and 0.5 m radius search). An Advantage of the 0.1 m
search classification is the appropriate description oflsm
geometrical patterns and discontinuities. On the othedhan
disadvantage is the strong sensitivity to scanning pattetata
gaps and differences in point densities. This partly resint
linear and volumetric patterns on planar features such af ro

: and ground surfaces. Additionally, the detection of largele

i objects such as thicker tree trunks is not possible (seésect
4).

In contrast to this, the 0.5 m radius eigenvalue classificat
offers a straightforward detection of larger poles. Addiglly,
surface elements suffering from lower point densities ia th
scan coverage such as roofs are clearly detected as planar
features.

Figure 6. Skeleton reconstructions of pole supported ¢hjec
The branching levels are colour coded from low (blue) to high
level (red). The estimated thickness of the point cloud adou
each skeleton segment is modelled as a connegiedmmdel.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-55-2013 58



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 — 13 November 2013, Antalya, Turkey

The raw classification of cars allows the separation of éhes
objects as undefined points. A disadvantage of the 0.5 nusadi
approach is a blurring effect at edges and discontinuitiehe
point cloud. This also leads to volumetric patterns in tree
crowns, well known from lower resolution data such as ainleor
LIDAR (Fig. 2).

In order to make use of both advantages, we combined both raw
classifications by applying reasonable constraints asritesl

in section 2. This results in a reliable classification ofllsa
ground and poles.

The connectivity analysis for ground inventory, wall intery
and roof shows less reliable results as for artificial paies
trees. In the latter case, the shortest path competitiorhef t

Dijkstra algorithm results in distinct clusters. The threls- . .
I A S However, focussing on the detection of poles and other non-
based classification leads to some less reliable clagsiits in . .
planar objects as well as the separation of pole supported

j;eas where o classes are spatially connected (see Figi 3 aobjects, the presented approach is robust and straighaifdrw

As shown in Figure 6 the maximum branching level of a poIeFig' 11 shows the separation of a traffic sign and a tree stgnd
supported object is a suitable object feature for the séparaf B?ig:?aeraec?o?]thfgvxe C_:_l;]?;plsé:;:?;ha%bji;dfo%ree dssga;?‘gtad b
artificial objects and trees. Overestimations of the higrizal c ij ared gto eg V(?rbnoi-a roaches ang related pmetho ds
levels on artificial objects do only occur if traffic lightand P 9. 1o-app

signs are inhomogeneously covered by data points. presented by e.g. Rutzinger et al. (2011) or Zhong et al.

With respect to the applied work-flow typical systematicoes (2013).
occur. One main problem is the discrimination between wall
inventory such as pipes, gutters and columns in front of
building entrances, and poles of the road inventory. The
application of a connected component analysis results in
systematic errors in case of traffic signs that are directly
adjacent to building walls (see Fig. 9). An other source obrer

is associated with low point densities and data gaps due to
occluding effects of other objects. In many cases occlssae
caused by moving objects. One example is the car on the left
traffic lane in Fig. 5, which is moving in the same direction a
the mobile mapping device, causing a large data gap in the
point cloud (Fig. 4). ) LSS
In areas where the point density is too low and clumps of goint Figure 11. Example of a corr
with similar raw classification become too small, planagea  tree-

objects are falsely classified as UD. This is visible forigrd

segments (Fig. 10) and roof segments. In particular roof

surfaces are under-represented in the MLS data and thus are 6. CONCLUSION AND OUTLOOK

difficult to classify. . e . . . .

In general, the presented work-flow shows a reduceoObJe_Ct_ classification O_f m(_)blle laser scanning point clus
performance regarding the distinct subdivision of planarProviding an essential ‘input for many applications. We
surfaces (see Fig. 9 and 10.). Here, a classification bared Oo_resented an automated class_lflcatlon approach Se@m
planar segmentation is expected to show better result£ight classes ground, ground inventory, walls, wall invent
Additionally, the thresholding approach used for the clumpl@0fs, artificial poles, trees and undefined objects. Thekw
sizes and adjacencies lowers the accuracy of the results, He flOW iS independent from planar segmentation and heigbingi

threshold-less decisions, such as the presented Dijkstr€PS: focusing on pole-like objects. _
approach, are desirable. For this semantic group, we can provide a robust and

straightforward approach for its detection, separatiord an
classification. This can provide adequate input data fonrg
light, noise and visibility modelling and leaf area estiioas.
% For leaf-off trees, as presented in this paper, the leafagélc
g be modelled making the consideration of complex crown
2

Figure lO..ExampIe of a low point .de'nsity ground segment,
falsely classified as undefined (UD = magenta).

ectly separated traffic sign and

0
-
)
%
o]

v,

ORI Y X )

cmvian.
At

densities possible (Cote et al. 2009, Rutzingerd201

For the other semantic groups, thresholding has a more
important role, reducing the comparability of the resuitenar
object groups for example can be handled less accuratedér or
to improve the results, more intelligent and threshold-les
solutions are necessary.

For future work on planar objects the presented approachtmig
be useful for the detection of planar candidate classeswietl

. o by planar segmentation for robust and refined subdivisions
Figure 9. Example of an undetected pole of a traffic signy nearyther enhancements could focus on the incorporation of
to a building wall (falsely classified as wall imtery). corrected or normalized intensity values improving poioud
classification and differentiating even more classes.rtiento
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strengthen the evaluation of point cloud classificationLivny, Y., Feilong, Y., Olson, M., Chen, B., Zhang, H., El-
approaches, further research on appropriate error assessmSana, J., 2010. Automatic reconstruction of tree skeletal
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